Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(4): 837-849.e11, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36693376

RESUMEN

Concomitant with DNA replication, the chromosomal cohesin complex establishes cohesion between newly replicated sister chromatids. Cohesion establishment requires acetylation of conserved cohesin lysine residues by Eco1 acetyltransferase. Here, we explore how cohesin acetylation is linked to DNA replication. Biochemical reconstitution of replication-coupled cohesin acetylation reveals that transient DNA structures, which form during DNA replication, control the acetylation reaction. As polymerases complete lagging strand replication, strand displacement synthesis produces DNA flaps that are trimmed to result in nicked double-stranded DNA. Both flaps and nicks stimulate cohesin acetylation, while subsequent nick ligation to complete Okazaki fragment maturation terminates the acetylation reaction. A flapped or nicked DNA substrate constitutes a transient molecular clue that directs cohesin acetylation to a window behind the replication fork, next to where cohesin likely entraps both sister chromatids. Our results provide an explanation for how DNA replication is linked to sister chromatid cohesion establishment.


Asunto(s)
Cromátides , Proteínas de Saccharomyces cerevisiae , Cromátides/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Replicación del ADN , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN , Acetiltransferasas/genética , Acetiltransferasas/metabolismo
2.
Cell ; 172(3): 465-477.e15, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29358048

RESUMEN

The ring-shaped structural maintenance of chromosome (SMC) complexes are multi-subunit ATPases that topologically encircle DNA. SMC rings make vital contributions to numerous chromosomal functions, including mitotic chromosome condensation, sister chromatid cohesion, DNA repair, and transcriptional regulation. They are thought to do so by establishing interactions between more than one DNA. Here, we demonstrate DNA-DNA tethering by the purified fission yeast cohesin complex. DNA-bound cohesin efficiently and topologically captures a second DNA, but only if that is single-stranded DNA (ssDNA). Like initial double-stranded DNA (dsDNA) embrace, second ssDNA capture is ATP-dependent, and it strictly requires the cohesin loader complex. Second-ssDNA capture is relatively labile but is converted into stable dsDNA-dsDNA cohesion through DNA synthesis. Our study illustrates second-DNA capture by an SMC complex and provides a molecular model for the establishment of sister chromatid cohesion.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , Proteínas Cromosómicas no Histona/metabolismo , ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo , Cromátides/metabolismo , Replicación del ADN , Saccharomyces cerevisiae , Schizosaccharomyces , Cohesinas
3.
Mol Cell ; 83(21): 3787-3800.e9, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37820734

RESUMEN

Condensin is a structural maintenance of chromosomes (SMC) complex family member thought to build mitotic chromosomes by DNA loop extrusion. However, condensin variants unable to extrude loops, yet proficient in chromosome formation, were recently described. Here, we explore how condensin might alternatively build chromosomes. Using bulk biochemical and single-molecule experiments with purified fission yeast condensin, we observe that individual condensins sequentially and topologically entrap two double-stranded DNAs (dsDNAs). Condensin loading transitions through a state requiring DNA bending, as proposed for the related cohesin complex. While cohesin then favors the capture of a second single-stranded DNA (ssDNA), second dsDNA capture emerges as a defining feature of condensin. We provide complementary in vivo evidence for DNA-DNA capture in the form of condensin-dependent chromatin contacts within, as well as between, chromosomes. Our results support a "diffusion capture" model in which condensin acts in mitotic chromosome formation by sequential dsDNA-dsDNA capture.


Asunto(s)
Proteínas de Unión al ADN , Schizosaccharomyces , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/química , ADN/genética , Cromosomas , Proteínas de Ciclo Celular/genética , Schizosaccharomyces/genética , Mitosis
4.
Cell ; 163(7): 1628-40, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26687354

RESUMEN

Structural maintenance of chromosome (SMC) complexes are proteinaceous rings that embrace DNA to enable vital chromosomal functions. The ring is formed by two SMC subunits, closed at a pair of ATPase heads, whose interaction is reinforced by a kleisin subunit. Using biochemical analysis of fission-yeast cohesin, we find that a similar series of events facilitates both topological entrapment and release of DNA. DNA-sensing lysines trigger ATP hydrolysis to open the SMC head interface, whereas the Wapl subunit disengages kleisin, but only after ATP rebinds. This suggests an interlocking gate mechanism for DNA transport both into and out of the cohesin ring. The entry direction is facilitated by a cohesin loader that appears to fold cohesin to expose the DNA sensor. Our results provide a model for dynamic DNA binding by all members of the SMC family and explain how lysine acetylation of cohesin establishes enduring sister chromatid cohesion.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN/metabolismo , Adenosina Trifosfato/metabolismo , Escherichia coli , Humanos , Hidrólisis , Saccharomyces cerevisiae , Schizosaccharomyces , Cohesinas
5.
Nat Rev Mol Cell Biol ; 17(7): 399-412, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27075410

RESUMEN

SMC (structural maintenance of chromosomes) complexes - which include condensin, cohesin and the SMC5-SMC6 complex - are major components of chromosomes in all living organisms, from bacteria to humans. These ring-shaped protein machines, which are powered by ATP hydrolysis, topologically encircle DNA. With their ability to hold more than one strand of DNA together, SMC complexes control a plethora of chromosomal activities. Notable among these are chromosome condensation and sister chromatid cohesion. Moreover, SMC complexes have an important role in DNA repair. Recent mechanistic insight into the function and regulation of these universal chromosomal machines enables us to propose molecular models of chromosome structure, dynamics and function, illuminating one of the fundamental entities in biology.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Cromosomas/fisiología , Proteínas de Unión al ADN/fisiología , Complejos Multiproteicos/fisiología , Adenosina Trifosfatasas/ultraestructura , Animales , Ensamble y Desensamble de Cromatina , Cromosomas/ultraestructura , ADN/fisiología , ADN/ultraestructura , Reparación del ADN , Proteínas de Unión al ADN/ultraestructura , Inestabilidad Genómica , Humanos , Complejos Multiproteicos/ultraestructura
6.
Mol Cell ; 78(4): 725-738.e4, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32277910

RESUMEN

Concomitant with DNA replication, the chromosomal cohesin complex establishes cohesion between newly replicated sister chromatids. Several replication-fork-associated "cohesion establishment factors," including the multifunctional Ctf18-RFC complex, aid this process in as yet unknown ways. Here, we show that Ctf18-RFC's role in sister chromatid cohesion correlates with PCNA loading but is separable from its role in the replication checkpoint. Ctf18-RFC loads PCNA with a slight preference for the leading strand, which is dispensable for DNA replication. Conversely, the canonical Rfc1-RFC complex preferentially loads PCNA onto the lagging strand, which is crucial for DNA replication but dispensable for sister chromatid cohesion. The downstream effector of Ctf18-RFC is cohesin acetylation, which we place toward a late step during replication maturation. Our results suggest that Ctf18-RFC enriches and balances PCNA levels at the replication fork, beyond the needs of DNA replication, to promote establishment of sister chromatid cohesion and possibly other post-replicative processes.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromátides/fisiología , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Fúngicos/fisiología , Replicación del ADN , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Proteína de Replicación C/genética , Proteína de Replicación C/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Cohesinas
7.
Mol Cell ; 79(6): 917-933.e9, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32755595

RESUMEN

Despite key roles in sister chromatid cohesion and chromosome organization, the mechanism by which cohesin rings are loaded onto DNA is still unknown. Here we combine biochemical approaches and cryoelectron microscopy (cryo-EM) to visualize a cohesin loading intermediate in which DNA is locked between two gates that lead into the cohesin ring. Building on this structural framework, we design experiments to establish the order of events during cohesin loading. In an initial step, DNA traverses an N-terminal kleisin gate that is first opened upon ATP binding and then closed as the cohesin loader locks the DNA against the ATPase gate. ATP hydrolysis will lead to ATPase gate opening to complete DNA entry. Whether DNA loading is successful or results in loop extrusion might be dictated by a conserved kleisin N-terminal tail that guides the DNA through the kleisin gate. Our results establish the molecular basis for cohesin loading onto DNA.


Asunto(s)
Proteínas de Ciclo Celular/ultraestructura , Cromátides/ultraestructura , Proteínas Cromosómicas no Histona/ultraestructura , ADN/ultraestructura , Intercambio de Cromátides Hermanas/genética , Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/genética , Cromátides/genética , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica/genética , Microscopía por Crioelectrón , ADN/genética , Conformación de Ácido Nucleico , Conformación Proteica , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestructura , Cohesinas
8.
Mol Cell ; 74(4): 664-673.e5, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-30922844

RESUMEN

Cohesin is a conserved, ring-shaped protein complex that topologically embraces DNA. Its central role in genome organization includes functions in sister chromatid cohesion, DNA repair, and transcriptional regulation. Cohesin loading onto chromosomes requires the Scc2-Scc4 cohesin loader, whose presence on chromatin in budding yeast depends on the RSC chromatin remodeling complex. Here we reveal a dual role of RSC in cohesin loading. RSC acts as a chromatin receptor that recruits Scc2-Scc4 by a direct protein interaction independent of chromatin remodeling. In addition, chromatin remodeling is required to generate a nucleosome-free region that is the substrate for cohesin loading. An engineered cohesin loading module can be created by fusing the Scc2 C terminus to RSC or to other chromatin remodelers, but not to unrelated DNA binding proteins. These observations demonstrate the importance of nucleosome-free DNA for cohesin loading and provide insight into how cohesin accesses DNA during its varied chromosomal activities.


Asunto(s)
Proteínas de Ciclo Celular/genética , Ensamble y Desensamble de Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Proteínas de Saccharomyces cerevisiae/genética , Segregación Cromosómica/genética , Cromosomas/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Nucleosomas/genética , Saccharomyces cerevisiae/genética , Intercambio de Cromátides Hermanas , Transcripción Genética , Cohesinas
9.
Cell ; 147(4): 803-14, 2011 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-22078879

RESUMEN

After sister chromatid splitting at anaphase onset, exit from mitosis comprises an ordered series of events. Dephosphorylation of numerous mitotic substrates, which were phosphorylated by cyclin-dependent kinase (Cdk), is thought to bring about mitotic exit, but how temporal ordering of mitotic exit events is achieved is poorly understood. Here, we show, using budding yeast, that dephosphorylation of Cdk substrates involved in sequential mitotic exit events occurs with ordered timing. We test different models of how ordering might be achieved by modulating Cdk and Cdk-counteracting phosphatase Cdc14 activities in vivo, as well as by kinetic analysis of Cdk substrate phosphorylation and dephosphorylation in vitro. Our results suggest that the gradual change of the phosphatase to kinase ratio over the course of mitotic exit is read out by Cdk substrates that respond by dephosphorylation at distinct thresholds. This provides an example and a mechanistic explanation for a quantitative model of cell-cycle progression.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Mitosis , Modelos Biológicos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Ciclina B/metabolismo , Monoéster Fosfórico Hidrolasas , Fosforilación , Proteínas Tirosina Fosfatasas/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Mol Cell ; 65(3): 393-402.e3, 2017 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-28132839

RESUMEN

In the quantitative model of cell-cycle control, progression from G1 through S phase and into mitosis is ordered by thresholds of increasing cyclin-dependent kinase (Cdk) activity. How such thresholds are read out by substrates that respond with the correct phosphorylation timing is not known. Here, using the budding yeast model, we show that the abundant PP2ACdc55 phosphatase counteracts Cdk phosphorylation during interphase and delays phosphorylation of late Cdk substrates. PP2ACdc55 specifically counteracts phosphorylation on threonine residues, and consequently, we find that threonine-directed phosphorylation occurs late in the cell cycle. Furthermore, the late phosphorylation of a model substrate, Ndd1, depends on threonine identity of its Cdk target sites. Our results support a model in which Cdk-counteracting phosphatases contribute to cell-cycle ordering by imposing Cdk thresholds. They also unveil a regulatory principle based on the phosphoacceptor amino acid, which is likely to apply to signaling pathways beyond cell-cycle control.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Treonina/metabolismo , Factores de Transcripción/metabolismo , Ciclo Celular , Quinasas Ciclina-Dependientes/metabolismo , Fosforilación , Serina/metabolismo , Transducción de Señal
11.
Genes Dev ; 31(21): 2151-2161, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29208645

RESUMEN

DNA replication of circular genomes generates physically interlinked or catenated sister DNAs. These are resolved through transient DNA fracture by type II topoisomerases to permit chromosome segregation during cell division. Topoisomerase II is similarly required for linear chromosome segregation, suggesting that linear chromosomes also remain intertwined following DNA replication. Indeed, chromosome resolution defects are a frequent cause of chromosome segregation failure and consequent aneuploidies. When and where intertwines arise and persist along linear chromosomes are not known, owing to the difficulty of demonstrating intertwining of linear DNAs. Here, we used excision of chromosomal regions as circular "loop outs" to convert sister chromatid intertwines into catenated circles. This revealed intertwining at replication termination and cohesin-binding sites, where intertwines are thought to arise and persist but not to a greater extent than elsewhere in the genome. Intertwining appears to spread evenly along chromosomes but is excluded from heterochromatin. We found that intertwines arise before replication termination, suggesting that replication forks rotate during replication elongation to dissipate torsion ahead of the forks. Our approach provides previously inaccessible insight into the topology of eukaryotic chromosomes and illuminates a process critical for successful chromosome segregation.


Asunto(s)
Cromosomas Fúngicos/metabolismo , Replicación del ADN , ADN de Hongos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Estructuras Genéticas , Genoma Fúngico , Heterocromatina/metabolismo , Origen de Réplica/genética , Cohesinas
12.
Chromosoma ; 132(2): 117-135, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37166686

RESUMEN

The chromosomal cohesin complex establishes sister chromatid cohesion during S phase, which forms the basis for faithful segregation of DNA replication products during cell divisions. Cohesion establishment is defective in the absence of either of three non-essential Saccharomyces cerevisiae replication fork components Tof1-Csm3 and Mrc1. Here, we investigate how these conserved factors contribute to cohesion establishment. Tof1-Csm3 and Mrc1 serve known roles during DNA replication, including replication checkpoint signaling, securing replication fork speed, as well as recruiting topoisomerase I and the histone chaperone FACT. By modulating each of these functions independently, we rule out that one of these known replication roles explains the contribution of Tof1-Csm3 and Mrc1 to cohesion establishment. Instead, using purified components, we reveal direct and multipronged protein interactions of Tof1-Csm3 and Mrc1 with the cohesin complex. Our findings open the possibility that a series of physical interactions between replication fork components and cohesin facilitate successful establishment of sister chromatid cohesion during DNA replication.


Asunto(s)
Replicación del ADN , Proteínas de Saccharomyces cerevisiae , Proteínas de Unión al ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cromátides/metabolismo , Cohesinas
13.
Yeast ; 41(3): 73-86, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38451028

RESUMEN

Schizosaccharomyces japonicus belongs to the single-genus class Schizosaccharomycetes, otherwise known as "fission yeasts." As part of a composite model system with its widely studied S. pombe sister species, S. japonicus has provided critical insights into the workings and the evolution of cell biological mechanisms. Furthermore, its divergent biology makes S. japonicus a valuable model organism in its own right. However, the currently available genome assembly contains gaps and has been unable to resolve centromeres and other repeat-rich chromosomal regions. Here we present a telomere-to-telomere long-read genome assembly of the S. japonicus genome. This includes the three megabase-length chromosomes, with centromeres hundreds of kilobases long, rich in 5S ribosomal RNA genes, transfer RNA genes, long terminal repeats, and short repeats. We identify a gene-sparse region on chromosome 2 that resembles a 331 kb centromeric duplication. We revise the genome size of S. japonicus to at least 16.6 Mb and possibly up to 18.12 Mb, at least 30% larger than previous estimates. Our whole genome assembly will support the growing S. japonicus research community and facilitate research in new directions, including centromere and DNA repeat evolution, and yeast comparative genomics.


Asunto(s)
Schizosaccharomyces , Schizosaccharomyces/genética , Telómero/genética , Centrómero/genética
14.
Mol Cell ; 63(3): 371-84, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27397686

RESUMEN

DNA replication during S phase is accompanied by establishment of sister chromatid cohesion to ensure faithful chromosome segregation. The Eco1 acetyltransferase, helped by factors including Ctf4 and Chl1, concomitantly acetylates the chromosomal cohesin complex to stabilize its cohesive links. Here we show that Ctf4 recruits the Chl1 helicase to the replisome via a conserved interaction motif that Chl1 shares with GINS and polymerase α. We visualize recruitment by EM analysis of a reconstituted Chl1-Ctf4-GINS assembly. The Chl1 helicase facilitates replication fork progression under conditions of nucleotide depletion, partly independently of Ctf4 interaction. Conversely, Ctf4 interaction, but not helicase activity, is required for Chl1's role in sister chromatid cohesion. A physical interaction between Chl1 and the cohesin complex during S phase suggests that Chl1 contacts cohesin to facilitate its acetylation. Our results reveal how Ctf4 forms a replisomal interaction hub that coordinates replication fork progression and sister chromatid cohesion establishment.


Asunto(s)
Cromátides/enzimología , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Fúngicos/enzimología , ADN de Hongos/biosíntesis , Proteínas de Unión al ADN/metabolismo , Fase S , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Acetiltransferasas/metabolismo , Acilación , Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/ultraestructura , Cromosomas Fúngicos/genética , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/ultraestructura , Microscopía Electrónica de Transmisión , Modelos Moleculares , Complejos Multiproteicos , Proteínas Nucleares/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestructura , Relación Estructura-Actividad , Factores de Tiempo , Cohesinas
15.
Nucleic Acids Res ; 49(3): 1294-1312, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33434270

RESUMEN

Underlying higher order chromatin organization are Structural Maintenance of Chromosomes (SMC) complexes, large protein rings that entrap DNA. The molecular mechanism by which SMC complexes organize chromatin is as yet incompletely understood. Two prominent models posit that SMC complexes actively extrude DNA loops (loop extrusion), or that they sequentially entrap two DNAs that come into proximity by Brownian motion (diffusion capture). To explore the implications of these two mechanisms, we perform biophysical simulations of a 3.76 Mb-long chromatin chain, the size of the long Schizosaccharomyces pombe chromosome I left arm. On it, the SMC complex condensin is modeled to perform loop extrusion or diffusion capture. We then compare computational to experimental observations of mitotic chromosome formation. Both loop extrusion and diffusion capture can result in native-like contact probability distributions. In addition, the diffusion capture model more readily recapitulates mitotic chromosome axis shortening and chromatin compaction. Diffusion capture can also explain why mitotic chromatin shows reduced, as well as more anisotropic, movements, features that lack support from loop extrusion. The condensin distribution within mitotic chromosomes, visualized by stochastic optical reconstruction microscopy (STORM), shows clustering predicted from diffusion capture. Our results inform the evaluation of current models of mitotic chromosome formation.


Asunto(s)
Cromatina/química , Cromosomas Fúngicos , Mitosis/genética , Schizosaccharomyces/genética , Adenosina Trifosfatasas/análisis , Simulación por Computador , Proteínas de Unión al ADN/análisis , Difusión , Modelos Genéticos , Modelos Moleculares , Complejos Multiproteicos/análisis
16.
EMBO J ; 37(10)2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29650682

RESUMEN

The cell division cycle culminates in mitosis when two daughter cells are born. As cyclin-dependent kinase (Cdk) activity reaches its peak, the anaphase-promoting complex/cyclosome (APC/C) is activated to trigger sister chromatid separation and mitotic spindle elongation, followed by spindle disassembly and cytokinesis. Degradation of mitotic cyclins and activation of Cdk-counteracting phosphatases are thought to cause protein dephosphorylation to control these sequential events. Here, we use budding yeast to analyze phosphorylation dynamics of 3,456 phosphosites on 1,101 proteins with high temporal resolution as cells progress synchronously through mitosis. This reveals that successive inactivation of S and M phase Cdks and of the mitotic kinase Polo contributes to order these dephosphorylation events. Unexpectedly, we detect as many new phosphorylation events as there are dephosphorylation events. These correlate with late mitotic kinase activation and identify numerous candidate targets of these kinases. These findings revise our view of mitotic exit and portray it as a dynamic process in which a range of mitotic kinases contribute to order both protein dephosphorylation and phosphorylation.


Asunto(s)
Ciclo Celular , Mitosis/fisiología , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Citocinesis , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Proteolisis , Saccharomycetales/crecimiento & desarrollo
18.
EMBO J ; 35(24): 2671-2685, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27799150

RESUMEN

The spatial organization, correct expression, repair, and segregation of eukaryotic genomes depend on cohesin, ring-shaped protein complexes that are thought to function by entrapping DNA It has been proposed that cohesin is recruited to specific genomic locations from distal loading sites by an unknown mechanism, which depends on transcription, and it has been speculated that cohesin movements along DNA could create three-dimensional genomic organization by loop extrusion. However, whether cohesin can translocate along DNA is unknown. Here, we used single-molecule imaging to show that cohesin can diffuse rapidly on DNA in a manner consistent with topological entrapment and can pass over some DNA-bound proteins and nucleosomes but is constrained in its movement by transcription and DNA-bound CCCTC-binding factor (CTCF). These results indicate that cohesin can be positioned in the genome by moving along DNA, that transcription can provide directionality to these movements, that CTCF functions as a boundary element for moving cohesin, and they are consistent with the hypothesis that cohesin spatially organizes the genome via loop extrusion.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN/metabolismo , Transcripción Genética , Factor de Unión a CCCTC , Humanos , Proteínas Represoras/metabolismo , Imagen Individual de Molécula , Factores de Tiempo , Cohesinas
19.
Curr Genet ; 66(5): 951-956, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32277274

RESUMEN

Cohesin is a conserved, ring-shaped protein complex that topologically entraps DNA. This ability makes this member of the structural maintenance of chromosomes (SMC) complex family a central hub of chromosome dynamics regulation. Besides its essential role in sister chromatid cohesion, cohesin shapes the interphase chromatin domain architecture and plays important roles in transcriptional regulation and DNA repair. Cohesin is loaded onto chromosomes at centromeres, at the promoters of highly expressed genes, as well as at DNA replication forks and sites of DNA damage. However, the features that determine these binding sites are still incompletely understood. We recently described a role of the budding yeast RSC chromatin remodeler in cohesin loading onto chromosomes. RSC has a dual function, both as a physical chromatin receptor of the Scc2/Scc4 cohesin loader complex, as well as by providing a nucleosome-free template for cohesin loading. Here, we show that the role of RSC in sister chromatid cohesion is conserved in fission yeast. We discuss what is known about the broader conservation of the contribution of chromatin remodelers to cohesin loading onto chromatin.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromátides/fisiología , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Adenosina Trifosfatasas/metabolismo , Cromatina/genética , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/metabolismo , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Factores de Transcripción/metabolismo , Cohesinas
20.
Nature ; 505(7483): 367-71, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24291789

RESUMEN

Cohesion between sister chromatids, mediated by the chromosomal cohesin complex, is a prerequisite for faithful chromosome segregation in mitosis. Cohesin also has vital roles in DNA repair and transcriptional regulation. The ring-shaped cohesin complex is thought to encircle sister DNA strands, but its molecular mechanism of action is poorly understood and the biochemical reconstitution of cohesin activity in vitro has remained an unattained goal. Here we reconstitute cohesin loading onto DNA using purified fission yeast cohesin and its loader complex, Mis4(Scc2)-Ssl3(Scc4) (Schizosaccharomyces pombe gene names appear throughout with their more commonly known Saccharomyces cerevisiae counterparts added in superscript). Incubation of cohesin with DNA leads to spontaneous topological loading, but this remains inefficient. The loader contacts cohesin at multiple sites around the ring circumference, including the hitherto enigmatic Psc3(Scc3) subunit, and stimulates cohesin's ATPase, resulting in efficient topological loading. The in vitro reconstitution of cohesin loading onto DNA provides mechanistic insight into the initial steps of the establishment of sister chromatid cohesion and other chromosomal processes mediated by cohesin.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , ADN/química , ADN/metabolismo , Conformación de Ácido Nucleico , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Adenosina Trifosfatasas/metabolismo , Cromátides/genética , Cromátides/metabolismo , Proteínas de Unión al ADN/metabolismo , Unión Proteica , Schizosaccharomyces/citología , Proteínas de Schizosaccharomyces pombe/metabolismo , Cohesinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA