Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34607960

RESUMEN

Human genetic studies have pointed to a prominent role for innate immunity and lipid pathways in immunological and neurodegenerative disorders. Our understanding of the composition and function of immunomodulatory lipid networks in innate immune cells, however, remains incomplete. Here, we show that phospholipase Cγ2 (PLCγ2 or PLCG2)-mutations in which are associated with autoinflammatory disorders and Alzheimer's disease-serves as a principal source of diacylglycerol (DAG) pools that are converted into a cascade of bioactive endocannabinoid and eicosanoid lipids by DAG lipase (DAGL) and monoacylglycerol lipase (MGLL) enzymes in innate immune cells. We show that this lipid network is tonically stimulated by disease-relevant human mutations in PLCγ2, as well as Fc receptor activation in primary human and mouse macrophages. Genetic disruption of PLCγ2 in mouse microglia suppressed DAGL/MGLL-mediated endocannabinoid-eicosanoid cross-talk and also caused widespread transcriptional and proteomic changes, including the reorganization of immune-relevant lipid pathways reflected in reductions in DAGLB and elevations in PLA2G4A. Despite these changes, Plcg2-/- mice showed generally normal proinflammatory cytokine and chemokine responses to lipopolysaccharide treatment, instead displaying a more restricted deficit in microglial activation that included impairments in prostaglandin production and CD68 expression. Our findings enhance the understanding of PLCγ2 function in innate immune cells, delineating a role in cross-talk with endocannabinoid/eicosanoid pathways and modulation of subsets of cellular responses to inflammatory stimuli.


Asunto(s)
Eicosanoides/metabolismo , Endocannabinoides/metabolismo , Inmunidad Innata/inmunología , Macrófagos/inmunología , Fosfolipasa C gamma/metabolismo , Animales , Antígenos CD/biosíntesis , Antígenos de Diferenciación Mielomonocítica/biosíntesis , Células COS , Línea Celular , Chlorocebus aethiops , Citocinas/inmunología , Diglicéridos/metabolismo , Fosfolipasas A2 Grupo IV/metabolismo , Células HEK293 , Humanos , Inflamación/inmunología , Lipopolisacáridos/inmunología , Lipoproteína Lipasa/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/inmunología , Monoacilglicerol Lipasas/metabolismo , Fosfolipasa C gamma/genética , Prostaglandinas/biosíntesis , Receptores Fc/inmunología , Transducción de Señal/inmunología
2.
Nat Chem Biol ; 14(12): 1099-1108, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30420694

RESUMEN

ABHD12 metabolizes bioactive lysophospholipids, including lysophosphatidylserine (lyso-PS). Deleterious mutations in human ABHD12 cause the neurological disease PHARC, and ABHD12-/- mice display PHARC-like phenotypes, including hearing loss, along with elevated brain lyso-PS and features of stimulated innate immune cell function. Here, we develop a selective and in vivo-active inhibitor of ABHD12 termed DO264 and show that this compound elevates lyso-PS in mouse brain and primary human macrophages. Unlike ABHD12-/- mice, adult mice treated with DO264 exhibited minimal perturbations in auditory function. On the other hand, both DO264-treated and ABHD12-/- mice displayed heightened immunological responses to lymphocytic choriomeningitis virus (LCMV) clone 13 infection that manifested as severe lung pathology with elevated proinflammatory chemokines. These results reveal similarities and differences in the phenotypic impact of pharmacological versus genetic blockade of ABHD12 and point to a key role for this enzyme in regulating immunostimulatory lipid pathways in vivo.


Asunto(s)
Encéfalo/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Coriomeningitis Linfocítica/inmunología , Monoacilglicerol Lipasas/antagonistas & inhibidores , Urea/análogos & derivados , Urea/farmacología , Adulto , Animales , Encéfalo/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/química , Femenino , Humanos , Coriomeningitis Linfocítica/tratamiento farmacológico , Coriomeningitis Linfocítica/patología , Lisofosfolípidos/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Mutantes , Monoacilglicerol Lipasas/genética , Monoacilglicerol Lipasas/inmunología
3.
Bioorg Med Chem Lett ; 28(16): 2682-2687, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29731364

RESUMEN

Nicotinamide N-methyltransferase (NNMT) catalyzes the N-methylation of nicotinamide using S-adenosyl-L-methionine (SAM) as a methyl donor and, through doing so, can modulate cellular methylation potential to impact diverse epigenetic processes. NNMT has been implicated in a range of diseases, including cancer and metabolic disorders. Potent, selective, and cell-active inhibitors would constitute valuable probes to study the biological functions and therapeutic potential of NNMT. We previously reported the discovery of electrophilic small molecules that inhibit NNMT by reacting with an active-site cysteine residue in the SAM-binding pocket. Here, we have used activity-based protein profiling (ABPP)-guided medicinal chemistry to optimize the potency and selectivity of NNMT inhibitors, culminating in the discovery of multiple alpha-chloroacetamide (αCA) compounds with sub-µM IC50 values in vitro and excellent proteomic selectivity in cell lysates. However, these compounds showed much weaker inhibition of NNMT in cells, a feature that was not shared by off-targets of the αCAs. Our results show the potential for developing potent and selective covalent inhibitors of NNMT, but also highlight challenges that may be faced in targeting this enzyme in cellular systems.


Asunto(s)
Acetamidas/farmacología , Inhibidores Enzimáticos/farmacología , Nicotinamida N-Metiltransferasa/antagonistas & inhibidores , Acetamidas/síntesis química , Dominio Catalítico , Línea Celular Tumoral , Cisteína/química , Inhibidores Enzimáticos/síntesis química , Humanos , Nicotinamida N-Metiltransferasa/química
4.
J Am Chem Soc ; 138(40): 13335-13343, 2016 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-27689866

RESUMEN

Methylation is a fundamental mechanism used in Nature to modify the structure and function of biomolecules, including proteins, DNA, RNA, and metabolites. Methyl groups are predominantly installed into biomolecules by a large and diverse class of S-adenosyl methionine (SAM)-dependent methyltransferases (MTs), of which there are ∼200 known or putative members in the human proteome. Deregulated MT activity contributes to numerous diseases, including cancer, and several MT inhibitors are in clinical development. Nonetheless, a large fraction of the human MT family remains poorly characterized, underscoring the need for new technologies to characterize MTs and their inhibitors in native biological systems. Here, we describe a suite of S-adenosyl homocysteine (SAH) photoreactive probes and their application in chemical proteomic experiments to profile and enrich a large number of MTs (>50) from human cancer cell lysates with remarkable specificity over other classes of proteins. We further demonstrate that the SAH probes can enrich MT-associated proteins and be used to screen for and assess the selectivity of MT inhibitors, leading to the discovery of a covalent inhibitor of nicotinamide N-methyltransferase (NNMT), an enzyme implicated in cancer and metabolic disorders. The chemical proteomics probes and methods for their utilization reported herein should prove of value for the functional characterization of MTs, MT complexes, and MT inhibitors in mammalian biology and disease.


Asunto(s)
Metiltransferasas/metabolismo , Proteómica , Línea Celular Tumoral , Activación Enzimática , Humanos , Sondas Moleculares/metabolismo , S-Adenosilhomocisteína/metabolismo , Rayos Ultravioleta
5.
Nat Chem Biol ; 9(5): 300-6, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23455543

RESUMEN

Nicotinamide N-methyltransferase (NNMT) is overexpressed in a variety of human cancers, where it contributes to tumorigenesis by a mechanism that is still poorly understood. Here we show using metabolomics that NNMT impairs the methylation potential of cancer cells by consuming methyl units from S-adenosyl methionine to create the stable metabolic product 1-methylnicotinamide. As a result, NNMT-expressing cancer cells have an altered epigenetic state that includes hypomethylated histones and other cancer-related proteins combined with heightened expression of protumorigenic gene products. Our findings thus point to a direct mechanistic link between the deregulation of a metabolic enzyme and widespread changes in the methylation landscape of cancer cells.


Asunto(s)
Epigénesis Genética , Modelos Genéticos , Neoplasias/metabolismo , Nicotinamida N-Metiltransferasa/metabolismo , Epigénesis Genética/genética , Humanos , Metionina/química , Metionina/metabolismo , Metilación , Neoplasias/genética , Neoplasias/patología , Niacinamida/análogos & derivados , Niacinamida/química , Niacinamida/metabolismo
6.
J Bacteriol ; 196(14): 2499-513, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24769698

RESUMEN

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from human pathogens Staphylococcus aureus and Pseudomonas aeruginosa can be readily inhibited by reactive oxygen species (ROS)-mediated direct oxidation of their catalytic active cysteines. Because of the rapid degradation of H2O2 by bacterial catalase, only steady-state but not one-dose treatment with H2O2 rapidly induces glycolysis and the pentose phosphate pathway (PPP). We conducted transcriptome sequencing (RNA-seq) analyses to globally profile the bacterial transcriptomes in response to a steady level of H2O2, which revealed profound transcriptional changes, including the induced expression of glycolytic genes in both bacteria. Our results revealed that the inactivation of GAPDH by H2O2 induces metabolic levels of glycolysis and the PPP; the elevated levels of fructose 1,6-biphosphate (FBP) and 2-keto-3-deoxy-6-phosphogluconate (KDPG) lead to dissociation of their corresponding glycolytic repressors (GapR and HexR, respectively) from their cognate promoters, thus resulting in derepression of the glycolytic genes to overcome H2O2-stalled glycolysis in S. aureus and P. aeruginosa, respectively. Both GapR and HexR may directly sense oxidative stresses, such as menadione.


Asunto(s)
Glucólisis/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Oxidantes/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Secuencia de Bases , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Gluconatos/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Pseudomonas aeruginosa/metabolismo , ARN Bacteriano/química , ARN Bacteriano/metabolismo , Staphylococcus aureus/metabolismo , Transcriptoma
7.
Proc Natl Acad Sci U S A ; 108(17): 6763-8, 2011 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-21383124

RESUMEN

We have developed an efficient strategy to a skeletally diverse chemical library, which entailed a sequence of enyne cycloisomerization, [4 + 2] cycloaddition, alkene dihydroxylation, and diol carbamylation. Using this approach, only 16 readily available building blocks were needed to produce a representative 191-member library, which displayed broad distribution of molecular shapes and excellent physicochemical properties. This library further enabled identification of a small molecule, which effectively suppressed glycolytic production of ATP and lactate in CHO-K1 cell line, representing a potential lead for the development of a new class of glycolytic inhibitors.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Glucólisis/efectos de los fármacos , Compuestos Heterocíclicos con 3 Anillos , Animales , Células CHO , Cricetinae , Cricetulus , Glucólisis/fisiología , Compuestos Heterocíclicos con 3 Anillos/síntesis química , Compuestos Heterocíclicos con 3 Anillos/química , Compuestos Heterocíclicos con 3 Anillos/farmacología
8.
Nat Chem Biol ; 4(7): 418-24, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18516048

RESUMEN

Leucascandrolide A and neopeltolide are structurally homologous marine natural products that elicit potent antiproliferative profiles in mammalian cells and yeast. The scarcity of naturally available material has been a significant barrier to their biochemical and pharmacological evaluation. We developed practical synthetic access to this class of natural products that enabled the determination of their mechanism of action. We demonstrated effective cellular growth inhibition in yeast, which was substantially enhanced by substituting glucose with galactose or glycerol. These results, along with genetic analysis of determinants of drug sensitivity, suggested that leucascandrolide A and neopeltolide may inhibit mitochondrial ATP synthesis. Evaluation of the activity of the four mitochondrial electron transport chain complexes in yeast and mammalian cells revealed cytochrome bc(1) complex as the principal cellular target. This result provided the molecular basis for the potent antiproliferative activity of this class of marine macrolides, thus identifying them as new biochemical tools for investigation of eukaryotic energy metabolism.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Diseño de Fármacos , Macrólidos , Sesquiterpenos , Animales , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Humanos , Macrólidos/síntesis química , Macrólidos/química , Macrólidos/farmacología , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/enzimología , Modelos Moleculares , Estructura Molecular , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Sesquiterpenos/síntesis química , Sesquiterpenos/química , Sesquiterpenos/farmacología
9.
J Med Chem ; 62(3): 1643-1656, 2019 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-30720278

RESUMEN

ABHD12 is a membrane-bound hydrolytic enzyme that acts on the lysophosphatidylserine (lyso-PS) and lysophosphatidylinositol (lyso-PI) classes of immunomodulatory lipids. Human and mouse genetic studies point to a key role for the ABHD12-(lyso)-PS/PI pathway in regulating (neuro)immunological functions in both the central nervous system and periphery. Selective inhibitors of ABHD12 would offer valuable pharmacological probes to complement genetic models of ABHD12-regulated (lyso)-PS/PI metabolism and signaling. Here, we provide a detailed description of the discovery and activity-based protein profiling (ABPP) guided optimization of reversible thiourea inhibitors of ABHD12 that culminated in the identification of DO264 as a potent, selective, and in vivo active ABHD12 inhibitor. We also show that DO264, but not a structurally related inactive control probe (S)-DO271, augments inflammatory cytokine production from human THP-1 macrophage cells. The in vitro and in vivo properties of DO264 designate this compound as a suitable chemical probe for studying the biological functions of ABHD12-(lyso)-PS/PI pathways.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Monoacilglicerol Lipasas/antagonistas & inhibidores , Piperidinas/farmacología , Piridinas/farmacología , Tiourea/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/toxicidad , Humanos , Ratones , Estructura Molecular , Piperidinas/síntesis química , Piperidinas/toxicidad , Piridinas/síntesis química , Piridinas/toxicidad , Relación Estructura-Actividad , Células THP-1 , Tiourea/síntesis química , Tiourea/toxicidad
10.
Mol Cancer Res ; 14(2): 173-84, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26538285

RESUMEN

UNLABELLED: Conventional wisdom ascribes metabolic reprogramming in cancer to meeting increased demands for intermediates to support rapid proliferation. Prior models have proposed benefits toward cell survival, immortality, and stress resistance, although the recent discovery of oncometabolites has shifted attention to chromatin targets affecting gene expression. To explore further effects of cancer metabolism and epigenetic deregulation, DNA repair kinetics were examined in cells treated with metabolic intermediates, oncometabolites, and/or metabolic inhibitors by tracking resolution of double-strand breaks (DSB) in irradiated MCF7 breast cancer cells. Disrupting cancer metabolism revealed roles for both glycolysis and glutaminolysis in promoting DSB repair and preventing accelerated senescence after irradiation. Targeting pathways common to glycolysis and glutaminolysis uncovered opposing effects of the hexosamine biosynthetic pathway (HBP) and tricarboxylic acid (TCA) cycle. Treating cells with the HBP metabolite N-acetylglucosamine (GlcNAc) or augmenting protein O-GlcNAcylation with small molecules or RNAi targeting O-GlcNAcase each enhanced DSB repair, while targeting O-GlcNAc transferase reversed GlcNAc's effects. Opposing the HBP, TCA metabolites including α-ketoglutarate blocked DSB resolution. Strikingly, DNA repair could be restored by the oncometabolite 2-hydroxyglutarate (2-HG). Targeting downstream effectors of histone methylation and demethylation implicated the PRC1/2 polycomb complexes as the ultimate targets for metabolic regulation, reflecting known roles for Polycomb group proteins in nonhomologous end-joining DSB repair. Our findings that epigenetic effects of cancer metabolic reprogramming may promote DNA repair provide a molecular mechanism by which deregulation of metabolism may not only support cell growth but also maintain cell immortality, drive therapeutic resistance, and promote genomic instability. IMPLICATIONS: By defining a pathway from deregulated metabolism to enhanced DNA damage response in cancer, these data provide a rationale for targeting downstream epigenetic effects of metabolic reprogramming to block cancer cell immortality and overcome resistance to genotoxic stress.


Asunto(s)
Reparación del ADN , Epigénesis Genética , Glutamina/metabolismo , Glucólisis , Neoplasias/metabolismo , Acetilglucosamina/farmacología , Senescencia Celular , ADN/efectos de la radiación , Inestabilidad Genómica , Glucólisis/efectos de los fármacos , Humanos , Células MCF-7 , Neoplasias/genética , Interferencia de ARN
11.
Chem Biol ; 18(2): 222-30, 2011 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-21338919

RESUMEN

Oxidative phosphorylation (OXPHOS) and glycolysis are the two main pathways that control energy metabolism of a cell. The Warburg effect, in which glycolysis remains active even under aerobic conditions, is considered a key driver for cancer cell proliferation, malignancy, metastasis, and therapeutic resistance. To target aerobic glycolysis, we exploited the complementary roles of OXPHOS and glycolysis in ATP synthesis as the basis for a chemical genetic screen, enabling rapid identification of novel small-molecule inhibitors of facilitative glucose transport. Blocking mitochondrial electron transport with antimycin A or leucascandrolide A had little effect on highly glycolytic A549 lung carcinoma cells, but adding known glycolytic inhibitors 2-deoxy-D-glucose, iodoacetate or cytochalasin B, rapidly depleted intracellular ATP, displaying chemical synthetic lethality. Based on this principle, we exposed antimycin A-treated A549 cells to a newly synthesized 955 member diverse scaffold small-molecule library, screening for compounds that rapidly depleted ATP levels. Two compounds potently suppressed ATP synthesis, induced G1 cell-cycle arrest and inhibited lactate production. Pathway analysis revealed that these novel probes inhibited GLUT family of facilitative transmembrane transporters but, unlike cytochalasin B, had no effect on the actin cytoskeleton. Our work illustrated the utility of a pairwise chemical genetic screen for discovery of novel chemical probes, which would be useful not only to study the system-level organization of energy metabolism but could also facilitate development of drugs targeting upregulation of aerobic glycolysis in cancer.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Glucosa/metabolismo , Adenosina Trifosfato/biosíntesis , Adenosina Trifosfato/metabolismo , Animales , Antimicina A/farmacología , Transporte Biológico/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Sinergismo Farmacológico , Fase G1/efectos de los fármacos , Proteínas Facilitadoras del Transporte de la Glucosa/antagonistas & inhibidores , Glucólisis/efectos de los fármacos , Humanos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Ácido Láctico/biosíntesis , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Reproducibilidad de los Resultados , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/farmacología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA