RESUMEN
As the ß-phenyl-α,ß-unsaturated carbonyl (PUSC) structure was previously identified to play a key role in tyrosinase inhibition, 14 analogs with a PUSC structure built on a thiazol-4(5H)-one scaffold were synthesized using Knoevenagel condensation to serve as potential tyrosinase inhibitors. Through mushroom tyrosinase inhibition experiments, two analogs 9 and 11 were identified as potent tyrosinase inhibitors, with 11 exhibiting an IC50 value of 0.4 ± 0.01 µM, which indicates its 26-fold greater potency than kojic acid. Kinetic studies using Lineweaver-Burk plots revealed that 9 and 11 are competitive and mixed-type inhibitors, respectively; these kinetic results were supported by docking simulations. According to the B16F10 cell-based experiments, 9 and 11 inhibited melanogenesis more effectively than kojic acid due to their potent cellular tyrosinase inhibitory activity. In addition, analogs 9 and 11 exhibited moderate-to-strong antioxidant capacity, scavenging ABTS+, DPPH, and ROS radicals. In particular, analog 12 with a catechol moiety exhibited very strong ROS-scavenging activity, similar to Trolox. These results suggest that analogs 9 and 11, which exhibit potent tyrosinase inhibitory activity in mushroom and mammalian cells and anti-melanogenic effects in B16F10 cells, are promising antibrowning agents for crops and skin lightening agents for hyperpigmentation-related diseases.
Asunto(s)
Agaricales , Monofenol Monooxigenasa , Animales , Antioxidantes/farmacología , Relación Estructura-Actividad , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Cinética , Especies Reactivas de Oxígeno , Simulación del Acoplamiento Molecular , Melaninas , Mamíferos/metabolismoRESUMEN
Mushroom tyrosinase is a tetramer, whereas mammalian tyrosinase is a monomeric glycoprotein. In addition, the amino acid sequence of mushroom tyrosinases differs from that of mammalian tyrosinases. MHY2081 exhibits potent inhibitory activity against both mushroom and mammalian tyrosinases. Accordingly, based on the MHY2081 structure, 5-alkenyl-2-benzylaminothiazol-4(5H)-one analogs were designed as a novel anti-tyrosinase agent and synthesized using 2-((3,4-dimethoxybenzyl)amino)thiazol-4(5H)-one (16), a key intermediate obtained via the rearrangement of a benzylamino group. Compounds 6 and 9 (IC50 = 1.5-4.6 µM) exhibited higher mushroom tyrosinase inhibitory activity than kojic acid (IC50 = 20-21 µM) in the presence of l-tyrosine and/or l-dopa. Based on kinetic analysis using Lineweaver-Burk plots, 6 was a mixed inhibitor, whereas 9 was a competitive inhibitor, and docking simulation results supported that these compounds could bind to the active site of mushroom tyrosinase. Using B16F10 mammalian cells, we demonstrated that these compounds inhibited melanogenesis more potently than kojic acid, and their anti-melanogenic effects could be attributed to tyrosinase inhibition. All synthesized compounds could scavenge reactive oxygen species (ROS), with five compounds exhibiting mild-to-strong ABTS+ and DPPH radical-scavenging abilities. Compounds 6 and 9 were potent tyrosinase inhibitors with strong antioxidant activities against ROS, ABTS+, and DPPH radicals. Moreover, the compounds significantly suppressed tyrosinase expression in a dose-dependent manner. Collectively, these results suggest that the novel 5-alkenyl-2-benzylaminothiazol-4(5H)-one analogs, especially 6 and 9, are potential anti-melanogenic agents with antioxidant activity.
Asunto(s)
Agaricales , Antioxidantes , Animales , Estructura Molecular , Antioxidantes/farmacología , Melaninas , Simulación del Acoplamiento Molecular , Cinética , Especies Reactivas de Oxígeno , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Monofenol Monooxigenasa , Mamíferos/metabolismoRESUMEN
Flavone derivatives were designed and synthesized based on the hypothesis that flavones containing the ß-phenyl-α,ß-unsaturated carbonyl (PUSC) scaffold have potential anti-tyrosinase activity. Flavones 1a and 1e inhibited mushroom tyrosinase more potently than kojic acid, and 1e inhibited monophenolase and diphenolase 61- and 28-fold more than kojic acid, respectively. Kinetic studies on mushroom tyrosinase indicated that 1a and 1e competitively inhibit monophenolase and diphenolase, and docking results supported these results. In an in vitro assay using B16F10 murine cells, 1a and 1e inhibited melanin production more potently than kojic acid, and this was attributed to the inhibition of tyrosinase. Furthermore, 1a and 1e strongly scavenged DPPH and ABTS radicals and ROS, which suggested that their antioxidant properties were at least partly responsible for their anti-melanogenic effects. Moreover, flavone 1a also inhibited the gene expressions of the melanogenesis-related genes tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2. Our findings that flavone derivatives (i) directly inhibit tyrosinase, (ii) act as antioxidants, and (iii) inhibit the expressions of melanogenesis-related genes suggest their potential use as natural melanogenesis inhibitors. Furthermore, the study confirms that the PUSC scaffold confers anti-tyrosinase activity.
Asunto(s)
Agaricales , Flavonas , Animales , Ratones , Monofenol Monooxigenasa , Melaninas , Cinética , Inhibidores Enzimáticos/química , Flavonas/farmacologíaRESUMEN
In this study, (Z)-2-(benzylamino)-5-benzylidenethiazol-4(5H)-one (BABT) derivatives were designed as tyrosinase inhibitors based on the structure of MHY2081, using a simplified approach. Of the 14 BABT derivatives synthesized, two derivatives ((Z)-2-(benzylamino)-5-(3-hydroxy-4-methoxybenzylidene)thiazol-4(5H)-one [7] and (Z)-2-(benzylamino)-5-(2,4-dihydroxybenzylidene)thiazol-4(5H)-one [8]) showed more potent mushroom tyrosinase inhibitory activities than kojic acid, regardless of the substrate used; in particular, compound 8 was 106-fold more potent than kojic acid when l-tyrosine was used as the substrate. Analysis of Lineweaver-Burk plots for 7 and 8 indicated that they were competitive inhibitors, which was confirmed via in silico docking. In experiments using B16F10 cells, 8 exerted a greater ability to inhibit melanin production than kojic acid, and it inhibited cellular tyrosinase activity in a concentration-dependent manner, indicating that the anti-melanogenic effect of 8 is attributable to its ability to inhibit tyrosinase. In addition, 8 exhibited strong antioxidant activity to scavenge 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radicals and peroxynitrite and inhibited the expression of melanogenesis-associated proteins (tyrosinase and microphthalmia-associated transcription factor). These results suggest that BABT derivative 8 is a promising candidate for the treatment of hyperpigmentation-related diseases, owing to its inhibition of melanogenesis-associated protein expression, direct tyrosinase inhibition, and antioxidant activity.
Asunto(s)
Antioxidantes , Inhibidores Enzimáticos , Melaninas , Antioxidantes/química , Antioxidantes/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Monofenol Monooxigenasa/antagonistas & inhibidoresRESUMEN
(Z)-5-Benzylidene-2-phenylthiazol-4(5H)-one ((Z)-BPT) derivatives were designed by combining the structural characteristics of two tyrosinase inhibitors. The double-bond geometry of trisubstituted alkenes, (Z)-BPTs 1-14, was determined based on the 3JC,Hß coupling constant of 1H-coupled 13C NMR spectra. Three (Z)-BPT derivatives (1-3) showed stronger tyrosinase inhibitory activities than kojic acid; in particular, 2 was to be 189-fold more potent than kojic acid. Kinetic analysis using mushroom tyrosinase indicated that 1 and 2 were competitive inhibitors, whereas 3 was a mixed-type inhibitor. The in silico results revealed that 1-3 could strongly bind to the active sites of mushroom and human tyrosinases, supporting the kinetic results. Derivatives 1 and 2 decreased the intracellular melanin contents in a concentration-dependent manner in B16F10 cells, and their anti-melanogenic efficacy exceeded that of kojic acid. The anti-tyrosinase activity of 1 and 2 in B16F10 cells was similar to their anti-melanogenic effects, suggesting that their anti-melanogenic effects were primarily owing to their anti-tyrosinase activity. Western blotting of B16F10 cells revealed that the derivatives 1 and 2 inhibited tyrosinase expression, which partially contributes to their anti-melanogenic ability. Several derivatives, including 2 and 3, exhibited potent antioxidant activities against ABTS cation radicals, DPPH radicals, ROS, and peroxynitrite. These results suggest that (Z)-BPT derivatives 1 and 2 have promising potential as novel anti-melanogenic agents.
Asunto(s)
Agaricales , Melaninas , Humanos , Cinética , Inhibidores Enzimáticos/química , Agaricales/metabolismo , Monofenol MonooxigenasaRESUMEN
Tyrosinase is considered a key contributor to melanogenesis, and safe, potent tyrosinase inhibitors are needed for medical and cosmetic purposes to treat skin hyperpigmentation and prevent fruit and vegetable browning. According to our accumulated SAR data on tyrosinase inhibitors, the ß-phenyl-α,ß-unsaturated carbonyl scaffold in either E or Z configurations, can confer potent tyrosinase inhibitory activity. In this study, twelve indanedione derivatives were synthesized as chimeric compounds with a ß-phenyl-α,ß-unsaturated dicarbonyl scaffold. Two of these derivatives, that is, compounds 2 and 3 (85% and 96% inhibition, respectively), at 50 µM inhibited mushroom tyrosinase markedly more potently than kojic acid (49% inhibition). Docking studies predicted that compounds 2 and 3 both inhibited tyrosinase competitively, and these findings were supported by Lineweaver-Burk plots. In addition, both compounds inhibited tyrosinase activity and reduced melanin contents in B16F10 cells more than kojic acid without perceptible cytotoxicity. These results support the notion that chimeric compounds with the ß-phenyl-α,ß-unsaturated dicarbonyl scaffold represent promising starting points for the development of potent tyrosinase inhibitors.
Asunto(s)
Diseño de Fármacos , Indanos/química , Indanos/farmacología , Melaninas/metabolismo , Monofenol Monooxigenasa/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Supervivencia Celular , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Simulación del Acoplamiento Molecular , Estructura Molecular , Unión Proteica , Relación Estructura-ActividadRESUMEN
We previously reported (E)-ß-phenyl-α,ß-unsaturated carbonyl scaffold ((E)-PUSC) played an important role in showing high tyrosinase inhibitory activity and that derivatives with a 4-substituted resorcinol moiety as the ß-phenyl group of the scaffold resulted in the greatest tyrosinase inhibitory activity. To examine whether the 4-substituted resorcinol moiety could impart tyrosinase inhibitory activity in the absence of the α,ß-unsaturated carbonyl moiety of the (E)-PUSC scaffold, 10 urolithin derivatives were synthesized. To obtain more candidate samples, the lactone ring in synthesized urolithins was reduced to produce nine reduced urolithins. Compounds 1c (IC50 = 18.09 ± 0.25 µM), 1h (IC50 = 4.14 ± 0.10 µM), and 2a (IC50 = 15.69 ± 0.40 µM) had greater mushroom tyrosinase-inhibitory activities than kojic acid (KA) (IC50 = 48.62 ± 3.38 µM). The SAR results suggest that the 4-substituted resorcinol motif makes an important contribution to tyrosinase inhibition. To investigate whether these compounds bind to human tyrosinase, a human tyrosinase homology model was developed. Docking simulations with mushroom and human tyrosinases showed that 1c, 1h, and 2a bind to the active site of both tyrosinases with higher binding affinities than KA. Pharmacophore analyses showed that two hydroxyl groups of the 4-substituted resorcinol entity act as hydrogen bond donors in both mushroom and human tyrosinases. Kinetic analyses indicated that these compounds were all competitive inhibitors. Compound 2a inhibited cellular tyrosinase activity and melanogenesis in α-MSH plus IBMX-stimulated B16F10 melanoma cells more strongly than KA. These results suggest that 2a is a promising candidate for the treatment of skin pigment disorders, and show the 4-substituted resorcinol entity importantly contributes to tyrosinase inhibition.
Asunto(s)
Agaricales/enzimología , Cumarinas , Inhibidores Enzimáticos , Proteínas Fúngicas , Melanoma/enzimología , Monofenol Monooxigenasa , Proteínas de Neoplasias/antagonistas & inhibidores , Resorcinoles , Animales , Línea Celular Tumoral , Cumarinas/química , Cumarinas/farmacología , Inhibidores Enzimáticos/farmacología , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/metabolismo , Humanos , Melaninas/biosíntesis , Ratones , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Proteínas de Neoplasias/metabolismo , Resorcinoles/química , Resorcinoles/farmacologíaRESUMEN
To confirm that the ß-phenyl-α,ß-unsaturated thiocarbonyl (PUSTC) scaffold, similar to the ß-phenyl-α,ß-unsaturated carbonyl (PUSC) scaffold, acts as a core inhibitory structure for tyrosinase, twelve (Z)-5-(substituted benzylidene)-4-thioxothiazolidin-2-one ((Z)-BTTZ) derivatives were designed and synthesized. Seven of the twelve derivatives showed stronger inhibitory activity than kojic acid against mushroom tyrosinase. Compound 2b (IC50 = 0.47 ± 0.97 µM) exerted a 141-fold higher inhibitory potency than kojic acid. Kinetic studies' results confirmed that compounds 2b and 2f are competitive tyrosinase inhibitors, which was supported by high binding affinities with the active site of tyrosinase by docking simulation. Docking results using a human tyrosinase homology model indicated that 2b and 2f might potently inhibit human tyrosinase. In vitro assays of 2b and 2f were conducted using B16F10 melanoma cells. Compounds 2b and 2f significantly and concentration-dependently inhibited intracellular melanin contents, and the anti-melanogenic effects of 2b at 10 µM and 2f at 25 µM were considerably greater than the inhibitory effect of kojic acid at 25 µM. Compounds 2b and 2f similarly inhibited cellular tyrosinase activity and melanin contents, indicating that the anti-melanogenic effects of both were due to tyrosinase inhibition. A strong binding affinity with the active site of tyrosinase and potent inhibitions of mushroom tyrosinase, cellular tyrosinase activity, and melanin generation in B16F10 cells indicates the PUSTC scaffold offers an attractive platform for the development of novel tyrosinase inhibitors.
Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Melaninas/biosíntesis , Tiazoles/química , Tiazoles/farmacología , Línea Celular Tumoral , Simulación por Computador , Inhibidores Enzimáticos/metabolismo , Humanos , Cinética , Simulación del Acoplamiento Molecular , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/química , Monofenol Monooxigenasa/metabolismo , Conformación Proteica , Relación Estructura-Actividad , Tiazoles/metabolismoRESUMEN
During our continued search for strong skin whitening agents over the past ten years, we have investigated the efficacies of many tyrosinase inhibitors containing a common (E)-ß-phenyl-α,ß-unsaturated carbonyl scaffold, which we found to be essential for the effective inhibition of mushroom and mammalian tyrosinases. In this study, we explored the tyrosinase inhibitory effects of 2,3-diphenylacrylic acid (2,3-DPA) derivatives, which also possess the (E)-ß-phenyl-α,ß-unsaturated carbonyl motif. We synthesized fourteen (E)-2,3-DPA derivatives 1a-1n and one (Z)-2,3-DPA-derivative 1l' using a Perkin reaction with phenylacetic acid and appropriate substituted benzaldehydes. In our mushroom tyrosinase assay, 1c showed higher tyrosinase inhibitory activity (76.43⯱â¯3.53%, IC50â¯=â¯20.04⯱â¯1.91⯵M) with than the other 2,3-DPA derivatives or kojic acid (21.56⯱â¯2.93%, IC50â¯=â¯30.64⯱â¯1.27⯵M). Our mushroom tyrosinase inhibitory results were supported by our docking study, which showed compound 1c (-7.2â¯kcal/mole) exhibited stronger binding affinity for mushroom tyrosinase than kojic acid (-5.7â¯kcal/mole). In B16F10 melanoma cells (a murine cell-line), 1c showed no cytotoxic effect up to a concentration of 25⯵M and exhibited greater tyrosinase inhibitory activity (68.83%) than kojic acid (49.39%). In these cells, arbutin (a well-known tyrosinase inhibitor used as the positive control) only inhibited tyrosinase by 42.67% even at a concentration of 400⯵M. Furthermore, at 25⯵M, 1c reduced melanin contents in B16F10 melanoma cells by 24.3% more than kojic acid (62.77% vs. 38.52%). These results indicate 1c is a promising candidate treatment for pigmentation-related diseases and potential skin whitening agents.
Asunto(s)
Cinamatos/farmacología , Inhibidores Enzimáticos/farmacología , Depuradores de Radicales Libres/farmacología , Preparaciones para Aclaramiento de la Piel/farmacología , Estilbenos/farmacología , Agaricus/enzimología , Animales , Dominio Catalítico , Línea Celular Tumoral , Cinamatos/síntesis química , Cinamatos/metabolismo , Cinamatos/toxicidad , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/toxicidad , Depuradores de Radicales Libres/síntesis química , Depuradores de Radicales Libres/metabolismo , Depuradores de Radicales Libres/toxicidad , Ratones , Simulación del Acoplamiento Molecular , Monofenol Monooxigenasa/química , Monofenol Monooxigenasa/metabolismo , Unión Proteica , Pironas/química , Pironas/metabolismo , Preparaciones para Aclaramiento de la Piel/síntesis química , Preparaciones para Aclaramiento de la Piel/metabolismo , Preparaciones para Aclaramiento de la Piel/toxicidad , Estilbenos/síntesis química , Estilbenos/metabolismo , Estilbenos/toxicidadRESUMEN
Targeting of tyrosinase has proven to be the best means of identifying safe, efficacious, and potent tyrosinase inhibitors for whitening skin. We designed and synthesized ten NAB (N-(acryloyl)benzamide) derivatives (1a-1j) using the Horner-Wadsworth-Emmons olefination of diethyl (2-benzamido-2-oxoethyl)phosphonate and appropriate benzaldehydes. A mushroom tyrosinase inhibitory assay showed compounds 1a (36.71⯱â¯2.14% inhibition) and 1j (25.99⯱â¯2.77% inhibition) inhibited tyrosinase more than the other eight NAB derivatives and kojic acid (21.56⯱â¯2.93% inhibition), and docking studies indicated 1a (-6.9â¯kcal/mole) and 1j (-7.5â¯kcal/mole) had stronger binding affinities for tyrosinase than kojic acid (-5.7â¯kcal/mole). At a concentration of 25⯵M, 1a and 1j were nontoxic in B16F10 melanoma cells and exhibited stronger tyrosinase inhibition (59.70% and 76.77%, respectively) than kojic acid (50.30% inhibition) or arbutin (41.78% inhibition at 400⯵M). Similarly, in B16F10 melanoma cells, compounds 1a and 1j at 25⯵M decreased total melanin content by 47.97% and 61.77%, respectively (kojic acid; 38.98%). Similarities between inhibitions of tyrosinase activity and melanin contents suggested the anti-melanogenic effects of 1a and 1j were due to tyrosinase inhibition. The excellent DPPH scavenging activity of 1j suggests it might enhance in vivo effect on melanin contents. The study suggests compound 1j offers a potential starting point for the development of safe, potent tyrosinase inhibitors.
Asunto(s)
Benzamidas/farmacología , Inhibidores Enzimáticos/farmacología , Depuradores de Radicales Libres/farmacología , Melaninas/antagonistas & inhibidores , Monofenol Monooxigenasa/antagonistas & inhibidores , Agaricales/enzimología , Animales , Benzamidas/síntesis química , Benzamidas/química , Compuestos de Bifenilo/antagonistas & inhibidores , Supervivencia Celular , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Depuradores de Radicales Libres/síntesis química , Depuradores de Radicales Libres/química , Melaninas/metabolismo , Ratones , Estructura Molecular , Monofenol Monooxigenasa/metabolismo , Picratos/antagonistas & inhibidores , Relación Estructura-Actividad , Células Tumorales CultivadasRESUMEN
Abnormal melanogenesis results in excessive production of melanin, leading to pigmentation disorders. As a key and rate-limiting enzyme for melanogenesis, tyrosinase has been considered an important target for developing therapeutic agents of pigment disorders. Despite having an (E)-ß-phenyl-α,ß-unsaturated carbonyl scaffold, which plays an important role in the potent inhibition of tyrosinase activity, cinnamic acids have not attracted attention as potential tyrosinase inhibitors, due to their low tyrosinase inhibitory activity and relatively high hydrophilicity. Given that cinnamic acids' structure intrinsically features this (E)-scaffold and following our experience that minute changes in the chemical structure can powerfully affect tyrosinase activity, twenty less hydrophilic cinnamamide derivatives were designed as potential tyrosinase inhibitors and synthesised using a Horner-Wadsworth-Emmons reaction. Four of these cinnmamides (4, 9, 14, and 19) exhibited much stronger mushroom tyrosinase inhibition (over 90% inhibition) at 25⯵M compared to kojic acid (20.57% inhibition); crucially, all four have a 2,4-dihydroxy group on the ß-phenyl ring of the scaffold. A docking simulation using tyrosinase indicated that the four cinnamamides exceeded the binding affinity of kojic acid, and bound more strongly to the active site of tyrosinase. Based on the strength of their tyrosinase inhibition, these four cinnamamides were further evaluated in B16F10 melanoma cells. All four cinnamamides, without cytotoxicity, exhibited higher tyrosinase inhibitory activity (67.33 - 79.67% inhibition) at 25⯵M than kojic acid (38.11% inhibition), with the following increasing inhibitory order: morpholino (9)â¯=â¯cyclopentylamino (14)â¯<â¯cyclohexylamino (19)â¯<â¯N-methylpiperazino (4) cinnamamides. Analysis of tyrosinase activity and melanin content in B16F10 cells showed that the four cinnamamides dose-dependently inhibited both cellular tyrosinase activity and melanin content and that their inhibitory activity at 25⯵M was much better than that of kojic acid. The results of melanin content analysis well matched those of the cellular tyrosinase activity analysis, indicating that tyrosinase inhibition by the four cinnamamides is a major factor in the reduction of melanin production. These results imply that these four cinnamamides with a 2,4-dihydroxyphenyl group can act as excellent anti-melanogenic agents in the treatment of pigmentation disorders.
Asunto(s)
Cinamatos/farmacología , Inhibidores Enzimáticos/farmacología , Melaninas/antagonistas & inhibidores , Monofenol Monooxigenasa/antagonistas & inhibidores , Animales , Supervivencia Celular/efectos de los fármacos , Cinamatos/síntesis química , Cinamatos/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Melaninas/biosíntesis , Ratones , Simulación del Acoplamiento Molecular , Estructura Molecular , Monofenol Monooxigenasa/metabolismo , Relación Estructura-Actividad , Células Tumorales CultivadasRESUMEN
The NAD+-dependent deacetylase SIRT1, which is associated with the improvement of metabolic syndromes, such as type 2 diabetes, is a well-known longevity-related gene. Several in vitro and in vivo studies have shown the known protective effects of SIRT1 activators, such as resveratrol and SRT1720, on diabetes- or obesity-induced fatty liver and insulin resistance. Here, we newly synthesized 18 benzoxazole hydrochloride derivatives based on the structure of resveratrol and SRT1720. We performed an in vitro SIRT1 activity assay to identify the strongest SIRT1 activator. The assay confirmed MHY2233 to be the strongest SIRT1 activator (1.5-fold more potent than resveratrol), and docking simulation showed that the binding affinity of MHY2233 was higher than that of resveratrol and SRT1720. To investigate its beneficial effects, db/db mice were orally administered MHY2233 for 1â¯month, and various metabolic parameters were assessed in the serum and liver tissues. MHY2233 markedly ameliorated insulin signaling without affecting body weight in db/db mice. In particular, the mRNA expression of lipogenic genes, such as acetyl CoA carboxylase, fatty acid synthase, and sterol regulatory element-binding protein, which increased in db/db mice, decreased following oral treatment with MHY2233. In conclusion, the novel SIRT1 activator MHY2233 reduced lipid accumulation and improved insulin resistance. This finding may contribute toward therapeutic approaches for fatty liver disease and glucose tolerance.
Asunto(s)
Benzoxazoles/farmacología , Activadores de Enzimas/farmacología , Hígado Graso/tratamiento farmacológico , Intolerancia a la Glucosa/tratamiento farmacológico , Sirtuina 1/metabolismo , Acetil-CoA Carboxilasa/genética , Animales , Benzoxazoles/administración & dosificación , Benzoxazoles/síntesis química , Peso Corporal , Diabetes Mellitus/tratamiento farmacológico , Activadores de Enzimas/administración & dosificación , Activadores de Enzimas/síntesis química , Ácido Graso Sintasas/genética , Regulación de la Expresión Génica/efectos de los fármacos , Compuestos Heterocíclicos de 4 o más Anillos/química , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/síntesis química , Hipoglucemiantes/farmacología , Masculino , Síndrome Metabólico/tratamiento farmacológico , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Resveratrol , Proteínas de Unión a los Elementos Reguladores de Esteroles/genética , Estilbenos/química , Estilbenos/farmacologíaRESUMEN
Pigmentation disorders are attributed to excessive melanin which can be produced by tyrosinase. Therefore, tyrosinase is supposed to be a vital target for the treatment of disorders associated with overpigmentation. Based on our previous findings that an (E)-ß-phenyl-α,ß-unsaturated carbonyl scaffold can play a key role in the inhibition of tyrosinase activity, and the fact that cinnamic acid is a safe natural substance with a scaffolded structure, it was speculated that appropriate cinnamic acid derivatives may exhibit potent tyrosinase inhibitory activity. Thus, ten cinnamamides were designed, and synthesized by using a Horner-Emmons olefination as the key step. Cinnamamides 4 (93.72% inhibition), 9 (78.97% inhibition), and 10 (59.09% inhibition) with either a 2,4-dihydroxyphenyl, or 4-hydroxy-3-methoxyphenyl substituent showed much higher mushroom tyrosinase inhibition at 25⯵M than kojic acid (18.81% inhibition), used as a positive control. Especially, the two cinnamamides 4 and 9 having a 2,4-dihydroxyphenyl group showed the strongest inhibition. Docking simulation with tyrosinase revealed that these three cinnamamides, 4, 9, and 10, bind to the active site of tyrosinase more strongly than kojic acid. Cell-based experiments carried out using B16F10 murine skin melanoma cells demonstrated that all three cinnamamides effectively inhibited cellular tyrosinase activity and melanin production in the cells without cytotoxicity. There was a close correlation between cellular tyrosinase activity and melanin content, indicating that the inhibitory effect of the three cinnamamides on melanin production is mainly attributed to their capability for cellular tyrosinase inhibition. These results imply that cinnamamides having the (E)-ß-phenyl-α,ß-unsaturated carbonyl scaffolds are promising candidates for skin-lighting agents.
Asunto(s)
Amidas/farmacología , Cinamatos/farmacología , Inhibidores Enzimáticos/farmacología , Melaninas/antagonistas & inhibidores , Preparaciones para Aclaramiento de la Piel/farmacología , Agaricales/enzimología , Amidas/síntesis química , Amidas/química , Amidas/toxicidad , Animales , Línea Celular Tumoral , Cinamatos/síntesis química , Cinamatos/química , Cinamatos/toxicidad , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/toxicidad , Depuradores de Radicales Libres/síntesis química , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/toxicidad , Ratones , Simulación del Acoplamiento Molecular , Estructura Molecular , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/química , Pironas/química , Preparaciones para Aclaramiento de la Piel/síntesis química , Preparaciones para Aclaramiento de la Piel/química , Preparaciones para Aclaramiento de la Piel/toxicidad , Relación Estructura-ActividadRESUMEN
Thirteen (Z)-4-(substituted benzylidene)-3-phenylisoxazol-5(4H)-ones were designed to confirm the geometric effect of the double bond of the ß-phenyl-α, ß-unsaturated carbonyl scaffold on tyrosinase inhibitory activity. Compounds 1a-1m, which all possessed the (Z)-ß-phenyl-α, ß-unsaturated carbonyl scaffold, were synthesized using a tandem reaction consisting of an isoxazolone ring formation and a Knoevenagel condensation, and three starting materials, ethyl benzoylacetate, hydroxylamine and benzaldehydes. Some of the compounds showed inhibitory activity against mushroom tyrosinase as potent as compounds containing the "(E)"-ß-phenyl-α, ß-unsaturated carbonyl scaffold. Compounds 1c and 1m showed greater inhibitory activity than kojic acid: IC50â¯=â¯32.08⯱â¯2.25⯵M for 1c; IC50â¯=â¯14.62⯱â¯1.38⯵M for 1m; and IC50â¯=â¯37.86⯱â¯2.21⯵M for kojic acid. A kinetic study indicated that 1m inhibited tyrosinase in a competitive manner and that it probably binds to the enzyme's active site. In silico docking simulation supported binding of 1m (-7.6â¯kcal/mol) to the active site of tyrosinase with stronger affinity than kojic acid (-5.7â¯kcal/mol). Similar results were obtained using cell-based assays, and in B16F10 cells, compound 1m dose-dependently inhibited tyrosinase activity and melanogenesis. These results indicate the anti-melanogenic effect of compound 1m is due to the inhibition of tyrosinase and (Z)-isomer of the ß-phenyl-α, ß-unsaturated carbonyl scaffold can, like its congener the (E)-isomer, act as an excellent scaffold for tyrosinase inhibition.
Asunto(s)
Inhibidores Enzimáticos/farmacología , Monofenol Monooxigenasa/antagonistas & inhibidores , Oxazolona/farmacología , Agaricales/enzimología , Animales , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Cinética , Ratones , Simulación del Acoplamiento Molecular , Estructura Molecular , Monofenol Monooxigenasa/metabolismo , Oxazolona/síntesis química , Oxazolona/química , Relación Estructura-Actividad , Células Tumorales CultivadasRESUMEN
As part of continued efforts for the development of new tyrosinase inhibitors, (Z)-5-(substituted benzylidene)-2-iminothiazolidin-4-one derivatives (1a - 1l) were rationally synthesized and evaluated for their inhibitory potential in vitro. These compounds were designed and synthesized based on the structural attributes of a ß-phenyl-α,ß-unsaturated carbonyl scaffold template. Among these compounds, (Z)-5-(3-hydroxy-4-methoxybenzylidene)-2-iminothiazolidin-4-one (1e, MHY773) exhibited the greatest tyrosinase inhibition (IC50 = 2.87 µM and 8.06 µM for monophenolase and diphenolase), and outperformed the positive control, kojic acid (IC50 = 15.59 and 31.61 µM). The kinetic and docking studies demonstrated that MHY773 interacted with active site of tyrosinase. Moreover, a melanin quantification assay demonstrated that MHY773 attenuates α-melanocyte-stimulating hormone (α-MSH) and 3-isobutyl-1-methylxanthine (IBMX)-induced melanin contents in B16F10 melanoma cells. Taken together, these data suggest that MHY773 suppressed the melanin production via the inhibition of tyrosinase activity. MHY773 is a promising for the development of effective pharmacological and cosmetic agents for skin-whitening.
RESUMEN
In this study, we synthesized (E)-2-cyano-3-(substituted phenyl)acrylamide (CPA) derivatives which possess a linear ß-phenyl-α,ß-unsaturated carbonyl scaffold and examined their inhibitory activities against tyrosinase. CPA analogs exerted inhibitory activity against mushroom tyrosinase. Results from the docking simulation indicated that CPA2 could bind directly to the active site of mushroom tyrosinase and the binding affinity of CPA2 for tyrosinase might be higher than that of kojic acid, a well-known potent tyrosinase inhibitor. In B16F10 cells, CPA2 significantly suppressed tyrosinase activity and melanogenesis in a dose-dependent manner. At the concentration of 25µM, CPA2 exhibited tyrosinase inhibitory activity comparable to that of kojic acid with no cytotoxic effect. Results from the present study suggest that CPA2 bearing a linear ß-phenyl-α,ß-unsaturated carbonyl scaffold may be the potential candidate for treatment of diseases associated with hyperpigmentation and that a linear ß-phenyl-α,ß-unsaturated carbonyl scaffold might be closely related to potent tyrosinase inhibition.
Asunto(s)
Acrilamida/química , Acrilamida/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Monofenol Monooxigenasa/antagonistas & inhibidores , Agaricales/enzimología , Animales , Línea Celular Tumoral , Melaninas/metabolismo , Ratones , Simulación del Acoplamiento Molecular , Monofenol Monooxigenasa/metabolismoRESUMEN
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for nearly 7 million deaths worldwide since its outbreak in late 2019. Even with the rapid development and production of vaccines and intensive research, there is still a huge need for specific anti-viral drugs that address the rapidly arising new variants. To address this concern, the National Institute of Allergy and Infectious Diseases (NIAID) established nine Antiviral Drug Discovery (AViDD) Centers, tasked with exploring approaches to target pathogens with pandemic potential, including SARS-CoV-2. In this study, we sought inhibitors of SARS-CoV2 non-structural protein 13 (nsP13) as potential antivirals, first developing a HTS-compatible assay to measure SARS-CoV2 nsP13 helicase activity. Here we present our effort in implementing the assay in a 1,536 well-plate format and in identifying nsP13 inhibitor hit compounds from a â¼650,000 compound library. The primary screen was robust (average Z' = 0.86 ± 0.05) and resulted in 7,009 primary hits. 1,763 of these compounds upon repeated retests were further confirmed, showing consistent inhibition. Following in-silico analysis, an additional orthogonal assay and titration assays, we identified 674 compounds with IC50 <10 µM. We confirmed activity of independent compound batches from de novo powders while also incorporating multiple counterscreen assays. Our study highlights the potential of this assay for use on HTS platforms to discover novel compounds inhibiting SARS-CoV2 nsP13, which merit further development as an effective SARS-CoV2 antiviral.
Asunto(s)
Antivirales , Ensayos Analíticos de Alto Rendimiento , ARN Helicasas , SARS-CoV-2 , Proteínas no Estructurales Virales , SARS-CoV-2/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento/métodos , Antivirales/farmacología , Humanos , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/metabolismo , ARN Helicasas/antagonistas & inhibidores , ARN Helicasas/metabolismo , Descubrimiento de Drogas/métodos , Tratamiento Farmacológico de COVID-19 , COVID-19/virología , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Simulación del Acoplamiento Molecular , MetiltransferasasRESUMEN
Ten 2-mercaptobenzimidazole (2-MBI) analogs were synthesized as potential tyrosinase inhibitors because mercapto-containing compounds can bind to copper ions at the active site of tyrosinase to inhibit enzyme activity. Nine 2-MBI analogs showed sub-micromolar IC50 values for mushroom tyrosinase monophenolase activity; analog 4 was 280-fold more potent than kojic acid, and in diphenolase activity, 6 was 970-fold more potent than kojic acid. The inhibition mode of the 2-MBI analogs was investigated using kinetic studies supported by docking simulations. Benzimidazoles without the 2-mercapto substituent of the 2-MBI analogs lost their tyrosinase inhibitory activity, implying that the 2-mercapto substituent plays an important role in tyrosinase inhibition. The 2-MBI analogs exerted potent antioxidant effects against 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and reactive oxygen species (ROS). The results obtained from apple slices and human embryonic kidney cells (HEK-293) suggest that most 2-MBI analogs are sufficiently safe candidates to delay the browning of apple slices effectively. Thus, these results support the potential use of 2-MBI analogs as anti-browning agents in foods such as mushrooms, vegetables, and fruits.
RESUMEN
Sixteen compounds bearing a benzothiazole moiety were synthesized as potential tyrosinase inhibitors and evaluated for mushroom tyrosinase inhibitory activity. The compound 4-(5-(trifluoromethyl)benzo[d]thiazol-2-yl)benzene-1,3-diol (compound 1b) exhibited the highest tyrosinase activity inhibition, with an IC50 value of 0.2 ± 0.01 µM (a potency 55-fold greater than kojic acid). In silico results using mushroom tyrosinase and human tyrosinase showed that the 2,4-hydroxyl substituents on the phenyl ring of 1b played an important role in the inhibition of both tyrosinases. Kinetic studies on mushroom tyrosinase indicated that 1b is a competitive inhibitor of monophenolase and diphenolase, and this was supported by docking results. In B16F10 murine melanoma cells, 1a and 1b dose-dependently and significantly inhibited melanin production intracellularly, and melanin release into medium more strongly than kojic acid, and these effects were attributed to the inhibition of cellular tyrosinase. Furthermore, the inhibition of melanin production by 1b was found to be partially due to the inhibition of tyrosinase glycosylation and the suppression of melanogenesis-associated genes. Compound 1c, which has a catechol group, exhibited potent antioxidant activities against ROS, DPPH, and ABTS, and 1b also had strong ROS and ABTS radical scavenging activities. These results suggest that 5-(trifluoromethyl)benzothiazole derivatives are promising anti-tyrosinase lead compounds with potent antioxidant effects.
RESUMEN
Many compounds containing the ß-phenyl-α,ß-unsaturated carbonyl (PUSC) scaffold, including cinnamamide derivatives, have been shown to inhibit tyrosinase potently in vitro and in vivo. Structural changes to cinnamamide derivatives were produced by adding a dithionate functional group to provide eight (Z)-5-(substituted benzylidene)-3-cyclohexyl-2-thioxothiazolidin-4-one analogs with high log p values for skin. These analogs were synthesized using a two-step reaction, and their stereochemistry was confirmed using the 3JC4-Hß values of C4 measured in proton-coupled 13C mode. Analogs 2 (IC50 = 5.21 ± 0.86 µM) and 3 (IC50 = 1.03 ± 0.14 µM) more potently inhibited mushroom tyrosinase than kojic acid (IC50 = 25.26 ± 1.10 µM). Docking results showed 2 binds strongly to the active site of tyrosinase, while 3 binds strongly to an allosteric site. Kinetic studies using l-tyrosine as substrate indicated 2 and 3 competitively and non-competitively inhibit tyrosinase, respectively, which was supported by our docking results. In B16F10 cells, 3 significantly and concentration-dependently reduced α-MSH plus IBMX induced increases in cellular tyrosinase activity and melanin production and the similarity between these inhibitory patterns implied that the anti-melanogenic effect of 3 might be due to its tyrosinase-inhibitory ability. In addition, 2 and 3 exhibited strong antioxidant effects; for example, they reduced ROS and ONOO- levels and exhibited radical scavenging activities, suggesting that these effects might underlie their anti-melanogenic effects. Furthermore, 3 suppressed the expressions of melanogenesis-associated proteins and genes in B16F10 cells. These results suggest (Z)-5-(substituted benzylidene)-3-cyclohexyl-2-thioxothiazolidin-4-one analogs offer a means of producing novel anti-melanogenesis agents.