Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(7): 2242-2249, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38346395

RESUMEN

Bioorthogonal catalysis employing transition metal catalysts is a promising strategy for the in situ synthesis of imaging and therapeutic agents in biological environments. The transition metal Pd has been widely used as a bioorthogonal catalyst, but bare Pd poses challenges in water solubility and catalyst stability in cellular environments. In this work, Pd(0) loaded amphiphilic polymeric nanoparticles are applied to shield Pd in the presence of living cells for the in situ generation of a fluorescent dye and anticancer drugs. Pd(0) loaded polymeric nanoparticles prepared by the reduction of the corresponding Pd(II)-polymeric nanoparticles are highly active in the deprotection of pro-rhodamine dye and anticancer prodrugs, giving significant fluorescence enhancement and toxigenic effects, respectively, in HepG2 cells. In addition, we show that the microstructure of the polymeric nanoparticles for scaffolding Pd plays a critical role in tuning the catalytic efficiency, with the use of the ligand triphenylphosphine as a key factor for improving the catalyst stability in biological environments.


Asunto(s)
Antineoplásicos , Nanopartículas , Profármacos , Humanos , Profármacos/química , Antineoplásicos/química , Nanopartículas/química , Polímeros/química , Células Hep G2 , Catálisis
2.
Chemistry ; 30(30): e202400611, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38512657

RESUMEN

Transition-metal-catalyzed bioorthogonal reactions emerged a decade ago as a novel strategy to implement spatiotemporal control over enzymatic functions and pharmacological interventions. The use of this methodology in experimental therapy is driven by the ambition of improving the tolerability and PK properties of clinically-used therapeutic agents. The preclinical potential of bioorthogonal catalysis has been validated in vitro and in vivo with the in situ generation of a broad range of drugs, including cytotoxic agents, anti-inflammatory drugs and anxiolytics. In this article, we report our investigations towards the preparation of solid-supported Cu(I)-microdevices and their application in bioorthogonal uncaging and click reactions. A range of ligand-functionalized polymeric devices and off-on Cu(I)-sensitive sensors were developed and tested under conditions compatible with life. Last, we present a preliminary exploration of their use for the synthesis of PROTACs through CuAAC assembly of two heterofunctional mating units.


Asunto(s)
Química Clic , Cobre , Cobre/química , Catálisis , Materiales Biocompatibles/química , Alquinos/química , Ligandos , Polímeros/química , Humanos , Azidas/química
3.
Gynecol Oncol ; 186: 42-52, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38582027

RESUMEN

BACKGROUND: Low grade serous ovarian carcinoma (LGSOC) is a distinct histotype of ovarian cancer characterised high levels of intrinsic chemoresistance, highlighting the urgent need for new treatments. High throughput screening in clinically-informative cell-based models represents an attractive strategy for identifying candidate treatment options for prioritisation in clinical studies. METHODS: We performed a high throughput drug screen of 1610 agents across a panel of 6 LGSOC cell lines (3 RAS/RAF-mutant, 3 RAS/RAF-wildtype) to identify novel candidate therapeutic approaches. Validation comprised dose-response analysis across 9 LGSOC models and 5 high grade serous comparator lines. RESULTS: 16 hits of 1610 screened compounds were prioritised for validation based on >50% reduction in nuclei counts in over half of screened cell lines at 1000 nM concentration. 11 compounds passed validation, and the four agents of greatest interest (dasatinib, tyrosine kinase inhibitor; disulfiram, aldehyde dehydrogenase inhibitor; carfilzomib, proteasome inhibitor; romidepsin, histone deacetylase inhibitor) underwent synergy profiling with the recently approved MEK inhibitor trametinib. Disulfiram demonstrated excellent selectivity for LGSOC versus high grade serous ovarian carcinoma comparator lines (P = 0.003 for IC50 comparison), while the tyrosine kinase inhibitor dasatinib demonstrated favourable synergy with trametinib across multiple LGSOC models (maximum zero interaction potency synergy score 46.9). The novel, highly selective Src family kinase (SFK) inhibitor NXP900 demonstrated a similar trametinib synergy profile to dasatinib, suggesting that SFK inhibition is the likely driver of synergy. CONCLUSION: Dasatinib and other SFK inhibitors represent novel candidate treatments for LGSOC and demonstrate synergy with trametinib. Disulfiram represents an additional treatment strategy worthy of investigation.


Asunto(s)
Cistadenocarcinoma Seroso , Dasatinib , Sinergismo Farmacológico , Ensayos Analíticos de Alto Rendimiento , Neoplasias Ováricas , Piridonas , Pirimidinonas , Humanos , Femenino , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Neoplasias Ováricas/genética , Piridonas/farmacología , Piridonas/administración & dosificación , Pirimidinonas/farmacología , Pirimidinonas/administración & dosificación , Línea Celular Tumoral , Dasatinib/farmacología , Dasatinib/administración & dosificación , Cistadenocarcinoma Seroso/tratamiento farmacológico , Cistadenocarcinoma Seroso/patología , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Clasificación del Tumor , Inhibidores de Proteínas Quinasas/farmacología , Disulfiram/farmacología , Ensayos de Selección de Medicamentos Antitumorales
4.
Org Biomol Chem ; 22(10): 1998-2002, 2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38375536

RESUMEN

Surface-adhered bacteria on implants represent a major challenge for antibiotic treatment. We introduce hydrogel-coated surfaces loaded with tailored Pd-nanosheets which catalyze the release of antibiotics from inactive prodrugs. Masked and antibiotically inactive fluoroquinolone analogs were efficiently activated at the surface and prevented the formation of Staphylococcus aureus biofilms.


Asunto(s)
Profármacos , Infecciones Estafilocócicas , Humanos , Fluoroquinolonas/farmacología , Profármacos/farmacología , Antibacterianos/farmacología , Biopelículas
5.
Nano Lett ; 23(3): 804-811, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36648322

RESUMEN

Bioorthogonal metallocatalysis has opened up a xenobiotic route to perform nonenzymatic catalytic transformations in living settings. Despite their promising features, most metals are deactivated inside cells by a myriad of reactive biomolecules, including biogenic thiols, thereby limiting the catalytic functioning of these abiotic reagents. Here we report the development of cytocompatible alloyed AuPd nanoparticles with the capacity to elicit bioorthogonal depropargylations with high efficiency in biological media. We also show that the intracellular catalytic performance of these nanoalloys is significantly enhanced by protecting them following two different encapsulation methods. Encapsulation in mesoporous silica nanorods resulted in augmented catalyst reactivity, whereas the use of a biodegradable PLGA matrix increased nanoalloy delivery across the cell membrane. The functional potential of encapsulated AuPd was demonstrated by releasing the potent chemotherapy drug paclitaxel inside cancer cells. Nanoalloy encapsulation provides a novel methodology to develop nanoreactors capable of mediating new-to-life reactions in cells.


Asunto(s)
Nanotubos , Paladio , Aleaciones , Paclitaxel , Catálisis
6.
Angew Chem Int Ed Engl ; 61(1): e202111461, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34730266

RESUMEN

Being recognized as the best-tolerated of all metals, the catalytic potential of gold (Au) has thus far been hindered by the ubiquitous presence of thiols in organisms. Herein we report the development of a truly-catalytic Au-polymer composite by assembling ultrasmall Au-nanoparticles at the protein-repelling outer layer of a co-polymer scaffold via electrostatic loading. Illustrating the in vivo-compatibility of the novel catalysts, we show their capacity to uncage the anxiolytic agent fluoxetine at the central nervous system (CNS) of developing zebrafish, influencing their swim pattern. This bioorthogonal strategy has enabled -for the first time- modification of cognitive activity by releasing a neuroactive agent directly in the brain of an animal.


Asunto(s)
Ansiolíticos/metabolismo , Materiales Biocompatibles/metabolismo , Sistema Nervioso Central/metabolismo , Oro/metabolismo , Animales , Ansiolíticos/química , Materiales Biocompatibles/química , Catálisis , Sistema Nervioso Central/química , Oro/química , Estructura Molecular , Tamaño de la Partícula , Pez Cebra
7.
Bioorg Med Chem ; 41: 116217, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34022529

RESUMEN

The recent incorporation of Au chemistry in the bioorthogonal toolbox has opened up new opportunities to deliver biologically independent reactions in living environments. Herein we report that the O-propargylation of the hydroxamate group of the potent HDAC inhibitor panobinostat leads to a vast reduction of its anticancer properties (>500-fold). We also show that this novel prodrug is converted back into panobinostat in the presence of Au catalysts in vitro and in cell culture.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Panobinostat/química , Panobinostat/farmacología , Profármacos/química , Profármacos/farmacología , Catálisis , Línea Celular Tumoral , Supervivencia Celular , Oro , Humanos
8.
Exp Eye Res ; 197: 108108, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32590005

RESUMEN

Although anti-VEGF therapies have radically changed clinical practice, there is still an urgent demand for novel, integrative approaches for sight-threatening retinal vascular diseases. As we hypothesize that protein tyrosine kinases are key signaling mediators in retinal vascular disease, we performed a comprehensive activity-based tyrosine kinome profiling on retinal tissue of 12-week-old Akimba mice, a translational model displaying hallmarks of early and advanced diabetic retinopathy. Western blotting was used to confirm retinal tyrosine kinase activity in Akimba mice. HUVEC tube formation and murine organotypic choroidal sprouting assays were applied to compare tyrosine kinase inhibitors with different specificity profiles. HUVEC toxicity and proliferation were evaluated using the CellTox™ Green Cytotoxicity and PrestoBlue™ Assays. Our results indicate a shift of the Akimba retinal tyrosine kinome towards a hyperactive state. Functional network analysis of significantly hyperphosphorylated peptides and upstream kinase prediction revealed a central role for Src-FAK family kinases. Western blotting confirmed hyperactivity of this signaling node in the retina of Akimba mice. We demonstrated that not only Src but also FAK family kinase inhibitors with different selectivity profiles were able to suppress angiogenesis in vitro and ex vivo. In the latter model, the novel selective Src family kinase inhibitor eCF506 was able to achieve potent reduction of angiogenesis, comparable to the less specific inhibitor Dasatinib. None of the tested compounds demonstrated acute endothelial cell toxicity. Overall, the collected findings provide the first comprehensive overview of retinal tyrosine kinome changes in the Akimba model of diabetic retinopathy and for the first time highlight Src family kinase inhibition using highly specific inhibitors as an attractive therapeutic intervention for retinal vascular pathology.


Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética/metabolismo , Tirosina/metabolismo , Familia-src Quinasas/antagonistas & inhibidores , Animales , Western Blotting , Retinopatía Diabética/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Familia-src Quinasas/metabolismo
9.
Bioorg Med Chem ; 28(1): 115215, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31787462

RESUMEN

The search for novel targeted inhibitors active on glioblastoma multiforme is crucial to develop new treatments for this unmet clinical need. Herein, we report the results from a screening campaign against glioma cell lines using a proprietary library of 100 structurally-related pyrazolopyrimidines. Data analysis identified a family of compounds featuring a 2-amino-1,3-benzoxazole moiety (eCF309 to eCF334) for their antiproliferative properties in the nM range. These results were validated in patient-derived glioma cells. Available kinase inhibition profile pointed to blockade of the PI3K/mTOR pathway as being responsible for the potent activity of the hits. Combination studies demonstrated synergistic activity by inhibiting both PI3Ks and mTOR with selective inhibitors. Based on the structure activity relationships identified in this study, five new derivatives were synthesized and tested, which exhibited potent activity against glioma cells but not superior to the dual PI3K/mTOR inhibitor and lead compound of the screening eCF324.


Asunto(s)
Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/química , Pirazoles/química , Pirimidinas/química , Serina-Treonina Quinasas TOR/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Glioma/metabolismo , Glioma/patología , Humanos , Fosfatidilinositol 3-Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/farmacología , Pirimidinas/farmacología , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
10.
Bioconjug Chem ; 29(9): 3154-3160, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30122043

RESUMEN

Chemical proteomics approaches are widely used to identify molecular targets of existing or novel drugs. This manuscript describes the development of a straightforward approach to conjugate azide-labeled drugs via click chemistry to alkyne-tagged cell-penetrating fluorescent nanoparticles as a novel tool to study target engagement and/or identification inside living cells. A modification of the Baeyer test for alkynes allows monitoring the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction, guaranteeing the presence of the drug on the solid support. As a proof of concept, the conjugation of the promiscuous kinase inhibitor dasatinib to Cy5-labeled nanoparticles is presented. Dasatinib-decorated fluorescent nanoparticles efficiently inhibited its protein target SRC in vitro, entered cancer cells, and colocalized with SRC in cellulo.


Asunto(s)
Permeabilidad de la Membrana Celular , Colorantes Fluorescentes/química , Nanopartículas/química , Proteómica , Azidas/química , Catálisis , Química Clic , Reacción de Cicloadición , Dasatinib/química , Humanos
11.
Chemistry ; 24(63): 16783-16790, 2018 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-30187973

RESUMEN

SN-38, the active metabolite of irinotecan, is released upon liver hydrolysis to mediate potent antitumor activity. Systemic exposure to SN-38, however, also leads to serious side effects. To reduce systemic toxicity by controlling where and when SN-38 is generated, a new prodrug was specifically designed to be metabolically stable and undergo rapid palladium-mediated activation. Blocking the phenolic OH of SN-38 with a 2,6-bis(propargyloxy)benzyl group led to significant reduction of cytotoxic activity (up to 44-fold). Anticancer properties were swiftly restored in the presence of heterogeneous palladium (Pd) catalysts to kill colorectal cancer and glioma cells, proving the efficacy of this novel masking strategy for aromatic hydroxyls. Combination with a Pd-activated 5FU prodrug augmented the antiproliferative potency of the treatment, while displaying no activity in the absence of the Pd source, which illustrates the benefit of achieving controlled release of multiple approved therapeutics-sequentially or simultaneously-by the same bioorthogonal catalyst to increase anticancer activity.

12.
Angew Chem Int Ed Engl ; 56(41): 12548-12552, 2017 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-28699691

RESUMEN

Recent advances in bioorthogonal catalysis are increasing the capacity of researchers to manipulate the fate of molecules in complex biological systems. A bioorthogonal uncaging strategy is presented, which is triggered by heterogeneous gold catalysis and facilitates the activation of a structurally diverse range of therapeutics in cancer cell culture. Furthermore, this solid-supported catalytic system enabled locally controlled release of a fluorescent dye into the brain of a zebrafish for the first time, offering a novel way to modulate the activity of bioorthogonal reagents in the most fragile and complex organs.


Asunto(s)
Antineoplásicos/administración & dosificación , Preparaciones de Acción Retardada/química , Colorantes Fluorescentes/administración & dosificación , Oro/química , Células A549 , Animales , Antineoplásicos/farmacocinética , Encéfalo/metabolismo , Catálisis , Colorantes Fluorescentes/farmacocinética , Humanos , Pez Cebra
13.
Org Biomol Chem ; 13(18): 5224-34, 2015 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-25856731

RESUMEN

A 18-member library of 6,8,9-poly-substituted purines was prepared from pyrimidines, primary alcohols, and N,N-dimethylamides under basic conditions via a novel one-pot synthetic pathway controlled by amide sizes and the novel analogues were tested against two leukemia cell lines: Jurkat (acute T cell leukemia) and K562 (chronic erythroleukemia) cells. Compounds having a benzoxy group at C6 position of the aromatic ring exhibited antiproliferative activity in Jurkat cells whereas all compounds induced a lower effect on K562 cells. Analysis of cell cycle, Annexin-V staining, and cleavage of initiator caspases assays showed that the active purine analogues induce cell death by apoptosis. Based on these results, a new purine derivative was synthesized, 6-benzyloxy-9-tert-butyl-8-phenyl-9H-purine (6d), which displayed the highest activity of the series against Jurkat cell lines. Finally, (33)P-radiolabeled kinase assays using 96 recombinant human kinases known to be involved in apoptotic events were performed. Just one of the kinases tested, DAPK-1, was inhibited 50% or more by the phenotypic hits at 10 µM, suggesting that the inhibition of this target could be responsible for the induction of cell death by apoptosis. In agreement with the phenotypic results, the most active antiproliferative agent, 6d, displayed also the lowest IC50 value against recombinant DAPK1 (2.5 µM), further supporting the potential role of this protein on the observed functional response. DAPK-1 inhibition led by 6d together with its pro-apoptotic properties against the Jurkat line makes it an interesting candidate to further investigate the role of DAPK1 kinase in triggering apoptosis in cancer cells, a role which is attracting recent interest.


Asunto(s)
Proteínas Quinasas Asociadas a Muerte Celular/antagonistas & inhibidores , Leucemia/patología , Linfocitos/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Purinas/síntesis química , Línea Celular , Humanos , Purinas/farmacología
14.
Cells ; 13(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38667306

RESUMEN

Several studies have reported the successful use of bio-orthogonal catalyst nanoparticles (NPs) for cancer therapy. However, the delivery of the catalysts to the target tissues in vivo remains an unsolved challenge. The combination of catalytic NPs with extracellular vesicles (EVs) has been proposed as a promising approach to improve the delivery of therapeutic nanomaterials to the desired organs. In this study, we have developed a nanoscale bio-hybrid vector using a CO-mediated reduction at low temperature to generate ultrathin catalytic Pd nanosheets (PdNSs) as catalysts directly inside cancer-derived EVs. We have also compared their biodistribution with that of PEGylated PdNSs delivered by the EPR effect. Our results indicate that the accumulation of PdNSs in the tumour tissue was significantly higher when they were administered within the EVs compared to the PEGylated PdNSs. Conversely, the amount of Pd found in non-target organs (i.e., liver) was lowered. Once the Pd-based catalytic EVs were accumulated in the tumours, they enabled the activation of a paclitaxel prodrug demonstrating their ability to carry out bio-orthogonal uncaging chemistries in vivo for cancer therapy.


Asunto(s)
Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Humanos , Animales , Catálisis , Ratones , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Paladio/química , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Línea Celular Tumoral , Distribución Tisular , Polietilenglicoles/química , Nanopartículas/química , Profármacos , Ratones Desnudos
15.
Acc Chem Res ; 45(7): 1140-52, 2012 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-22390230

RESUMEN

Nucleic acids are the foundation stone of all cellular processes. Consequently, the use of DNA or RNA to treat genetic and acquired disorders (so called gene therapy) offers enormous potential benefits. The restitution of defective genes or the suppression of malignant genes could target a range of diseases, including cancers, inherited diseases (cystic fibrosis, muscular dystrophy, etc.), and viral infections. However, this strategy has a major barrier: the size and charge of nucleic acids largely restricts their transit into eukaryotic cells. Potential strategies to solve this problem include the use of a variety of natural and synthetic nucleic acid carriers. Driven by the aim and ambition of translating this promising therapeutic approach into the clinic, researchers have been actively developing advanced delivery systems for nucleic acids for more than 20 years. A decade ago we began our investigations of solid-phase techniques to construct families of novel nucleic acid carriers for transfection. We envisaged that the solid-phase synthesis of polycationic dendrimers and derivatized polyamimes would offer distinct advantages over solution phase techniques. Notably in solid phase synthesis we could take advantage of mass action and streamlined purification procedures, while simplifying the handling of compounds with high polarities and plurality of functional groups. Parallel synthesis methods would also allow rapid access to libraries of compounds with improved purities and yields over comparable solution methodologies and facilitate the development of structure activity relationships. We also twisted the concept of the solid-phase support on its head: we devised miniaturized solid supports that provided an innovative cell delivery vehicle in their own right, carrying covalently conjugated cargos (biomolecules) into cells. In this Account, we summarize the main outcomes of this series of chemically related projects.


Asunto(s)
Ácidos Nucleicos/metabolismo , Arginina/química , ADN/química , ADN/metabolismo , Dendrímeros/química , Humanos , Lípidos/química , Microesferas , Ácidos Nucleicos/química , Poliaminas/química , ARN/química , ARN/metabolismo , Técnicas de Síntesis en Fase Sólida , Transfección
17.
RSC Med Chem ; 14(12): 2611-2624, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38099057

RESUMEN

Glioblastoma multiforme (GBM) is the most aggressive type of brain cancer in adults, with an average life expectancy under treatment of approx. 15 months. GBM is characterised by a complex set of genetic alterations that results in significant disruption of receptor tyrosine kinase (RTK) signaling. We report here an exploration of the pyrazolo[3,4-d]pyrimidine scaffold in search for antiproliferative compounds directed to GBM treatment. Small compound libraries were synthesised and screened against GBM cells to build up structure-antiproliferative activity-relationships (SAARs) and inform further rounds of design, synthesis and screening. 76 novel compounds were generated through this iterative process that found low micromolar potencies against selected GBM lines, including patient-derived stem cells. Phenomics analysis demonstrated preferential activity against glioma cells of the mesenchymal subtype, whereas kinome screening identified colony stimulating factor-1 receptor (CSF-1R) as the lead's target, a RTK implicated in the tumourigenesis and progression of different cancers and the immunoregulation of the GBM microenvironment.

18.
Nat Commun ; 14(1): 3445, 2023 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-37301862

RESUMEN

Cellular senescence is a stress response involved in ageing and diverse disease processes including cancer, type-2 diabetes, osteoarthritis and viral infection. Despite growing interest in targeted elimination of senescent cells, only few senolytics are known due to the lack of well-characterised molecular targets. Here, we report the discovery of three senolytics using cost-effective machine learning algorithms trained solely on published data. We computationally screened various chemical libraries and validated the senolytic action of ginkgetin, periplocin and oleandrin in human cell lines under various modalities of senescence. The compounds have potency comparable to known senolytics, and we show that oleandrin has improved potency over its target as compared to best-in-class alternatives. Our approach led to several hundred-fold reduction in drug screening costs and demonstrates that artificial intelligence can take maximum advantage of small and heterogeneous drug screening data, paving the way for new open science approaches to early-stage drug discovery.


Asunto(s)
Inteligencia Artificial , Senoterapéuticos , Humanos , Envejecimiento/fisiología , Senescencia Celular , Aprendizaje Automático
19.
J Exp Med ; 220(4)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36749798

RESUMEN

Metastatic castration-resistant prostate cancer (PC) is the final stage of PC that acquires resistance to androgen deprivation therapies (ADT). Despite progresses in understanding of disease mechanisms, the specific contribution of the metastatic microenvironment to ADT resistance remains largely unknown. The current study identified that the macrophage is the major microenvironmental component of bone-metastatic PC in patients. Using a novel in vivo model, we demonstrated that macrophages were critical for enzalutamide resistance through induction of a wound-healing-like response of ECM-receptor gene expression. Mechanistically, macrophages drove resistance through cytokine activin A that induced fibronectin (FN1)-integrin alpha 5 (ITGA5)-tyrosine kinase Src (SRC) signaling cascade in PC cells. This novel mechanism was strongly supported by bioinformatics analysis of patient transcriptomics datasets. Furthermore, macrophage depletion or SRC inhibition using a novel specific inhibitor significantly inhibited resistant growth. Together, our findings elucidated a novel mechanism of macrophage-induced anti-androgen resistance of metastatic PC and a promising therapeutic approach to treat this deadly disease.


Asunto(s)
Neoplasias Óseas , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Antagonistas de Andrógenos/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Línea Celular Tumoral , Macrófagos/metabolismo , Receptores Androgénicos/genética , Nitrilos/uso terapéutico , Microambiente Tumoral
20.
Bioorg Med Chem Lett ; 22(18): 5780-3, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22901897

RESUMEN

Variation at the 3' position of fluorescein via Suzuki-Miyaura cross-coupling with aryl and heteroaryl moieties gave a family of anthofluoresceins whose spectroscopic properties were studied. The 1-methylindole derivative gave the highest quantum yield and was observed to behave as a molecular rotor, displaying marked variations in fluorescent intensities with viscosity and offering possible application in cellular sensing and fluorescent polarisation assays.


Asunto(s)
Fluoresceínas/química , Colorantes Fluorescentes/química , Fluoresceínas/síntesis química , Polarización de Fluorescencia , Colorantes Fluorescentes/síntesis química , Células HeLa , Humanos , Estructura Molecular , Espectrometría de Fluorescencia , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA