Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Am J Physiol Lung Cell Mol Physiol ; 312(1): L143-L153, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27913425

RESUMEN

Elevated levels of reactive oxygen species and intracellular Ca2+ play a key role in endothelial barrier dysfunction in acute lung injury. We previously showed that H2O2-induced increases in intracellular calcium concentrations ([Ca2+]i) in lung microvascular endothelial cells (LMVECs) involve the membrane Ca2+ channel, transient receptor potential vanilloid-4 (TRPV4) and that inhibiting this channel attenuated H2O2-induced barrier disruption in vitro. We also showed that phosphorylation of TRPV4 by the Src family kinase, Fyn, contributes to H2O2-induced Ca2+ influx in LMVEC. In endothelial cells, Fyn is tethered to the cell membrane by CD36, a fatty acid transporter. In this study, we assessed the effect of genetic loss or pharmacological inhibition of CD36 on Ca2+ responses to H2O2 H2O2-induced Ca2+ influx was attenuated in LMVEC isolated from mice lacking CD36 (CD36-/-). TRPV4 expression and function was unchanged in LMVEC isolated from wild-type (WT) and CD36-/- mice, as well as mice with deficiency for Fyn (Fyn-/-). TRPV4 immunoprecipitated with Fyn, but this interaction was decreased in CD36-/- LMVEC. The amount of phosphorylated TRPV4 was decreased in LMVEC from CD36-/- mice compared with WT controls. Loss of CD36 altered subcellular localization of Fyn, while inhibition of CD36 fatty acid transport with succinimidyl oleate did not attenuate H2O2-induced Ca2+ influx. Lastly, we found that CD36-/- mice were protected from ischemia-reperfusion injury in vivo. In conclusion, our data suggest that CD36 plays an important role in H2O2-mediated lung injury and that the mechanism may involve CD36-dependent scaffolding of Fyn to the cell membrane to facilitate TRPV4 phosphorylation.


Asunto(s)
Antígenos CD36/metabolismo , Calcio/metabolismo , Células Endoteliales/metabolismo , Peróxido de Hidrógeno/farmacología , Pulmón/irrigación sanguínea , Microvasos/citología , Animales , Células Endoteliales/efectos de los fármacos , Ácidos Grasos/metabolismo , Eliminación de Gen , Lipoproteínas LDL/farmacología , Ratones Endogámicos C57BL , Ácido Oléico/farmacología , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Canales Catiónicos TRPV/metabolismo
2.
Am J Physiol Lung Cell Mol Physiol ; 309(12): L1467-77, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26453519

RESUMEN

In acute respiratory distress syndrome, both reactive oxygen species (ROS) and increased intracellular calcium ([Ca(2+)]i) are thought to play important roles in promoting endothelial paracellular permeability, but the mechanisms linking ROS and [Ca(2+)]i in microvascular endothelial cells are not known. In this study, we assessed the effect of hydrogen peroxide (H2O2) on [Ca(2+)]i in mouse and human lung microvascular endothelial cells (MLMVEC and HLMVEC, respectively). We found that in both MLMVECs and HLMVECs, exogenously applied H2O2 increased [Ca(2+)]i through Ca(2+) influx and that pharmacologic inhibition of the calcium channel transient receptor potential vanilloid 4 (TRPV4) attenuated the H2O2-induced Ca(2+) influx. Additionally, knockdown of TRPV4 in HLMVEC also attenuated calcium influx following H2O2 challenge. Administration of H2O2 or TRPV4 agonists decreased transmembrane electrical resistance (TER), suggesting increased barrier permeability. To explore the regulatory mechanisms underlying TRPV4 activation by ROS, we examined H2O2-induced Ca(2+) influx in MLMVECs and HLMVECs with either genetic deletion, silencing, or pharmacologic inhibition of Fyn, a Src family kinase. In both MLMVECs derived from mice deficient for Fyn and HLMVECs treated with either siRNA targeted to Fyn or the Src family kinase inhibitor SU-6656 for 24 or 48 h, the H2O2-induced Ca(2+) influx was attenuated. Treatment with SU-6656 decreased the levels of phosphorylated, but not total, TRPV4 protein and had no effect on TRPV4 response to the external agonist, GSK1016790A. In conclusion, our data suggest that application of exogenous H2O2 increases [Ca(2+)]i and decreases TER in microvascular endothelial cells via activation of TRPV4 through a mechanism that requires the Src kinase Fyn.


Asunto(s)
Calcio/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Peróxido de Hidrógeno/farmacología , Pulmón/metabolismo , Microvasos/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Humanos , Leucina/análogos & derivados , Leucina/farmacología , Pulmón/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Microvasos/efectos de los fármacos , Permeabilidad/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sulfonamidas/farmacología , Familia-src Quinasas/metabolismo
3.
Proc Natl Acad Sci U S A ; 109(4): 1239-44, 2012 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-22232678

RESUMEN

Chronic hypoxia is an inciting factor for the development of pulmonary arterial hypertension. The mechanisms involved in the development of hypoxic pulmonary hypertension (HPH) include hypoxia-inducible factor 1 (HIF-1)-dependent transactivation of genes controlling pulmonary arterial smooth muscle cell (PASMC) intracellular calcium concentration ([Ca(2+)](i)) and pH. Recently, digoxin was shown to inhibit HIF-1 transcriptional activity. In this study, we tested the hypothesis that digoxin could prevent and reverse the development of HPH. Mice were injected daily with saline or digoxin and exposed to room air or ambient hypoxia for 3 wk. Treatment with digoxin attenuated the development of right ventricle (RV) hypertrophy and prevented the pulmonary vascular remodeling and increases in PASMC [Ca(2+)](i), pH, and RV pressure that occur in mice exposed to chronic hypoxia. When started after pulmonary hypertension was established, digoxin attenuated the hypoxia-induced increases in RV pressure and PASMC pH and [Ca(2+)](i). These preclinical data support a role for HIF-1 inhibitors in the treatment of HPH.


Asunto(s)
Digoxina/farmacología , Hipertensión Pulmonar/prevención & control , Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia/complicaciones , Activación Transcripcional/fisiología , Análisis de Varianza , Animales , Presión Sanguínea/efectos de los fármacos , Calcio/metabolismo , Digoxina/sangre , Hipertensión Pulmonar/etiología , Hipertrofia Ventricular Derecha/prevención & control , Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Ratones , Microscopía Confocal , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar/citología , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Activación Transcripcional/efectos de los fármacos
4.
Am J Physiol Lung Cell Mol Physiol ; 304(8): L549-61, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23418090

RESUMEN

Numerous cellular responses to hypoxia are mediated by the transcription factor hypoxia-inducible factor-1 (HIF-1). HIF-1 plays a central role in the pathogenesis of hypoxic pulmonary hypertension. Under certain conditions, HIF-1 may utilize feedforward mechanisms to amplify its activity. Since hypoxia increases endothelin-1 (ET-1) levels in the lung, we hypothesized that during moderate, prolonged hypoxia ET-1 might contribute to HIF-1 signaling in pulmonary arterial smooth muscle cells (PASMCs). Primary cultures of rat PASMCs were treated with ET-1 or exposed to moderate, prolonged hypoxia (4% O(2) for 60 h). Levels of the oxygen-sensitive HIF-1α subunit and expression of HIF target genes were increased in both hypoxic cells and cells treated with ET-1. Both hypoxia and ET-1 also increased HIF-1α mRNA expression and decreased mRNA and protein expression of prolyl hydroxylase 2 (PHD2), which is the protein responsible for targeting HIF-1α for O(2)-dependent degradation. The induction of HIF-1α by moderate, prolonged hypoxia was blocked by BQ-123, an antagonist of ET-1 receptor subtype A. The effects of ET-1 were mediated by increased intracellular calcium, generation of reactive oxygen species, and ERK1/2 activation. Neither ET-1 nor moderate hypoxia induced the expression of HIF-1α or HIF target genes in aortic smooth muscle cells. These results suggest that ET-1 induces a PASMC-specific increase in HIF-1α levels by upregulation of HIF-1α synthesis and downregulation of PHD2-mediated degradation, thereby amplifying the induction of HIF-1α in PASMCs during moderate, prolonged hypoxia.


Asunto(s)
Endotelina-1/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/metabolismo , Animales , Secuencia de Bases , Calcio/metabolismo , Hipoxia de la Célula/genética , Hipoxia de la Célula/fisiología , Células Cultivadas , Antagonistas de los Receptores de la Endotelina A , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Expresión Génica/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia , Masculino , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Péptidos Cíclicos/farmacología , Procolágeno-Prolina Dioxigenasa/genética , Procolágeno-Prolina Dioxigenasa/metabolismo , Arteria Pulmonar/citología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
5.
Front Physiol ; 14: 1108304, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36926194

RESUMEN

Exposure to hypoxia, due to high altitude or chronic lung disease, leads to structural changes in the pulmonary vascular wall, including hyperplasia and migration of pulmonary arterial smooth muscle cells (PASMCs). Previous studies showed that hypoxia upregulates the expression of Na+/H+ exchanger isoform 1 (NHE1) and that inhibition or loss of NHE1 prevents hypoxia-induced PASMC migration and proliferation. The exact mechanism by which NHE1 controls PASMC function has not been fully delineated. In fibroblasts, NHE1 has been shown to act as a membrane anchor for actin filaments, via binding of the adaptor protein, ezrin. Thus, in this study, we tested the role of ezrin and NHE1/actin interactions in controlling PASMC function. Using rat PASMCs exposed to in vitro hypoxia (4% O2, 24 h) we found that hypoxic exposure increased phosphorylation (activation) of ezrin, and promoted interactions between NHE1, phosphorylated ezrin and smooth muscle specific α-actin (SMA) as measured via immunoprecipitation and co-localization. Overexpression of wild-type human NHE1 in the absence of hypoxia was sufficient to induce PASMC migration and proliferation, whereas inhibiting ezrin phosphorylation with NSC668394 suppressed NHE1/SMA co-localization and migration in hypoxic PASMCs. Finally, overexpressing a version of human NHE1 in which amino acids were mutated to prevent NHE1/ezrin/SMA interactions was unable to increase PASMC migration and proliferation despite exhibiting normal Na+/H+ exchange activity. From these results, we conclude that hypoxic exposure increases ezrin phosphorylation in PASMCs, leading to enhanced ezrin/NHE1/SMA interaction. We further speculate that these interactions promote anchoring of the actin cytoskeleton to the membrane to facilitate the changes in cell movement and shape required for migration and proliferation.

6.
Am J Physiol Lung Cell Mol Physiol ; 302(10): L1128-39, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22387294

RESUMEN

Exposure to chronic hypoxia (CH) causes pulmonary hypertension. The vasoconstrictor endothelin-1 (ET-1) is thought to play a role in the development of hypoxic pulmonary hypertension. In pulmonary arterial smooth muscle cells (PASMCs) from chronically hypoxic rats, ET-1 signaling is altered, with the ET-1-induced change in intracellular calcium concentration (Δ[Ca(2+)](i)) occurring through activation of voltage-dependent Ca(2+) channels (VDCC) even though ET-1-induced depolarization via inhibition of K(+) channels is lost. The mechanism underlying this response is unclear. We hypothesized that activation of VDCCs by ET-1 following CH might be mediated by protein kinase C (PKC) and/or Rho kinase, both of which have been shown to phosphorylate and activate VDCCs. To test this hypothesis, we examined the effects of PKC and Rho kinase inhibitors on the ET-1-induced Δ[Ca(2+)](i) in PASMCs from rats exposed to CH (10% O(2), 3 wk) using the Ca(2+)-sensitive dye fura 2-AM and fluorescent microscopy techniques. We found that staurosporine and GF109203X, inhibitors of PKC, and Y-27632 and HA 1077, Rho kinase inhibitors, reduced the ET-1-induced Δ[Ca(2+)](i) by >70%. Inhibition of tyrosine kinases (TKs) with genistein or tyrphostin A23, or combined inhibition of PKC, TKs, and Rho kinase, reduced the Δ[Ca(2+)](i) to a similar extent as inhibition of either PKC or Rho kinase alone. The ability of PKC or Rho kinase to activate VDCCs in our cells was verified using phorbol 12-myristate 13-acetate and GTP-γ-S. These results suggest that following CH, the ET-1-induced Δ[Ca(2+)](i) in PASMCs occurs via Ca(2+) influx through VDCCs mediated primarily by PKC, TKs, and Rho kinase.


Asunto(s)
Señalización del Calcio , Endotelina-1/metabolismo , Hipoxia/metabolismo , Células Musculares/metabolismo , Proteína Quinasa C/metabolismo , Quinasas Asociadas a rho/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio/efectos de los fármacos , Canales de Calcio/metabolismo , Enfermedad Crónica , Endotelina-1/farmacología , Colorantes Fluorescentes , Fura-2/análogos & derivados , Expresión Génica , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/fisiopatología , Hipoxia/complicaciones , Hipoxia/fisiopatología , Activación del Canal Iónico/efectos de los fármacos , Masculino , Microscopía Fluorescente , Células Musculares/efectos de los fármacos , Células Musculares/patología , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Proteína Quinasa C/genética , Inhibidores de Proteínas Quinasas/farmacología , Ratas , Ratas Wistar , Quinasas Asociadas a rho/genética
7.
Am J Physiol Lung Cell Mol Physiol ; 303(4): L343-53, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22683574

RESUMEN

Pulmonary arterial smooth muscle cell (PASMC) migration is a key component of the vascular remodeling that occurs during the development of hypoxic pulmonary hypertension, although the mechanisms governing this phenomenon remain poorly understood. Aquaporin-1 (AQP1), an integral membrane water channel protein, has recently been shown to aid in migration of endothelial cells. Since AQP1 is expressed in certain types of vascular smooth muscle, we hypothesized that AQP1 would be expressed in PASMCs and would be required for migration in response to hypoxia. Using PCR and immunoblot techniques, we determined the expression of AQPs in pulmonary vascular smooth muscle and the effect of hypoxia on AQP levels, and we examined the role of AQP1 in hypoxia-induced migration in rat PASMCs using Transwell filter assays. Moreover, since the cytoplasmic tail of AQP1 contains a putative calcium binding site and an increase in intracellular calcium concentration ([Ca(2+)](i)) is a hallmark of hypoxic exposure in PASMCs, we also determined whether the responses were Ca(2+) dependent. Results were compared with those obtained in aortic smooth muscle cells (AoSMCs). We found that although AQP1 was abundant in both PASMCs and AoSMCs, hypoxia selectively increased AQP1 protein levels, [Ca(2+)](i), and migration in PASMCs. Blockade of Ca(2+) entry through voltage-dependent Ca(2+) or nonselective cation channels prevented the hypoxia-induced increase in PASMC [Ca(2+)](i), AQP1 levels, and migration. Silencing AQP1 via siRNA also prevented hypoxia-induced migration of PASMCs. Our results suggest that hypoxia induces a PASMC-specific increase in [Ca(2+)](i) that results in increased AQP1 protein levels and cell migration.


Asunto(s)
Acuaporina 1/genética , Calcio/metabolismo , Movimiento Celular , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Arteria Pulmonar/patología , Regulación hacia Arriba/genética , Animales , Aorta/patología , Acuaporina 1/metabolismo , Hipoxia de la Célula , Proliferación Celular , Espacio Intracelular/metabolismo , Masculino , Músculo Liso Vascular/patología , Ratas , Ratas Wistar
8.
Pulm Circ ; 11(4): 20458940211049948, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34646499

RESUMEN

Upon sensing a reduction in local oxygen partial pressure, pulmonary vessels constrict, a phenomenon known as hypoxic pulmonary vasoconstriction. Excessive hypoxic pulmonary vasoconstriction can occur with ascent to high altitude and is a contributing factor to the development of high-altitude pulmonary edema. The carbonic anhydrase inhibitor, acetazolamide, attenuates hypoxic pulmonary vasoconstriction through stimulation of alveolar ventilation via modulation of acid-base homeostasis and by direct effects on pulmonary vascular smooth muscle. In pulmonary arterial smooth muscle cells (PASMCs), acetazolamide prevents hypoxia-induced increases in intracellular calcium concentration ([Ca2+]i), although the exact mechanism by which this occurs is unknown. In this study, we explored the effect of acetazolamide on various calcium-handling pathways in PASMCs. Using fluorescent microscopy, we tested whether acetazolamide directly inhibited store-operated calcium entry or calcium release from the sarcoplasmic reticulum, two well-documented sources of hypoxia-induced increases in [Ca2+]i in PASMCs. Acetazolamide had no effect on calcium entry stimulated by store-depletion, nor on calcium release from the sarcoplasmic reticulum induced by either phenylephrine to activate inositol triphosphate receptors or caffeine to activate ryanodine receptors. In contrast, acetazolamide completely prevented Ca2+-release from the sarcoplasmic reticulum induced by hypoxia (4% O2). Since these results suggest the acetazolamide interferes with a mechanism upstream of the inositol triphosphate and ryanodine receptors, we also determined whether acetazolamide might prevent hypoxia-induced changes in reactive oxygen species production. Using roGFP, a ratiometric reactive oxygen species-sensitive fluorescent probe, we found that hypoxia caused a significant increase in reactive oxygen species in PASMCs that was prevented by 100 µM acetazolamide. Together, these results suggest that acetazolamide prevents hypoxia-induced changes in [Ca2+]i by attenuating reactive oxygen species production and subsequent activation of Ca2+-release from sarcoplasmic reticulum stores.

9.
Physiol Rep ; 6(9): e13698, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29756391

RESUMEN

Excessive production of endothelin-1 (ET-1) has been observed in almost all forms of pulmonary hypertension. ET-1, a highly potent vasoconstrictor, can also potentiate pulmonary arterial smooth muscle cell (PASMC) growth and migration, both of which contribute to the vascular remodeling that occurs during the development of pulmonary hypertension. Increasing evidence indicates that alkalinization of intracellular pH (pHi ), typically due to activation of Na+ /H+ exchange (NHE), is associated with enhanced PASMC proliferation and migration. We recently demonstrated that application of exogenous ET-1 increased NHE activity in murine PASMCs via a mechanism requiring Rho kinase (ROCK). However, whether ROCK and/or increased NHE activity mediate ET-1-induced migration and proliferation in PASMCs remains unknown. In this study, we used fluorescent microscopy in transiently cultured PASMCs from distal pulmonary arteries of the rat and the pH-sensitive dye, BCECF-AM, to measure changes in resting pHi and NHE activity induced by exposure to exogenous ET-1 (10-8  mol/L) for 24 h. Cell migration and proliferation in response to ET-1 were also measured using Transwell assays and BrdU incorporation, respectively. We found that application of exogenous ET-1 had no effect on NHE1 expression, but increased pHi , NHE activity, migration, and proliferation in rat PASMCs. Pharmacologic inhibition of NHE or ROCK prevented the ET-1-induced changes in cell function (proliferation and migration). Our results indicate that ET-1 modulates PASMC migration and proliferation via changes in pHi homeostasis through a pathway involving ROCK.


Asunto(s)
Movimiento Celular , Proliferación Celular , Endotelina-1/metabolismo , Músculo Liso Vascular/metabolismo , Arteria Pulmonar/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Quinasas Asociadas a rho/metabolismo , Animales , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Endotelina-1/administración & dosificación , Concentración de Iones de Hidrógeno , Masculino , Músculo Liso Vascular/efectos de los fármacos , Cultivo Primario de Células , Arteria Pulmonar/efectos de los fármacos , Ratas Wistar
10.
Pulm Circ ; 6(1): 93-102, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27076907

RESUMEN

In the lung, exposure to chronic hypoxia (CH) causes pulmonary hypertension, a debilitating disease. Development of this condition arises from increased muscularity and contraction of pulmonary vessels, associated with increases in pulmonary arterial smooth muscle cell (PASMC) intracellular pH (pHi) and Ca(2+) concentration ([Ca(2+)]i). In this study, we explored the interaction between pHi and [Ca(2+)]i in PASMCs from rats exposed to normoxia or CH (3 weeks, 10% O2). PASMC pHi and [Ca(2+)]i were measured with fluorescent microscopy and the dyes BCECF and Fura-2. Both pHi and [Ca(2+)]i levels were elevated in PASMCs from hypoxic rats. Exposure to KCl increased [Ca(2+)]i and pHi to a similar extent in normoxic and hypoxic PASMCs. Conversely, removal of extracellular Ca(2+) or blockade of Ca(2+) entry with NiCl2 or SKF 96365 decreased [Ca(2+)]i and pHi only in hypoxic cells. Neither increasing pHi with NH4Cl nor decreasing pHi by removal of bicarbonate impacted PASMC [Ca(2+)]i. We also examined the roles of Na(+)/Ca(2+) exchange (NCX) and Na(+)/H(+) exchange (NHE) in mediating the elevated basal [Ca(2+)]i and Ca(2+)-dependent changes in PASMC pHi. Bepridil, dichlorobenzamil, and KB-R7943, which are NCX inhibitors, decreased resting [Ca(2+)]i and pHi only in hypoxic PASMCs and blocked the changes in pHi induced by altering [Ca(2+)]i. Exposure to ethyl isopropyl amiloride, an NHE inhibitor, decreased resting pHi and prevented changes in pHi due to changing [Ca(2+)]i. Our findings indicate that, during CH, the elevation in basal [Ca(2+)]i may contribute to the alkaline shift in pHi in PASMCs, likely via mechanisms involving reverse-mode NCX and NHE.

11.
Physiol Rep ; 4(6)2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27009277

RESUMEN

Abnormal proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) are hallmark characteristics of vascular remodeling in pulmonary hypertension induced by chronic hypoxia. In this study, we investigated the role of the Na(+)/H(+)exchanger (NHE) and alterations in intracellularpH(pHi) homeostasis in meditating increased proliferation and migration inPASMCs isolated from resistance-sized pulmonary arteries from chronically hypoxic rats or from normoxic rats that were exposed to hypoxia ex vivo (1% or 4% O2, 24-96 h). We found thatPASMCs exposed to either in vivo or ex vivo hypoxia exhibited greater proliferative and migratory capacity, elevated pHi, and enhancedNHEactivity. TheNHEinhibitor, ethyl isopropyl amiloride (EIPA), normalized pHiin hypoxicPASMCs and reduced migration by 73% and 45% in cells exposed to in vivo and in vitro hypoxia, respectively. Similarly,EIPAreduced proliferation by 97% and 78% in cells exposed to in vivo and in vitro hypoxia, respectively. We previously demonstrated thatNHEisoform 1 (NHE1) is the predominant isoform expressed inPASMCs. The development of hypoxia-induced pulmonary hypertension and alterations inPASMC pHihomeostasis were prevented in mice deficient forNHE1. We found that short-term (24 h) ex vivo hypoxic exposure did not alter the expression ofNHE1, so we tested the role of Rho kinase (ROCK) as a possible means of increasingNHEactivity. In the presence of theROCKinhibitor, Y-27632, we found that pHiandNHEactivity were normalized and migration and proliferation were reduced inPASMCs exposed to either in vivo (by 68% for migration and 22% for proliferation) or ex vivo (by 43% for migration and 17% for proliferation) hypoxia. From these results, we conclude that during hypoxia, activation ofROCKenhancesNHEactivity and promotesPASMCmigration and proliferation.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Movimiento Celular , Proliferación Celular , Hipertensión Pulmonar/etiología , Hipoxia/complicaciones , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/enzimología , Intercambiadores de Sodio-Hidrógeno/metabolismo , Remodelación Vascular , Quinasas Asociadas a rho/metabolismo , Amidas/farmacología , Amilorida/análogos & derivados , Amilorida/farmacología , Animales , Proteínas de Transporte de Catión/antagonistas & inhibidores , Proteínas de Transporte de Catión/deficiencia , Proteínas de Transporte de Catión/genética , Hipoxia de la Célula , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Activación Enzimática , Concentración de Iones de Hidrógeno , Hipertensión Pulmonar/enzimología , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/fisiopatología , Hipoxia/enzimología , Hipoxia/patología , Hipoxia/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/patología , Músculo Liso Vascular/fisiopatología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , Inhibidores de Proteínas Quinasas/farmacología , Arteria Pulmonar/enzimología , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Piridinas/farmacología , Ratas Wistar , Transducción de Señal , Intercambiador 1 de Sodio-Hidrógeno , Intercambiadores de Sodio-Hidrógeno/antagonistas & inhibidores , Intercambiadores de Sodio-Hidrógeno/genética , Remodelación Vascular/efectos de los fármacos
12.
Sleep ; 36(10): 1483-90; 1490A-1490B, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24082307

RESUMEN

OBJECTIVES: Obstructive sleep apnea is associated with insulin resistance, glucose intolerance, and type 2 diabetes mellitus. Although several studies have suggested that intermittent hypoxia in obstructive sleep apnea may induce abnormalities in glucose homeostasis, it remains to be determined whether these abnormalities improve after discontinuation of the exposure. The objective of this study was to delineate the effects of intermittent hypoxia on glucose homeostasis, beta cell function, and liver glucose metabolism and to investigate whether the impairments improve after the hypoxic exposure is discontinued. INTERVENTIONS: C57BL6/J mice were exposed to 14 days of intermittent hypoxia, 14 days of intermittent air, or 7 days of intermittent hypoxia followed by 7 days of intermittent air (recovery paradigm). Glucose and insulin tolerance tests were performed to estimate whole-body insulin sensitivity and calculate measures of beta cell function. Oxidative stress in pancreatic tissue and glucose output from isolated hepatocytes were also assessed. RESULTS: Intermittent hypoxia increased fasting glucose levels and worsened glucose tolerance by 67% and 27%, respectively. Furthermore, intermittent hypoxia exposure was associated with impairments in insulin sensitivity and beta cell function, an increase in liver glycogen, higher hepatocyte glucose output, and an increase in oxidative stress in the pancreas. While fasting glucose levels and hepatic glucose output normalized after discontinuation of the hypoxic exposure, glucose intolerance, insulin resistance, and impairments in beta cell function persisted. CONCLUSIONS: Intermittent hypoxia induces insulin resistance, impairs beta cell function, enhances hepatocyte glucose output, and increases oxidative stress in the pancreas. Cessation of the hypoxic exposure does not fully reverse the observed changes in glucose metabolism.


Asunto(s)
Glucosa/metabolismo , Homeostasis/fisiología , Hipoxia/metabolismo , Animales , Glucemia/análisis , Glucemia/fisiología , Modelos Animales de Enfermedad , Glucosa/fisiología , Prueba de Tolerancia a la Glucosa , Hipoxia/fisiopatología , Resistencia a la Insulina/fisiología , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/fisiología , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo/fisiología , Apnea Obstructiva del Sueño/metabolismo , Apnea Obstructiva del Sueño/fisiopatología
13.
PLoS One ; 7(9): e46303, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23029469

RESUMEN

Excessive production of endothelin-1 (ET-1), a potent vasoconstrictor, occurs with several forms of pulmonary hypertension. In addition to modulating vasomotor tone, ET-1 can potentiate pulmonary arterial smooth muscle cell (PASMC) growth and migration, both of which contribute to the vascular remodeling that occurs during the development of pulmonary hypertension. It is well established that changes in cell proliferation and migration in PASMCs are associated with alkalinization of intracellular pH (pH(i)), typically due to activation of Na(+)/H(+) exchange (NHE). In the systemic vasculature, ET-1 increases pH(i), Na(+)/H(+) exchange activity and stimulates cell growth via a mechanism dependent on protein kinase C (PKC). These results, coupled with data describing elevated levels of ET-1 in hypertensive animals/humans, suggest that ET-1 may play an important role in modulating pH(i) and smooth muscle growth in the lung; however, the effect of ET-1 on basal pH(i) and NHE activity has yet to be examined in PASMCs. Thus, we used fluorescent microscopy in transiently (3-5 days) cultured rat PASMCs and the pH-sensitive dye, BCECF-AM, to measure changes in basal pH(i) and NHE activity induced by increasing concentrations of ET-1 (10(-10) to 10(-8) M). We found that application of exogenous ET-1 increased pH(i) and NHE activity in PASMCs and that the ET-1-induced augmentation of NHE was prevented in PASMCs pretreated with an inhibitor of Rho kinase, but not inhibitors of PKC. Moreover, direct activation of PKC had no effect on pH(i) or NHE activity in PASMCs. Our results indicate that ET-1 can modulate pH homeostasis in PASMCs via a signaling pathway that includes Rho kinase and that, in contrast to systemic vascular smooth muscle, activation of PKC does not appear to be an important regulator of PASMC pH(i).


Asunto(s)
Endotelina-1/farmacología , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Quinasas Asociadas a rho/metabolismo , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Fluoresceínas , Colorantes Fluorescentes , Concentración de Iones de Hidrógeno , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Músculo Liso Vascular/citología , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/enzimología , Proteína Quinasa C/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Arteria Pulmonar/citología , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/enzimología , Transducción de Señal/efectos de los fármacos , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , Quinasas Asociadas a rho/antagonistas & inhibidores
14.
Respir Physiol Neurobiol ; 174(3): 221-9, 2010 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-20801238

RESUMEN

In contrast to the systemic vasculature, where hypoxia causes vasodilation, pulmonary arteries constrict in response to hypoxia. The mechanisms underlying this unique response have been the subject of investigation for over 50 years, and still remain a topic of great debate. Over the last 20 years, there has emerged a general consensus that both increases in intracellular calcium concentration and changes in reactive oxygen species (ROS) generation play key roles in the pulmonary vascular response to hypoxia. Controversy exists, however, regarding whether ROS increase or decrease during hypoxia, the source of ROS, and the mechanisms by which changes in ROS might impact intracellular calcium, and vice versa. This review will discuss the mechanisms regulating [Ca2+]i and ROS in PASMCs, and the interaction between ROS and Ca2+ signaling during exposure to acute hypoxia.


Asunto(s)
Calcio/metabolismo , Hipoxia/metabolismo , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar/citología , Especies Reactivas de Oxígeno/metabolismo , Animales , Humanos , Mitocondrias/metabolismo , Modelos Biológicos , NADPH Oxidasas/metabolismo , Vasoconstricción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA