Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38791182

RESUMEN

Sigma non-opioid intracellular receptor 1 (Sigma-1R) is an intracellular chaperone protein residing on the endoplasmic reticulum at the mitochondrial-associated membrane (MAM) region. Sigma-1R is abundant in the brain and is involved in several physiological processes as well as in various disease states. The role of Sigma-1R at the blood-brain barrier (BBB) is incompletely characterized. In this study, the effect of Sigma-1R activation was investigated in vitro on rat brain microvascular endothelial cells (RBMVEC), an important component of the blood-brain barrier (BBB), and in vivo on BBB permeability in rats. The Sigma-1R agonist PRE-084 produced a dose-dependent increase in mitochondrial calcium, and mitochondrial and cytosolic reactive oxygen species (ROS) in RBMVEC. PRE-084 decreased the electrical resistance of the RBMVEC monolayer, measured with the electric cell-substrate impedance sensing (ECIS) method, indicating barrier disruption. These effects were reduced by pretreatment with Sigma-1R antagonists, BD 1047 and NE 100. In vivo assessment of BBB permeability in rats indicates that PRE-084 produced a dose-dependent increase in brain extravasation of Evans Blue and sodium fluorescein brain; the effect was reduced by the Sigma-1R antagonists. Immunocytochemistry studies indicate that PRE-084 produced a disruption of tight and adherens junctions and actin cytoskeleton. The brain microcirculation was directly visualized in vivo in the prefrontal cortex of awake rats with a miniature integrated fluorescence microscope (aka, miniscope; Doric Lenses Inc.). Miniscope studies indicate that PRE-084 increased sodium fluorescein extravasation in vivo. Taken together, these results indicate that Sigma-1R activation promoted oxidative stress and increased BBB permeability.


Asunto(s)
Barrera Hematoencefálica , Células Endoteliales , Especies Reactivas de Oxígeno , Receptores sigma , Receptor Sigma-1 , Animales , Receptores sigma/metabolismo , Receptores sigma/agonistas , Barrera Hematoencefálica/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Células Endoteliales/metabolismo , Masculino , Mitocondrias/metabolismo , Calcio/metabolismo , Morfolinas/farmacología , Encéfalo/metabolismo , Encéfalo/irrigación sanguínea , Células Cultivadas
2.
Neurobiol Dis ; 158: 105473, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34371144

RESUMEN

CalDAG-GEFI (CDGI) is a protein highly enriched in the striatum, particularly in the principal spiny projection neurons (SPNs). CDGI is strongly down-regulated in two hyperkinetic conditions related to striatal dysfunction: Huntington's disease and levodopa-induced dyskinesia in Parkinson's disease. We demonstrate that genetic deletion of CDGI in mice disrupts dendritic, but not somatic, M1 muscarinic receptors (M1Rs) signaling in indirect pathway SPNs. Loss of CDGI reduced temporal integration of excitatory postsynaptic potentials at dendritic glutamatergic synapses and impaired the induction of activity-dependent long-term potentiation. CDGI deletion selectively increased psychostimulant-induced repetitive behaviors, disrupted sequence learning, and eliminated M1R blockade of cocaine self-administration. These findings place CDGI as a major, but previously unrecognized, mediator of cholinergic signaling in the striatum. The effects of CDGI deletion on the self-administration of drugs of abuse and its marked alterations in hyperkinetic extrapyramidal disorders highlight CDGI's therapeutic potential.


Asunto(s)
Dendritas , Factores de Intercambio de Guanina Nucleótido/genética , Neostriado/fisiopatología , Plasticidad Neuronal , Sistema Nervioso Parasimpático/fisiopatología , Sinapsis , Animales , Enfermedades de los Ganglios Basales/genética , Enfermedades de los Ganglios Basales/fisiopatología , Enfermedades de los Ganglios Basales/psicología , Estimulantes del Sistema Nervioso Central/farmacología , Potenciales Postsinápticos Excitadores/genética , Hipercinesia/genética , Hipercinesia/psicología , Potenciación a Largo Plazo , Masculino , Ratones , Ratones Noqueados , Actividad Motora , Polimorfismo de Nucleótido Simple , Receptor Muscarínico M1/genética , Receptor Muscarínico M1/fisiología , Trastornos Relacionados con Sustancias/genética , Trastornos Relacionados con Sustancias/fisiopatología , Trastornos Relacionados con Sustancias/psicología
3.
Int J Neuropsychopharmacol ; 23(2): 117-124, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31867624

RESUMEN

BACKGROUND: Cocaine withdrawal activates stress systems. Females are more vulnerable to relapse to cocaine use and more sensitive to withdrawal-induced negative affect. Delta opioid receptors modulate anxiety-like behavior during cocaine withdrawal in rats. This study measured the time course of gene regulation of one of the main stress peptides, corticotropin-releasing factor (CRF), and its type 1 receptor in male and female rats as well as the ability of the delta opioid receptor agonist SNC80 to normalize cocaine withdrawal-induced changes in CRF mRNA. METHODS: Rats were injected with cocaine or saline 3 times daily for 14 days. Brains were collected 30 minutes, 24 hours, 48 hours, 7 days, and 14 days following the last injection. The paraventricular nucleus of the hypothalamus, central amygdala, and bed nucleus of the stria terminalis were processed for quantitative reverse transcriptase PCR measurement of CRF and CRFR1 mRNA. Additional rats received SNC80 during early cocaine withdrawal, and CRF mRNA was measured in the central amygdala. RESULTS: CRF mRNA was elevated in the central amygdala at 24 hours and the paraventricular nucleus at 48 hours of cocaine withdrawal in males and females. Significant sex differences in cocaine-induced CRF upregulation were found in the bed nucleus of the stria terminalis at 30 minutes and 24 hours. SNC80 administration attenuated the increase in CRF mRNA in the central amygdala of female rats only. CONCLUSIONS: CRF mRNA regulation during cocaine withdrawal is sex, time, and brain region dependent. Administration of a delta opioid receptor agonist during early withdrawal may ameliorate stress-related negative affect in females by abrogating the induction of CRF mRNA.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Trastornos Relacionados con Cocaína/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Receptores Opioides delta/agonistas , Receptores Opioides delta/metabolismo , Núcleos Septales/metabolismo , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico , Síndrome de Abstinencia a Sustancias/metabolismo , Animales , Benzamidas/farmacología , Modelos Animales de Enfermedad , Femenino , Masculino , Piperazinas/farmacología , Ratas , Ratas Sprague-Dawley , Caracteres Sexuales , Regulación hacia Arriba
4.
Am J Physiol Lung Cell Mol Physiol ; 317(4): L475-L485, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31313616

RESUMEN

The alveolus participates in gas exchange, which can be impaired by environmental factors and toxins. There is an increase in using electronic cigarettes (e-cigarettes); however, their effect on human primary alveolar epithelial cells is unknown. Human lungs were obtained from nonsmoker organ donors to isolate alveolar type II (ATII) cells. ATII cells produce and secrete pulmonary surfactant and restore the epithelium after damage, and mitochondrial function is important for their metabolism. Our data indicate that human ATII cell exposure to e-cigarette aerosol increased IL-8 levels and induced DNA damage and apoptosis. We also studied the cytoprotective effect of DJ-1 against ATII cell injury. DJ-1 knockdown in human primary ATII cells sensitized cells to mitochondrial dysfunction as detected by high mitochondrial superoxide production, decreased mitochondrial membrane potential, and calcium elevation. DJ-1 knockout (KO) mice were more susceptible to ATII cell apoptosis and lung injury induced by e-cigarette aerosol compared with wild-type mice. Regulation of the oxidative phosphorylation (OXPHOS) is important for mitochondrial function and protection against oxidative stress. Major subunits of the OXPHOS system are encoded by both nuclear and mitochondrial DNA. We found dysregulation of OXPHOS complexes in DJ-1 KO mice after exposure to e-cigarette aerosol, which could disrupt the nuclear/mitochondrial stoichiometry, resulting in mitochondrial dysfunction. Together, our results indicate that DJ-1 deficiency sensitizes ATII cells to damage induced by e-cigarette aerosol leading to lung injury.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Sistemas Electrónicos de Liberación de Nicotina , Interleucina-8/genética , Nicotina/farmacología , Proteína Desglicasa DJ-1/genética , Aerosoles , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Calcio/metabolismo , Daño del ADN , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Interleucina-8/metabolismo , Potencial de la Membrana Mitocondrial , Ratones , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Cultivo Primario de Células , Proteína Desglicasa DJ-1/deficiencia , Proteína Desglicasa DJ-1/metabolismo , Alveolos Pulmonares/citología , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/metabolismo , Superóxidos/metabolismo
5.
J Neurochem ; 151(1): 91-102, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31361029

RESUMEN

Glycogen synthase kinase-3ß (GSK3ß) is a critical regulator of the balance between long-term depression and long-term potentiation which is essential for learning and memory. Our previous study demonstrated that GSK3ß activity is highly induced during cocaine memory reactivation, and that reconsolidation of cocaine reward memory is attenuated by inhibition of GSK3ß. NMDA receptors and protein phosphatase 1 (PP1) are activators of GSK3ß. Thus, this study investigated the roles of NMDA receptor subtypes and PP1in the reconsolidation of cocaine contextual reward memory. Cocaine contextual memories were established and evaluated using cocaine conditioned place preference methods. The regulation of GSK3ß activity in specific brain areas was assessed by measuring its phosphorylation state using immunoblot assays. Mice underwent cocaine place conditioning for 8 days and were tested for place preference on day 9. Twenty-four hours later, mice were briefly confined to the compartment previous paired with cocaine to reactivate cocaine-associated memories. Administration of the GluN2A- and GluN2B-NMDA receptor antagonists, NVP-AAM077 and ifenprodil, respectively, immediately following recall abrogated an established cocaine place preference, while preventing the activation of GSK3ß in the amygdala, nucleus accumbens, and hippocampus during cocaine memory reactivation. PP1 inhibition with okadaic acid also blocked the activation of GSK3ß and attenuated a previously established cocaine place preference. These findings suggest that the dephosphorylation of GSK3ß that occurred upon activation of cocaine-associated reward memories may be initiated by the activation of PP1 during the induction of NMDA receptor-dependent reconsolidation of cocaine mnemonic traces. Moreover, the importance of NMDA receptors and PP1 in reconsolidation of cocaine memory makes them potential therapeutic targets in treatment of cocaine use disorder and prevention of relapse.


Asunto(s)
Comportamiento de Búsqueda de Drogas/fisiología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Consolidación de la Memoria/fisiología , Recuerdo Mental/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Masculino , Ratones , Proteína Fosfatasa 1/metabolismo , Recompensa , Transducción de Señal/fisiología
6.
J Pharmacol Exp Ther ; 371(2): 339-347, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31420527

RESUMEN

Previous research has demonstrated that activity of glycogen synthase kinase-3 (GSK3) is necessary for the rewarding effects of cocaine. In the present study, a conditional GSK3ß gene knockdown model was used to determine if GSK3ß activity specifically in the nucleus accumbens is important for cocaine conditioned reward. The roles of accumbal GSK3ß in morphine conditioned reward, trans-(±)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide methanesulfonate salt (U50,488H)-induced conditioned place aversion, and cognitive function were also studied. Adult male and female GSK3ß-floxed or wild-type mice were injected with adeno-associated virus/Cre into the nucleus accumbens to reduce expression of GSK3ß and underwent behavioral testing 4 weeks later. The development of cocaine-induced conditioned place preference was significantly attenuated in mice with reduced levels of GSK3ß in the nucleus accumbens, whereas the development of morphine-induced place preference remained intact. Conditional knockdown of GSK3ß in the accumbens prevented the development of conditioned aversion produced by U50,488H, a κ-opioid receptor agonist. Cognitive memory tests revealed deficits in object location memory, but not novel object recognition in mice with accumbal GSK3ß knockdown. These data demonstrate that GSK3ß in the nucleus accumbens is required for cocaine conditioned place preference and U50,488H conditioned place aversion, as well as spatial memory in object location task, indicating differential roles of GSK3ß in the psychostimulant and opiate reward process, as well as in memory for spatial locations and object identity. SIGNIFICANCE STATEMENT: Knockdown of GSK3ß in the nucleus accumbens attenuated the development of cocaine-induced place preference, as well as conditioned place aversion to U50,488H, a κ-opioid receptor agonist. In contrast, the development of morphine place preference was not altered by GSK3ß knockdown. GSK3ß knockdown in nucleus accumbens impaired performance in the object location task, but not the novel object recognition task. These results elucidate different physiological roles of accumbal GSKß in conditioned reward, aversion, and memory.


Asunto(s)
3,4-Dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclohexil)-bencenacetamida, (trans)-Isómero/farmacología , Cocaína/farmacología , Condicionamiento Psicológico/fisiología , Glucógeno Sintasa Quinasa 3 beta/deficiencia , Memoria/fisiología , Morfina/farmacología , Núcleo Accumbens/metabolismo , Analgésicos no Narcóticos/farmacología , Animales , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Condicionamiento Psicológico/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/genética , Memoria/efectos de los fármacos , Ratones , Ratones Transgénicos , Núcleo Accumbens/efectos de los fármacos , Distribución Aleatoria
7.
Behav Pharmacol ; 30(6): 529-533, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31386639

RESUMEN

Environmental cues can elicit robust cocaine reward memories, contributing to relapse to cocaine abuse. Memories can be manipulated pharmacologically by interfering with reconsolidation after reactivation. Clonidine, an α2 noradrenergic receptor agonist, was tested for its ability to block reconsolidation of cocaine environmental-paired memory. Male Sprague-Dawley rats completed an 8-day cocaine place conditioning procedure to establish a cocaine place preference. Cocaine memory was reactivated by exposure to the cocaine-paired environment in a drug-free state, followed immediately by administration of clonidine (10 or 50 µg/kg) or vehicle. Cocaine place preference was retested 24 h and 1 week later. Clonidine significantly attenuated the previously established cocaine place preference when tested 1 or 7 days later. To investigate the generalizability of this effect to other drug classes, morphine conditioned place preference was tested. Clonidine administration after morphine memory reactivation did not significantly alter the expression of morphine place preference. These results suggest that clonidine can interfere with reconsolidation of cocaine memory and may be a useful approach to reduce relapse.


Asunto(s)
Clonidina/farmacología , Consolidación de la Memoria/efectos de los fármacos , Memoria/efectos de los fármacos , Agonistas Adrenérgicos , Agonistas de Receptores Adrenérgicos alfa 2/metabolismo , Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Animales , Clonidina/metabolismo , Cocaína/farmacología , Trastornos Relacionados con Cocaína/fisiopatología , Condicionamiento Clásico/efectos de los fármacos , Señales (Psicología) , Masculino , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos alfa 2/metabolismo , Recompensa
9.
Brain Behav Immun ; 62: 30-34, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27575003

RESUMEN

Plasma levels of the chemokine CXCL12 are elevated in mice following acute cocaine exposure and decreased in human cocaine abusers during withdrawal. CXCL12 is also one of the few chemokines located in the brain and can modulate dopamine transmission through activation of its receptor CXCR4. To assess a role for the CXCL12/CXCR4 system in behavioral effects of cocaine, we tested the hypothesis that AMD 3100 (Plerixafor), a CXCR4 antagonist, would inhibit conditioned place preference (CPP) and locomotor activation produced by cocaine. Rats injected with cocaine (10mg/kg) displayed CPP relative to saline-injected controls following 4 conditioning sessions. AMD 3100 (1, 2.5, 5mg/kg) administered prior to cocaine conditioning reduced development of cocaine CPP. AMD 3100 (5mg/kg) also inhibited expression of cocaine-induced CPP in a paradigm in which it was injected once (following cocaine conditioning and just prior to CPP testing). In addition, AMD 3100 (5, 10mg/kg) pretreatment reduced locomotor activation produced by an acute cocaine injection (15mg/kg) but did not affect basal locomotor activity relative to saline-injected controls. Repeated cocaine exposure produced a significant increase (1.49-fold) in CXCL12 mRNA expression in the ventral tegmental area (VTA). Our results suggest that the CXCL12/CXCR4 system in the brain reward circuit is impacted by cocaine exposure and influences behavioral effects related to the abuse liability of cocaine.


Asunto(s)
Cocaína/farmacología , Condicionamiento Operante/efectos de los fármacos , Inhibidores de Captación de Dopamina/farmacología , Compuestos Heterocíclicos/farmacología , Actividad Motora/efectos de los fármacos , Receptores CXCR4/antagonistas & inhibidores , Animales , Aprendizaje por Asociación/efectos de los fármacos , Bencilaminas , Ciclamas , Masculino , Ratas , Ratas Sprague-Dawley , Área Tegmental Ventral/efectos de los fármacos
10.
Biochem J ; 473(1): 1-5, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26467159

RESUMEN

Sigma-1 receptor (Sig-1R) is an intracellular chaperone protein with many ligands, located at the endoplasmic reticulum (ER). Binding of cocaine to Sig-1R has previously been found to modulate endothelial functions. In the present study, we show that cocaine dramatically inhibits store-operated Ca(2+) entry (SOCE), a Ca(2+) influx mechanism promoted by depletion of intracellular Ca(2+) stores, in rat brain microvascular endothelial cells (RBMVEC). Using either Sig-1R shRNA or pharmacological inhibition with the unrelated Sig-1R antagonists BD-1063 and NE-100, we show that cocaine-induced SOCE inhibition is dependent on Sig-1R. In addition to revealing new insight into fundamental mechanisms of cocaine-induced changes in endothelial function, these studies indicate an unprecedented role for Sig-1R as a SOCE inhibitor.


Asunto(s)
Calcio/metabolismo , Cocaína/farmacología , Células Endoteliales/metabolismo , Microvasos/metabolismo , Receptores sigma/fisiología , Animales , Canales de Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Microvasos/efectos de los fármacos , Ratas , Receptores sigma/agonistas , Receptor Sigma-1
11.
Eur J Neurosci ; 44(10): 2818-2828, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27623427

RESUMEN

Nicotine dependence is associated with increased risk for emotional, cognitive and neurological impairments later in life. This study investigated the long-term effects of nicotine exposure during adolescence and adulthood on measures of depression, anxiety, learning and hippocampal pyramidal cell morphology. Mice (C57BL/6J) received saline or nicotine for 12 days via pumps implanted on postnatal day 32 (adolescent) or 54 (adults). Thirty days after cessation of nicotine/saline, mice were tested for learning using contextual fear conditioning, depression-like behaviors using the forced swim test or anxiety-like behaviors with the elevated plus maze. Brains from nicotine- or saline-exposed mice were processed with Golgi stain for whole neuron reconstruction in the CA1 and CA3 regions of the hippocampus. Results demonstrate higher depression-like responses in both adolescent and adult mice when tested during acute nicotine withdrawal. Heightened depression-like behaviors persisted when tested after 30 days of nicotine abstinence in mice exposed as adolescents, but not adults. Adult, but not adolescent, exposure to nicotine resulted in increased open-arm time when tested after 30 days of abstinence. Nicotine exposure during adolescence caused deficits in contextual fear learning indicated by lower levels of freezing to the context as compared with controls when tested 30 days later. In addition, reduced dendritic length and complexity in the apical CA1 branches in adult mice exposed to nicotine during adolescence were found. These results demonstrate that nicotine exposure and withdrawal can have long-term effects on emotional and cognitive functioning, particularly when nicotine exposure occurs during the critical period of adolescence.


Asunto(s)
Cognición/efectos de los fármacos , Depresión/etiología , Emociones/efectos de los fármacos , Hipocampo/efectos de los fármacos , Nicotina/toxicidad , Agonistas Nicotínicos/toxicidad , Animales , Condicionamiento Clásico , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Ratones , Ratones Endogámicos C57BL , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Células Piramidales/citología , Células Piramidales/efectos de los fármacos
12.
Hippocampus ; 25(3): 354-62, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25294309

RESUMEN

Intense craving for drug and relapse are observed in addicts who are exposed to environmental stimuli associated with drug-taking behavior even after long periods of abstinence. The hippocampus is a brain region known to be involved in contextual processing, taking place predominantly in the septal hippocampus, and emotional processing, taking place predominantly in the temporal hippocampus. Conditioned place preference is an animal model of context-conditioned reward. The dentate gyrus is a hippocampal sub-region particularly important for the acquisition of cocaine-induced place preference and is a site of continuous neurogenesis, which has been implicated in the vulnerability to drug-taking behavior. Therefore, these experiments explored the role of newly generated neurons in drug reward-context association by examining the activation, as determined by expression of the immediate early gene cfos, of young and mature granule cells in the septal and temporal dentate gyrus of adult rats that were re-exposed to a drug-paired environment following the development of cocaine place preference. The overall level of cfos expression was increased in both the septal and temporal dentate gyrus of animals that developed place preference and were re-exposed to the drug paired environment compared with re-exposure to a neutral environment. Overall level of neurogenesis, as detected by the S-phase marker 5'-bromo-2'-deoxyuridine (BrdU) and the immature neuron marker doublecortin (DCX), was unaltered by cocaine conditioning. However, the number of activated new neurons (DCX + cfos) was greater in the temporal dentate gyrus of cocaine-conditioned rats re-exposed to the drug-paired environment as compared to those re-exposed to a neutral environment. Further understanding of the role of dentate gyrus neurogenesis on the conditioned effects of drugs of abuse may provide new insights into the role of this process in the expression of addictive behaviors.


Asunto(s)
Cocaína/farmacología , Condicionamiento Operante/efectos de los fármacos , Giro Dentado/citología , Inhibidores de Captación de Dopamina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Neuronas/efectos de los fármacos , Análisis de Varianza , Animales , Bromodesoxiuridina , Giro Dentado/efectos de los fármacos , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Masculino , Proteínas Asociadas a Microtúbulos , Neurogénesis/efectos de los fármacos , Neuropéptidos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Sprague-Dawley , Recompensa
13.
J Neurochem ; 130(4): 583-90, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24832868

RESUMEN

Dopaminergic neurotransmission in the nucleus accumbens is important for various reward-related cognitive processes including reinforcement learning. Repeated cocaine enhances hippocampal synaptic plasticity, and phasic elevations of accumbal dopamine evoked by unconditioned stimuli are dependent on impulse flow from the ventral hippocampus. Therefore, sensitized hippocampal activity may be one mechanism by which drugs of abuse enhance limbic dopaminergic activity. In this study, in vivo microdialysis in freely moving adult male Sprague-Dawley rats was used to investigate the effect of repeated cocaine on ventral hippocampus-mediated dopaminergic transmission within the medial shell of the nucleus accumbens. Following seven daily injections of saline or cocaine (20 mg/kg, ip), unilateral infusion of N-methyl-d-aspartate (NMDA, 0.5 µg) into the ventral hippocampus transiently increased both motoric activity and ipsilateral dopamine efflux in the medial shell of the nucleus accumbens, and this effect was greater in rats that received repeated cocaine compared to controls that received repeated saline. In addition, repeated cocaine altered NMDA receptor subunit expression in the ventral hippocampus, reducing the NR2A : NR2B subunit ratio. Together, these results suggest that repeated exposure to cocaine produces maladaptive ventral hippocampal-nucleus accumbens communication, in part through changes in glutamate receptor composition. A behaviorally sensitizing regimen of cocaine (20 mg/kg, ip 7 days) also sensitized ventral hippocampus (hipp)-mediated dopaminergic transmission within the nucleus accumbens (Nac) to NMDA stimulation (bolts). This was associated with reduced ventral hippocampal NR2A:NR2B subunit ratio, suggesting that repeated exposure to cocaine produces changes in hippocampal NMDA receptor composition that lead to enhanced ventral hippocampus-nucleus accumbens communication.


Asunto(s)
Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Dopamina/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Receptores de N-Metil-D-Aspartato/biosíntesis , Animales , Western Blotting , Cateterismo , Cromatografía Líquida de Alta Presión , Espacio Extracelular/metabolismo , Masculino , Microdiálisis , Actividad Motora/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/efectos de los fármacos
14.
J Psychopharmacol ; 38(2): 188-199, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38293836

RESUMEN

BACKGROUND: The serotonin (5-hydroxytryptamine (5-HT))-mediated system plays an important role in stress-related psychiatric disorders and substance abuse. Our previous studies showed that stress and drug exposure can modulate the dorsal raphe nucleus (DRN)-5-HT system via γ-aminobutyric acid (GABA)A receptors. Moreover, GABAA receptor-mediated inhibition of serotonergic DRN neurons is required for stress-induced reinstatement of opioid seeking. AIM/METHODS: To further test the role of GABAA receptors in the 5-HT system in stress and opioid-sensitive behaviors, our current study generated mice with conditional genetic deletions of the GABAA α1 subunit to manipulate GABAA receptors in either the DRN or the entire population of 5-HT neurons. The GABAA α1 subunit is a constituent of the most abundant GABAA subtype in the brain and the most highly expressed subunit in 5-HT DRN neurons. RESULTS: Our results showed that mice with DRN-specific knockout of α1-GABAA receptors exhibited a normal phenotype in tests of anxiety- and depression-like behaviors as well as swim stress-induced reinstatement of morphine-conditioned place preference. By contrast, mice with 5-HT neuron-specific knockout of α1-GABAA receptors exhibited an anxiolytic phenotype at baseline and increased sensitivity to post-morphine withdrawal-induced anxiety. CONCLUSIONS: Our data suggest that GABAA receptors on 5-HT neurons contribute to anxiety-like behaviors and sensitivity of those behaviors to opioid withdrawal.


Asunto(s)
Analgésicos Opioides , Núcleo Dorsal del Rafe , Humanos , Ratas , Ratones , Animales , Serotonina/fisiología , Depresión/tratamiento farmacológico , Ratas Sprague-Dawley , Ácido gamma-Aminobutírico , Neuronas Serotoninérgicas , Morfina/farmacología , Ansiedad
15.
bioRxiv ; 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38076811

RESUMEN

Drug craving triggered by cues that were once associated with drug intoxication is a major contributor to continued drug-seeking behaviors. Addictive drugs engage molecular pathways of associative learning and memory. Reactivated memories are vulnerable to disruption by interference with the process of reconsolidation, hence targeting reconsolidation could be a strategy to reduce cue-induced drug craving and relapse. Here we examined the circuitry of cocaine contextual memory reconsolidation and explored neuroplasticity following memory reactivation. Mice underwent chemogenetic inhibition of either nucleus accumbens (NA) neurons or the glutamatergic projection neurons from the ventral hippocampus (vHPC) to NA using inhibitory designer receptors exclusively activated by designer drugs (iDREADD). Mice underwent cocaine conditioned place preference followed by reactivation of the cocaine contextual memory. Clozapine-N-oxide (CNO) was administered after memory reactivation to inhibit either NA neurons or the accumbens-projecting vHPC neurons during the reconsolidation period. When retested 3 days later, a significant reduction in the previously established preference for the cocaine context was found in both conditions. FosTRAP2-Ai14 mice were used to identify neurons activated by cocaine memory recall and to evaluate plasticity in NA medium spiny neurons (MSNs) and vHPC pyramidal neurons upon recall of cocaine memories. Results indicate a significant increase in dendritic spine density in NA MSNs activated by cocaine memory recall, particularly of the thin spine type. Sholl analysis indicated longer dendritic length and more branching of NA MSNs after cocaine memory recall than without memory reactivation. vHPC neurons showed increased spine density, with the most robust change in stubby spines. These results implicate a circuit involving glutamatergic projections from the vHPC onto NA neurons which is necessary for the reconsolidation of cocaine memories. Interruption of cocaine memory reconsolidation reduced drug-seeking behavior.

16.
J Pharmacol Exp Ther ; 343(2): 413-25, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22895898

RESUMEN

Despite a wealth of information on cocaine-like compounds, there is no information on cocaine analogs with substitutions at C-1. Here, we report on (R)-(-)-cocaine analogs with various C-1 substituents: methyl (2), ethyl (3), n-propyl (4), n-pentyl (5), and phenyl (6). Analog 2 was equipotent to cocaine as an inhibitor of the dopamine transporter (DAT), whereas 3 and 6 were 3- and 10-fold more potent, respectively. None of the analogs, however, stimulated mouse locomotor activity, in contrast to cocaine. Pharmacokinetic assays showed compound 2 occupied mouse brain rapidly, as cocaine itself; moreover, 2 and 6 were behaviorally active in mice in the forced-swim test model of depression and the conditioned place preference test. Analog 2 was a weaker inhibitor of voltage-dependent Na+ channels than cocaine, although 6 was more potent than cocaine, highlighting the need to assay future C-1 analogs for this activity. Receptorome screening indicated few significant binding targets other than the monoamine transporters. Benztropine-like "atypical" DAT inhibitors are known to display reduced cocaine-like locomotor stimulation, presumably by their propensity to interact with an inward-facing transporter conformation. However, 2 and 6, like cocaine, but unlike benztropine, exhibited preferential interaction with an outward-facing conformation upon docking in our DAT homology model. In summary, C-1 cocaine analogs are not cocaine-like in that they are not stimulatory in vivo. However, they are not benztropine-like in binding mechanism and seem to interact with the DAT similarly to cocaine. The present data warrant further consideration of these novel cocaine analogs for antidepressant or cocaine substitution potential.


Asunto(s)
Benzotropina/farmacología , Cocaína/análogos & derivados , Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Condicionamiento Operante/efectos de los fármacos , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Femenino , Indicadores y Reactivos , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Neocórtex/citología , Neocórtex/efectos de los fármacos , Neocórtex/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo , Embarazo , Unión Proteica , Conformación Proteica , Ensayo de Unión Radioligante , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Sodio/metabolismo , Canales de Sodio/metabolismo , Relación Estructura-Actividad , Natación/psicología , Veratridina/farmacología
17.
J Psychopharmacol ; 36(1): 20-30, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34519567

RESUMEN

BACKGROUND: Classical psychedelics are a group of drugs which act as agonists on the serotonin-2A (5-HT2A) receptor. Evidence suggests they may have a uniquely rapid and enduring positive effect on mood. However, marked heterogeneity between methodological designs in this emerging field remains a significant concern. AIMS: To determine how differences in the type of psychedelic agent used and the number of dosing sessions administered affect subjects' depression and anxiety outcomes and adverse drug reactions (ADR). METHODS: This review collected and screened 1591 records from the MEDLINE and Web of Science databases for clinical trials reporting objective data on mood for subjects with a known anxiety or depression. RESULTS: After screening, nine clinical trials met inclusion criteria. Meta-analysis of these studies showed significant, large positive effect sizes for measures of anxiety (Cohen's d = 1.26) and depression (Cohen's d = 1.38) overall. These positive effects were also significant at acute (⩽1 week) and extended (>1 week) time points. No significant differences were observed between trials using different psychedelic agents (psilocybin, ayahuasca or lysergic acid diethylamide (LSD)), however, a significant difference was observed in favour of trials with multiple dosing sessions. No serious ADR were reported. CONCLUSION: Psilocybin, ayahuasca and LSD all appear to be effective and relatively safe agents capable of producing rapid and sustained improvements in anxiety and depression. Moreover, the findings of the present analysis suggest that they may show a greater efficacy when given to patients over multiple sessions as compared to the more common single session used in many of the existing trials.


Asunto(s)
Trastornos de Ansiedad/tratamiento farmacológico , Trastorno Depresivo/tratamiento farmacológico , Alucinógenos/farmacología , Afecto/efectos de los fármacos , Banisteriopsis/química , Alucinógenos/efectos adversos , Humanos , Dietilamida del Ácido Lisérgico/efectos adversos , Dietilamida del Ácido Lisérgico/farmacología , Psilocibina/efectos adversos , Psilocibina/farmacología
18.
Front Pharmacol ; 13: 976932, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36238569

RESUMEN

Mechanistic target of rapamycin (mTOR) C1 and its downstream effectors have been implicated in synaptic plasticity and memory. Our prior work demonstrated that reactivation of cocaine memory engages a signaling pathway consisting of Akt, glycogen synthase kinase-3ß (GSK3ß), and mTORC1. The present study sought to identify other components of mTORC1 signaling involved in the reconsolidation of cocaine contextual memory, including eukaryotic translation initiation factor 4E (eIF4E)-eIF4G interactions, p70 S6 kinase polypeptide 1 (p70S6K, S6K1) activity, and activity-regulated cytoskeleton (Arc) expression. Cocaine contextual memory was established in adult CD-1 mice using conditioned place preference. After cocaine place preference was established, mice were briefly re-exposed to the cocaine-paired context to reactivate the cocaine memory and brains examined. Western blot analysis showed that phosphorylation of the mTORC1 target, p70S6K, in nucleus accumbens and hippocampus was enhanced 60 min following reactivation of cocaine memories. Inhibition of mTORC1 with systemic administration of rapamycin or inhibition of p70S6K with systemic PF-4708671 after reactivation of cocaine contextual memory abolished the established cocaine place preference. Immunoprecipitation assays showed that reactivation of cocaine memory did not affect eIF4E-eIF4G interactions in nucleus accumbens or hippocampus. Levels of Arc mRNA were significantly elevated 60 and 120 min after cocaine memory reactivation and returned to baseline 24 h later. These findings demonstrate that mTORC1 and p70S6K are required for reconsolidation of cocaine contextual memory.

19.
Brain Behav Immun ; 25 Suppl 1: S61-70, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21397004

RESUMEN

Clinical studies indicate that alcohol dependence has an additive effect on cognitive deficits associated with HIV-1 infection. Findings in humans and animal models suggest that alcohol, similar to HIV-1, induces inflammatory processes in the brain leading to neurodegeneration. The causes of HIV-1-associated neurotoxicity are comparable to those mediating alcohol-induced neuronal injury. This review aims to present the mechanisms of the combined effects of HIV-1 and alcohol abuse in the brain and to discuss neuroprotective therapies. Oxidative stress, overproduction of pro-inflammatory factors, impairment of blood-brain barrier and glutamate associated neurotoxicity appear to play important roles in alcohol driven neurodegeneration. Diminution of neuroinflammation constitutes a logical approach for prevention of HIV-1 and alcohol mediated neurodegeneration. Agonists of cannabinoid receptor 2 (CB2) possess potent anti-inflammatory and neuroprotective properties. We address multifaceted beneficial effects of CB2 activation in the setting of HIV-1 brain infection and alcohol abuse.


Asunto(s)
Alcoholismo/complicaciones , Encéfalo/patología , Infecciones por VIH/complicaciones , Degeneración Nerviosa/complicaciones , Alcoholismo/patología , Cognición , Infecciones por VIH/patología , Humanos , Degeneración Nerviosa/patología
20.
Amino Acids ; 40(2): 761-4, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20383795

RESUMEN

We investigated the short- and long-term effects of ceftriaxone on glutamate transporter subtype 1 (GLT-1) transporter activity and extracellular glutamate in the rat nucleus accumbens. Repeated ceftriaxone administration (50, 100 or 200 mg/kg, i.p.) produced a dose-dependent reduction in glutamate levels that persisted for 20 days following discontinuation of drug exposure. The ceftriaxone effect was prevented by the GLT-1 transporter inhibitor dihydrokainate (1 µM, intra-accumbal). These results suggest that ß-lactam antibiotics produce an enduring reduction in glutamatergic transmission in the brain reward center.


Asunto(s)
Antibacterianos/farmacología , Ceftriaxona/farmacología , Regulación hacia Abajo/efectos de los fármacos , Espacio Extracelular/metabolismo , Ácido Glutámico/metabolismo , Lactamas/farmacología , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Animales , Transportador 2 de Aminoácidos Excitadores/metabolismo , Espacio Extracelular/efectos de los fármacos , Masculino , Ratas , Ratas Sprague-Dawley , Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA