Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(2): 102846, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36586436

RESUMEN

Escherichia coli K-12 possesses two versions of Trk/Ktr/HKT-type potassium ion (K+) transporters, TrkG and TrkH. The current paradigm is that TrkG and TrkH have largely identical characteristics, and little information is available regarding their functional differences. Here, we show using cation uptake experiments with K+ transporter knockout mutants that TrkG and TrkH have distinct ion transport activities and physiological roles. K+-transport by TrkG required Na+, whereas TrkH-mediated K+ uptake was not affected by Na+. An aspartic acid located five residues away from a critical glycine in the third pore-forming region might be involved in regulation of Na+-dependent activation of TrkG. In addition, we found that TrkG but not TrkH had Na+ uptake activity. Our analysis of K+ transport mutants revealed that TrkH supported cell growth more than TrkG; however, TrkG was able to complement loss of TrkH-mediated K+ uptake in E. coli. Furthermore, we determined that transcription of trkG in E. coli was downregulated but not completely silenced by the xenogeneic silencing factor H-NS (histone-like nucleoid structuring protein or heat-stable nucleoid-structuring protein). Taken together, the transport function of TrkG is clearly distinct from that of TrkH, and TrkG seems to have been accepted by E. coli during evolution as a K+ uptake system that coexists with TrkH.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Escherichia coli K12 , Proteínas de Escherichia coli , Canales de Potasio , Transportadoras de Casetes de Unión a ATP/metabolismo , Transporte Biológico , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Potasio/metabolismo , Canales de Potasio/metabolismo
2.
Plant Mol Biol ; 114(2): 35, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587705

RESUMEN

Fixing atmospheric nitrogen for use as fertilizer is a crucial process in promoting plant growth and enhancing crop yields in agricultural production. Currently, the chemical production of nitrogen fertilizer from atmospheric N2 relies on the energy-intensive Haber-Bosch process. Therefore, developing a low-cost and easily applicable method for fixing nitrogen from the air would provide a beneficial alternative. In this study, we tested the utilization of dinitrogen pentoxide (N2O5) gas, generated from oxygen and nitrogen present in ambient air with the help of a portable plasma device, as a nitrogen source for the model plant Arabidopsis thaliana. Nitrogen-deficient plants supplied with medium treated with N2O5, were able to overcome nitrogen deficiency, similar to those provided with medium containing a conventional nitrogen source. However, prolonged direct exposure of plants to N2O5 gas adversely affected their growth. Short-time exposure of plants to N2O5 gas mitigated its toxicity and was able to support growth. Moreover, when the exposure of N2O5 and the contact with plants were physically separated, plants cultured under nitrogen deficiency were able to grow. This study shows that N2O5 gas generated from atmospheric nitrogen can be used as an effective nutrient for plants, indicating its potential to serve as an alternative nitrogen fertilization method for promoting plant growth.


Asunto(s)
Arabidopsis , Gases , Nitrógeno , Fertilizantes , Oxígeno , Agricultura
3.
Mol Microbiol ; 119(5): 599-611, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36929159

RESUMEN

Phototrophic bacteria face diurnal variations of environmental conditions such as light and osmolarity that affect their carbon metabolism and ability to generate organic compounds. The model cyanobacterium, Synechocystis sp. PCC 6803 forms a biofilm when it encounters extreme conditions like high salt stress, but the molecular mechanisms involved in perception of environmental changes that lead to biofilm formation are unknown. Here, we studied two two-component regulatory systems (TCSs) that contain diguanylate cyclases (DGCs), which produce the second messenger c-di-GMP, as potential components of the biofilm-inducing signaling pathway in Synechocystis. Analysis of single mutants provided evidence for involvement of the response regulators, Rre2 and Rre8 in biofilm formation. A bacterial two-hybrid assay showed that Rre2 and Rre8 each formed a TCS with a specific histidine kinase, Hik12 and Hik14, respectively. The in vitro assay showed that Rre2 had DGC activity regardless of its de/phosphorylation status, whereas Rre8 required phosphorylation for DGC activity. Hik14-Rre8 likely functioned as an inducible sensing system in response to environmental change. Biofilm assays with Synechocystis mutants suggested that pairs of hik12-rre2 and hik14-rre8 responded to high salinity-induced biofilm formation. Inactivation of hik12-rre2 and hik14-rre8 did not affect the performance of the light reactions of photosynthesis. These data suggest that Hik12-Rre2 and Hik14-Rre8 participate in biofilm formation in Synechocystis by regulating c-di-GMP production via the DGC activity of Rre2 and Rre8.


Asunto(s)
Proteínas de Escherichia coli , Synechocystis , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo , Biopelículas , Synechocystis/genética , Synechocystis/metabolismo , GMP Cíclico/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
4.
Plant J ; 107(6): 1616-1630, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34216173

RESUMEN

Glutamine is a product of ammonium (NH4+ ) assimilation catalyzed by glutamine synthetase (GS) and glutamate synthase (GOGAT). The growth of NH4+ -preferring paddy rice (Oryza sativa L.) depends on root NH4+ assimilation and the subsequent root-to-shoot allocation of glutamine; however, little is known about the mechanism of glutamine storage in roots. Here, using transcriptome and reverse genetics analyses, we show that the rice amino acid transporter-like 6 (OsATL6) protein exports glutamine to the root vacuoles under NH4+ -replete conditions. OsATL6 was expressed, along with OsGS1;2 and OsNADH-GOGAT1, in wild-type (WT) roots fed with sufficient NH4 Cl, and was induced by glutamine treatment. We generated two independent Tos17 retrotransposon insertion mutants showing reduced OsATL6 expression to determine the function of OsATL6. Compared with segregants lacking the Tos17 insertion, the OsATL6 knock-down mutant seedlings exhibited lower root glutamine content but higher glutamine concentration in the xylem sap and greater shoot growth under NH4+ -replete conditions. The transient expression of monomeric red fluorescent protein-fused OsATL6 in onion epidermal cells confirmed the tonoplast localization of OsATL6. When OsATL6 was expressed in Xenopus laevis oocytes, glutamine efflux from the cell into the acidic bath solution increased. Under sufficient NH4+ supply, OsATL6 transiently accumulated in sclerenchyma and pericycle cells, which are located adjacent to the Casparian strip, thus obstructing the apoplastic solute path, and in vascular parenchyma cells of WT roots before the peak accumulation of GS1;2 and NADH-GOGAT1 occurred. These findings suggest that OsATL6 temporarily stores excess glutamine, produced by NH4+ assimilation, in root vacuoles before it can be translocated to the shoot.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Glutamina/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Amoníaco/metabolismo , Cloruro de Amonio/farmacología , Animales , Femenino , Regulación de la Expresión Génica de las Plantas , Homeostasis , Mutación , Cebollas/citología , Cebollas/genética , Oocitos/metabolismo , Oryza/efectos de los fármacos , Oryza/genética , Oryza/crecimiento & desarrollo , Proteínas de Plantas/genética , Raíces de Plantas/citología , Raíces de Plantas/efectos de los fármacos , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente , Vacuolas/metabolismo , Xenopus laevis
5.
Biochem J ; 478(1): 41-59, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33196080

RESUMEN

Flocculation has been recognized for hundreds of years as an important phenomenon in brewing and wastewater treatment. However, the underlying molecular mechanisms remain elusive. The lack of a distinct phenotype to differentiate between slow-growing mutants and floc-forming mutants prevents the isolation of floc-related gene by conventional mutant screening. To overcome this, we performed a two-step Escherichia coli mutant screen. The initial screen of E. coli for mutants conferring floc production during high salt treatment yielded a mutant containing point mutations in 61 genes. The following screen of the corresponding single-gene mutants identified two genes, mrcB, encoding a peptidoglycan-synthesizing enzyme and cpxA, encoding a histidine kinase of a two-component signal transduction system that contributed to salt tolerance and flocculation prevention. Both single mutants formed flocs during high salt shock, these flocs contained cytosolic proteins. ΔcpxA exhibited decreased growth with increasing floc production and addition of magnesium to ΔcpxA suppressed floc production effectively. In contrast, the growth of ΔmrcB was inconsistent under high salt conditions. In both strains, flocculation was accompanied by the release of membrane vesicles containing inner and outer membrane proteins. Of 25 histidine kinase mutants tested, ΔcpxA produced the highest amount of proteins in floc. Expression of cpxP was up-regulated by high salt in ΔcpxA, suggesting that high salinity and activation of CpxR might promote floc formation. The finding that ΔmrcB or ΔcpxA conferred floc production indicates that cell envelope stress triggered by unfavorable environmental conditions cause the initiation of flocculation in E. coli.


Asunto(s)
Membrana Celular/metabolismo , Pared Celular/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano Glicosiltransferasa/metabolismo , Proteínas Quinasas/metabolismo , Tolerancia a la Sal/genética , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo , Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Citosol/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Floculación , Proteínas de la Membrana/metabolismo , Proteínas de Unión a las Penicilinas/genética , Peptidoglicano Glicosiltransferasa/genética , Mutación Puntual , Proteínas Quinasas/genética , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/genética
6.
Microsc Microanal ; 27(2): 392-399, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33446296

RESUMEN

In this research, atomic force microscopy (AFM) with a flat tip cantilever is utilized to measure Young's modulus of a whole yeast cell (Saccharomyces cerevisiae BY4741). The results acquired from AFM are similar to those obtained using a microfluidic chip compression system. The mechanical properties of single yeast cells are important parameters which can be examined using AFM. Conventional studies apply AFM with a sharp cantilever tip to indent the cell and measure the force-indentation curve, from which Young's modulus can be calculated. However, sharp tips introduce problems because the shape variation can lead to a different result and cannot represent the stiffness of the whole cell. It can lead to a lack of broader meaning when evaluating Young's modulus of yeast cells. In this report, we confirm the differences in results obtained when measuring the compression of a poly(dimethylsiloxane) bead using a commercial sharp tip versus a unique flat tip. The flat tip effectively avoids tip-derived errors, so we use this method to compress whole yeast cells and generate a force­deformation curve. We believe our proposed method is effective for evaluating Young's modulus of whole yeast cells.


Asunto(s)
Microscopía de Fuerza Atómica , Saccharomyces cerevisiae , Recuento de Células , Módulo de Elasticidad
7.
J Biol Chem ; 294(33): 12281-12292, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31256002

RESUMEN

Mechanosensitive channels play an important role in the adaptation of cells to hypo-osmotic shock. Among members of this channel family in Escherichia coli, the exact function and physiological role of the mechanosensitive channel homolog YbdG remain unclear. Characterization of YbdG's physiological role has been hampered by its lack of measurable transport activity. Using a nitrosoguanidine mutagenesis-aided screen in combination with next-generation sequencing, here we isolated a mutant with a point mutation in ybdG This mutation (resulting in a I167T change) conferred sensitivity to high osmotic stress, and the mutant cells differed from WT cells in morphology during hyperosmotic stress at alkaline pH. Interestingly, unlike the cells containing the I167T variant, a null-ybdG mutant did not exhibit this sensitivity and phenotype. Although I167T was located near the putative ion-conducting pore in a transmembrane region of YbdG, no change in ion channel activities of YbdG-I167T was detected. Of note, introduction of the WT C-terminal cytosolic region of YbdG into the I167T variant complemented the osmo-sensitive phenotype. Co-precipitation of proteins interacting with the C-terminal YbdG region led to the isolation of HldD and FbaA, whose overexpression in cells containing the YbdG-I167T variant partially rescued the osmo-sensitive phenotype. This study indicates that YbdG functions as a component of a mechanosensing system that transmits signals triggered by external osmotic changes to intracellular factors. The cellular role of YbdG uncovered here goes beyond its predicted function as an ion or solute transport protein.


Asunto(s)
Adaptación Fisiológica , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Canales Iónicos/metabolismo , Mecanotransducción Celular , Presión Osmótica , Sustitución de Aminoácidos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Canales Iónicos/genética , Mutación Missense , Dominios Proteicos
8.
Microbiology (Reading) ; 166(7): 659-668, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32478657

RESUMEN

Bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) is a second messenger known to control a variety of bacterial processes. The model cyanobacterium, Synechocystis sp. PCC 6803, has a score of genes encoding putative enzymes for c-di-GMP synthesis and degradation. However, most of them have not been functionally characterized. Here, we chose four genes in Synechocystis (dgcA-dgcD), which encode proteins with a GGDEF, diguanylate cyclase (DGC) catalytic domain and multiple Per-ARNT-Sim (PAS) conserved regulatory motifs, for detailed analysis. Purified DgcA, DgcB and DgcC were able to catalyze synthesis of c-di-GMP from two GTPs in vitro. DgcA had the highest activity, compared with DgcB and DgcC. DgcD did not show detectable activity. DgcA activity was specific for GTP and stimulated by the divalent cations, magnesium or manganese. Full activity of DgcA required the presence of the multiple PAS domains, probably because of their role in protein dimerization or stability. Synechocystis mutants carrying single deletions of dgcA-dgcD were not affected in their growth rate or biofilm production during salt stress, suggesting that there was functional redundancy in vivo. In contrast, overexpression of dgcA resulted in increased biofilm formation in the absence of salt stress. In this study, we characterize the enzymatic and physiological function of DgcA-DgcD, and propose that the PAS domains in DgcA function in maintaining the enzyme in its active form.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas de Escherichia coli/genética , Liasas de Fósforo-Oxígeno/genética , Synechocystis/enzimología , Synechocystis/genética , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/aislamiento & purificación , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Mutación con Pérdida de Función , Liasas de Fósforo-Oxígeno/aislamiento & purificación , Liasas de Fósforo-Oxígeno/metabolismo , Dominios Proteicos/genética , Estrés Salino
9.
Int J Mol Sci ; 21(12)2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32604959

RESUMEN

Membrane intrinsic transport systems play an important role in maintaining ion and pH homeostasis and forming the proton motive force in the cytoplasm and cell organelles. In most organisms, cation/proton antiporters (CPAs) mediate the exchange of K+, Na+ and Ca2+ for H+ across the membrane in response to a variety of environmental stimuli. The tertiary structure of the ion selective filter and the regulatory domains of Escherichia coli CPAs have been determined and a molecular mechanism of cation exchange has been proposed. Due to symbiogenesis, CPAs localized in mitochondria and chloroplasts of eukaryotic cells resemble prokaryotic CPAs. CPAs primarily contribute to keeping cytoplasmic Na+ concentrations low and controlling pH, which promotes the detoxification of electrophiles and formation of proton motive force across the membrane. CPAs in cyanobacteria and chloroplasts are regulators of photosynthesis and are essential for adaptation to high light or osmotic stress. CPAs in organellar membranes and in the plasma membrane also participate in various intracellular signal transduction pathways. This review discusses recent advances in our understanding of the role of CPAs in cyanobacteria and plant cells.


Asunto(s)
Antiportadores/metabolismo , Bacterias/metabolismo , Cationes/metabolismo , Orgánulos/metabolismo , Células Vegetales/metabolismo , Protones , Transporte Biológico , Fotosíntesis , Fuerza Protón-Motriz
10.
Plant Cell Physiol ; 60(1): 63-76, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30219884

RESUMEN

Cesium (Cs+) is known to compete with the macronutrient potassium (K+) inside and outside of plants and to inhibit plant growth at high concentrations. However, the detailed molecular mechanisms of how Cs+ exerts its deleterious effects on K+ accumulation in plants are not fully elucidated. Here, we show that mutation in a member of the major K+ channel AKT1-KC1 complex renders Arabidopsis thaliana hypersensitive to Cs+. Higher severity of the phenotype and K+ loss were observed for these mutants in response to Cs+ than to K+ deficiency. Electrophysiological analysis demonstrated that Cs+, but not sodium, rubidium or ammonium, specifically inhibited K+ influx through the AKT1-KC1 complex. In contrast, Cs+ did not inhibit K+ efflux through the homomeric AKT1 channel that occurs in the absence of KC1, leading to a vast loss of K+. Our observation suggests that reduced K+ accumulation due to blockage/competition in AKT1 and other K+ transporters/channels by Cs+ plays a major role in plant growth retardation. This report describes the mechanical role of Cs+ in K+ accumulation, and in turn in plant performance, providing actual evidence at the plant level for what has long been believed, i.e. K+ channels are, therefore AKT1 is, 'blocked' by Cs+.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Cesio/farmacología , Desarrollo de la Planta/efectos de los fármacos , Potasio/metabolismo , Animales , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Cationes Monovalentes/farmacología , Fenómenos Electrofisiológicos/efectos de los fármacos , Modelos Biológicos , Mutación/genética , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Fenotipo , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/metabolismo , Xenopus
11.
Plant Cell Physiol ; 60(12): 2660-2671, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31665522

RESUMEN

Plants convert solar energy into chemical energy through photosynthesis, which supports almost all life activities on earth. Because the intensity and quality of sunlight can change dramatically throughout the day, various regulatory mechanisms help plants adjust their photosynthetic output accordingly, including the regulation of light energy accumulation to prevent the generation of damaging reactive oxygen species. Non-photochemical quenching (NPQ) is a regulatory mechanism that dissipates excess light energy, but how it is regulated is not fully elucidated. In this study, we report a new NPQ-regulatory protein named Day-Length-dependent Delayed-Greening1 (DLDG1). The Arabidopsis DLDG1 associates with the chloroplast envelope membrane, and the dldg1 mutant had a large NPQ value compared with wild type. The mutant also had a pale-green phenotype in developing leaves but only under continuous light; this phenotype was not observed when dldg1 was cultured in the dark for ≥8 h/d. DLDG1 is a homolog of the plasma membrane-localizing cyanobacterial proton-extrusion-protein A that is required for light-induced H+ extrusion and also shows similarity in its amino-acid sequence to that of Ycf10 encoded in the plastid genome. Arabidopsis DLDG1 enhances the growth-retardation phenotype of the Escherichia coli K+/H+ antiporter mutant, and the everted membrane vesicles of the E. coli expressing DLDG1 show the K+/H+ antiport activity. Our findings suggest that DLDG1 functionally interacts with Ycf10 to control H+ homeostasis in chloroplasts, which is important for the light-acclimation response, by optimizing the extent of NPQ.


Asunto(s)
Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Cianobacterias/metabolismo , Proteínas de Escherichia coli/metabolismo , Fotosíntesis/fisiología , Protones
12.
J Bacteriol ; 200(9)2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29440257

RESUMEN

The phototropic bacterium Synechocystis sp. strain PCC 6803 is able to adapt its morphology in order to survive in a wide range of harsh environments. Under conditions of high salinity, planktonic cells formed cell aggregates in culture. Further observations using crystal violet staining, confocal laser scanning microscopy, and field emission-scanning electron microscopy confirmed that these aggregates were Synechocystis biofilms. Polyamines have been implicated in playing a role in biofilm formation, and during salt stress the content of spermidine, the major polyamine in Synechocystis, was reduced. Two putative arginine decarboxylases, Adc1 and Adc2, in Synechocystis were heterologously expressed in Escherichia coli and purified. Adc2 had high arginine decarboxylase activity, whereas Adc1 was much less active. Disruption of the adc genes in Synechocystis resulted in decreased spermidine content and formation of biofilms even under nonstress conditions. Based on the characterization of the adc mutants, Adc2 was the major arginine decarboxylase whose activity led to inhibition of biofilm formation, and Adc1 contributed only minimally to the process of polyamine synthesis. Taken together, in Synechocystis the shift from planktonic lifestyle to biofilm formation was correlated with a decrease in intracellular polyamine content, which is the inverse relationship of what was previously reported in heterotroph bacteria.IMPORTANCE There are many reports concerning biofilm formation in heterotrophic bacteria. In contrast, studies on biofilm formation in cyanobacteria are scarce. Here, we report on the induction of biofilm formation by salt stress in the model phototrophic bacterium Synechocystis sp. strain PCC 6803. Two arginine decarboxylases (Adc1 and Adc2) possess function in the polyamine synthesis pathway. Inactivation of the adc1 and adc2 genes leads to biofilm formation even in the absence of salt. The shift from planktonic culture to biofilm formation is regulated by a decrease in spermidine content in Synechocystis This negative correlation between biofilm formation and polyamine content, which is the opposite of the relationship reported in other bacteria, is important not only in autotrophic but also in heterotrophic bacteria.


Asunto(s)
Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Carboxiliasas/genética , Espermidina/análisis , Synechocystis/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Silenciador del Gen , Synechocystis/enzimología
13.
Plant Cell Physiol ; 59(8): 1568-1580, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29635388

RESUMEN

Regulation of stomatal aperture is essential for plant growth and survival in response to environmental stimuli. Opening of stomata induces uptake of CO2 for photosynthesis and transpiration, which enhances uptake of nutrients from roots. Light is the most important stimulus for stomatal opening. Under drought stress, the plant hormone ABA induces stomatal closure to prevent water loss. However, the molecular mechanisms of stomatal movements are not fully understood. In this study, we screened chemical libraries to identify compounds that affect stomatal movements in Commelina benghalensis and characterize the underlying molecular mechanisms. We identified nine stomatal closing compounds (SCL1-SCL9) that suppress light-induced stomatal opening by >50%, and two compounds (temsirolimus and CP-100356) that induce stomatal opening in the dark. Further investigations revealed that SCL1 and SCL2 had no effect on autophosphorylation of phototropin or the activity of the inward-rectifying plasma membrane (PM) K+ channel, KAT1, but suppressed blue light-induced phosphorylation of the penultimate residue, threonine, in PM H+-ATPase, which is a key enzyme for stomatal opening. SCL1 and SCL2 had no effect on ABA-dependent responses, including seed germination and expression of ABA-induced genes. These results suggest that SCL1 and SCL2 suppress light-induced stomatal opening at least in part by inhibiting blue light-induced activation of PM H+-ATPase, but not by the ABA signaling pathway. Interestingly, spraying leaves onto dicot and monocot plants with SCL1 suppressed wilting of leaves, indicating that inhibition of stomatal opening by these compounds confers tolerance to drought stress in plants.


Asunto(s)
Commelina/metabolismo , Luz , Reguladores del Crecimiento de las Plantas/farmacología , Estomas de Plantas/efectos de los fármacos , Ácido Abscísico/farmacología , Commelina/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , ATPasas de Translocación de Protón/metabolismo , Transducción de Señal/efectos de los fármacos
14.
New Phytol ; 218(4): 1504-1521, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29498046

RESUMEN

N-myristoylation and S-acylation promote protein membrane association, allowing regulation of membrane proteins. However, how widespread this targeting mechanism is in plant signaling processes remains unknown. Through bioinformatics analyses, we determined that among plant protein kinase families, the occurrence of motifs indicative for dual lipidation by N-myristoylation and S-acylation is restricted to only five kinase families, including the Ca2+ -regulated CDPK-SnRK and CBL protein families. We demonstrated N-myristoylation of CDPK-SnRKs and CBLs by incorporation of radiolabeled myristic acid. We focused on CPK6 and CBL5 as model cases and examined the impact of dual lipidation on their function by fluorescence microscopy, electrophysiology and functional complementation of Arabidopsis mutants. We found that both lipid modifications were required for proper targeting of CBL5 and CPK6 to the plasma membrane. Moreover, we identified CBL5-CIPK11 complexes as phosphorylating and activating the guard cell anion channel SLAC1. SLAC1 activation by CPK6 or CBL5-CIPK11 was strictly dependent on dual lipid modification, and loss of CPK6 lipid modification prevented functional complementation of cpk3 cpk6 guard cell mutant phenotypes. Our findings establish the general importance of dual lipid modification for Ca2+ signaling processes, and demonstrate their requirement for guard cell anion channel regulation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Proteínas de Unión al Calcio/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Calcio/metabolismo , Canales Iónicos/metabolismo , Proteínas de la Membrana/metabolismo , Ácido Mirístico/metabolismo , Procesamiento Proteico-Postraduccional , Ácido Abscísico/farmacología , Acilación , Secuencias de Aminoácidos , Animales , Aniones , Arabidopsis/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Lípidos/química , Modelos Biológicos , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Estomas de Plantas/citología , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , Unión Proteica/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Nicotiana/enzimología , Xenopus
15.
Biochem J ; 474(12): 1993-2007, 2017 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-28432259

RESUMEN

ATP-binding cassette (ABC) transporters are ubiquitously present in prokaryotic and eukaryotic cells. Binding of ATP to the nucleotide-binding domains (NBDs) elicits major conformational changes of the transporters resulting in the transport of the substrate across the membrane. The availability of a crystal structure of the NBDs enabled us to elucidate the local structure and small-scale dynamics in the NBDs. Here, we labeled the ABC transporter MsbA, a homodimeric flippase from Escherichia coli, with a fluorescent probe, Alexa532, within the NBDs. ATP application elicited collisional quenching, whereas no quenching was observed after the addition of ATP analogs or ATP hydrolysis inhibitors. The Alexa532-conjugated MsbA variants exhibited transition metal ion Förster resonance energy transfer (tmFRET) after the addition of Ni2+, and ATP decreased this Ni2+-mediated FRET of the NBDs. Structure modeling developed from crystallographic data and examination of tmFRET measurements of MsbA variants in the absence of ATP revealed the presence of metal ion-associated pockets (MiAPs) in the NBDs. Three histidines were predicted to participate in chelating Ni2+ in the two possible MiAPs. Performing histidine-substitution experiments with the NBDs showed that the dissociation constant for Ni2+ of MiAP2 was smaller than that of MiAP1. The structural allocation of the MiAPs was further supported by showing that the addition of Cu2+ resulted in higher quenching than Ni2+ Taken together, the present study showed that the NBDs contain two native binding sites for metal ions and ATP addition affects the Ni2+-binding activity of the MiAPs.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Níquel/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Sustitución de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Cobre/metabolismo , Bases de Datos de Proteínas , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Histidina/química , Histidina/metabolismo , Cinética , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Mutagénesis Sitio-Dirigida , Mutación , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Homología Estructural de Proteína
16.
Biosci Biotechnol Biochem ; 81(2): 249-255, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27760496

RESUMEN

Jasmonates are major plant hormones involved in wounding responses. Systemic wounding responses are induced by an electrical signal derived from damaged leaves. After the signaling, jasmonic acid (JA) and jasmonoyl-l-isoleucine (JA-Ile) are translocated from wounded to undamaged leaves, but the molecular mechanism of the transport remains unclear. Here, we found that a JA-Ile transporter, GTR1, contributed to these translocations in Arabidopsis thaliana. GTR1 was expressed in and surrounding the leaf veins both of wounded and undamaged leaves. Less accumulations and translocation of JA and JA-Ile were observed in undamaged leaves of gtr1 at 30 min after wounding. Expressions of some genes related to wound responses were induced systemically in undamaged leaves of gtr1. These results suggested that GTR1 would be involved in the translocation of JA and JA-Ile in plant and may be contributed to correct positioning of JA and JA-Ile to attenuate an excessive wound response in undamaged leaves.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Isoleucina/análogos & derivados , Proteínas de Transporte de Monosacáridos/metabolismo , Oxilipinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Regulación de la Expresión Génica de las Plantas , Isoleucina/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Transporte de Proteínas
17.
Biochem J ; 473(23): 4361-4372, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27694387

RESUMEN

Voltage-dependent K+ (KV) channels control K+ permeability in response to shifts in the membrane potential. Voltage sensing in KV channels is mediated by the positively charged transmembrane domain S4. The best-characterized KV channel, KvAP, lacks the distinct hydrophilic region corresponding to the S3-S4 extracellular loop that is found in other K+ channels. In the present study, we evaluated the topogenic properties of the transmembrane regions within the voltage-sensing domain in KvAP. S3 had low membrane insertion activity, whereas S4 possessed a unique type-I signal anchor (SA-I) function, which enabled it to insert into the membrane by itself. S4 was also found to function as a stop-transfer signal for retention in the membrane. The length and structural nature of the extracellular S3-S4 loop affected the membrane insertion of S3 and S4, suggesting that S3 membrane insertion was dependent on S4. Replacement of charged residues within the transmembrane regions with residues of opposite charge revealed that Asp72 in S2 and Glu93 in S3 contributed to membrane insertion of S3 and S4, and increased the stability of S4 in the membrane. These results indicate that the SA-I function of S4, unique among K+ channels studied to date, promotes the insertion of S3 into the membrane, and that the charged residues essential for voltage sensing contribute to the membrane-insertion of the voltage sensor domain in KvAP.


Asunto(s)
Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/metabolismo , Animales , Perros , Modelos Biológicos , Plásmidos/genética , Canales de Potasio con Entrada de Voltaje/genética , Dominios Proteicos/genética , Dominios Proteicos/fisiología , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , Conejos
18.
J Biol Chem ; 290(46): 27688-99, 2015 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-26432636

RESUMEN

Iron is an essential metal element for all living organisms. Graminaceous plants produce and secrete mugineic acid family phytosiderophores from their roots to acquire iron in the soil. Phytosiderophores chelate and solubilize insoluble iron hydroxide in the soil. Subsequently, plants take up iron-phytosiderophore complexes through specific transporters on the root cell membrane. Phytosiderophores are also thought to be important for the internal transport of various transition metals, including iron. In this study, we analyzed TOM2 and TOM3, rice homologs of transporter of mugineic acid family phytosiderophores 1 (TOM1), a crucial efflux transporter directly involved in phytosiderophore secretion into the soil. Transgenic rice analysis using promoter-ß-glucuronidase revealed that TOM2 was expressed in tissues involved in metal translocation, whereas TOM3 was expressed only in restricted parts of the plant. Strong TOM2 expression was observed in developing tissues during seed maturation and germination, whereas TOM3 expression was weak during seed maturation. Transgenic rice in which TOM2 expression was repressed by RNA interference showed growth defects compared with non-transformants and TOM3-repressed rice. Xenopus laevis oocytes expressing TOM2 released (14)C-labeled deoxymugineic acid, the initial phytosiderophore compound in the biosynthetic pathway in rice. In onion epidermal and rice root cells, the TOM2-GFP fusion protein localized to the cell membrane, indicating that the TOM2 protein is a transporter for phytosiderophore efflux to the cell exterior. Our results indicate that TOM2 is involved in the internal transport of deoxymugineic acid, which is required for normal plant growth.


Asunto(s)
Proteínas Portadoras/metabolismo , Hierro/metabolismo , Proteínas de la Membrana/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Animales , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/metabolismo , Transporte Biológico , Proteínas Portadoras/genética , Regulación de la Expresión Génica de las Plantas , Orden Génico , Genes de Plantas , Proteínas de la Membrana/genética , Oryza/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Regiones Promotoras Genéticas , Sideróforos/metabolismo , Distribución Tisular , Xenopus laevis
19.
Plant Cell Physiol ; 57(4): 862-77, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26880819

RESUMEN

The unicellular photosynthetic cyanobacterium, able to survive in varying environments, is the only prokaryote that directly converts solar energy and CO2 into organic material and is thus relevant for primary production in many ecosystems. To maintain the intracellular and intrathylakoid ion homeostasis upon different environmental challenges, the concentration of potassium as a major intracellular cation has to be optimized by various K(+)uptake-mediated transport systems. We reveal here the specific and concerted physiological function of three K(+)transporters of the plasma and thylakoid membranes, namely of SynK (K(+)channel), KtrB (Ktr/Trk/HKT) and KdpA (Kdp) in Synechocystis sp. strain PCC 6803, under specific stress conditions. The behavior of the wild type, single, double and triple mutants was compared, revealing that only Synk contributes to heavy metal-induced stress, while only Ktr/Kdp is involved in osmotic and salt stress adaptation. With regards to pH shifts in the external medium, the Kdp/Ktr uptake systems play an important role in the adaptation to acidic pH. Ktr, by affecting the CO2 concentration mechanism via its action on the bicarbonate transporter SbtA, might also be responsible for the observed effects concerning high-light stress and calcification. In the case of illumination with high-intensity light, a synergistic action of Kdr/Ktp and SynK is required in order to avoid oxidative stress and ensure cell viability. In summary, this study dissects, using growth tests, measurement of photosynthetic activity and analysis of ultrastructure, the physiological role of three K(+)transporters in adaptation of the cyanobacteria to various environmental changes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Metales Pesados/toxicidad , Potasio/metabolismo , Synechocystis/fisiología , Adaptación Fisiológica , Proteínas Bacterianas/genética , Calcio/farmacología , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Concentración de Iones de Hidrógeno , Mutación , Presión Osmótica , Fotosíntesis , Estrés Fisiológico/efectos de los fármacos , Synechocystis/efectos de los fármacos , Synechocystis/metabolismo
20.
Can J Physiol Pharmacol ; 94(7): 728-33, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27128150

RESUMEN

Prevention and treatment of Alzheimer disease are urgent problems for elderly people in developed countries. We previously reported that nobiletin, a poly-methoxylated flavone from the citrus peel, improved the symptoms in various types of animal models of memory loss and activated the cAMP responsive element (CRE)-dependent transcription in PC12 cells. Nobiletin activated the cAMP/PKA/MEK/Erk/MAPK signaling pathway without using the TrkA signaling activated by nerve growth factor (NGF). Here, we examined the effect of combination of nobiletin and NGF on the CRE-dependent transcription in PC12 cells. Although NGF alone had little effect on the CRE-dependent transcription, NGF markedly enhanced the CRE-dependent transcription induced by nobiletin. The NGF-induced enhancement was neutralized by a TrkA antagonist, K252a. This effect of NGF was effective on the early signaling event elicited by nobiletin. These results suggested that there was crosstalk between NGF and nobiletin signaling in activating the CRE-dependent transcription in PC12 cells.


Asunto(s)
Modulador del Elemento de Respuesta al AMP Cíclico/metabolismo , Flavonas/farmacología , Factor de Crecimiento Nervioso/farmacología , Extractos Vegetales/farmacología , Transcripción Genética/fisiología , Animales , Modulador del Elemento de Respuesta al AMP Cíclico/genética , Sinergismo Farmacológico , Flavonas/aislamiento & purificación , Células PC12 , Extractos Vegetales/aislamiento & purificación , Ratas , Transcripción Genética/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA