Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Pharmacogenomics J ; 24(2): 9, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38490995

RESUMEN

Adverse drug reactions (ADRs) are a significant public health concern and a leading cause of hospitalization; they are estimated to be the fourth leading cause of death and increasing healthcare costs worldwide. Carrying a genetic variant could alter the efficacy and increase the risk of ADRs associated with a drug in a target population for commonly prescribed drugs. The use of pre-emptive pharmacogenetic/omic (PGx) testing can improve drug therapeutic efficacy, safety, and compliance by guiding the selection of drugs and/or dosages. In the present narrative review, we examined the current evidence of pre-emptive PGx testing-based treatment for the prevention of ADRs incidence and hospitalization or emergency department visits due to serious ADRs, thus improving patient safety. We then shared our perspective on the importance of preemptive PGx testing in clinical practice for the safe use of medicines and decreasing healthcare costs.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Pruebas de Farmacogenómica , Humanos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/genética , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Hospitalización , Costos de la Atención en Salud , Farmacogenética
2.
Biol Blood Marrow Transplant ; 26(5): 920-927, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31790828

RESUMEN

Sinusoidal obstruction syndrome (SOS) is a well-recognized and potentially life-threatening complication of hematopoietic stem cell transplantation (HSCT). SOS arises from endothelial cell damage and hepatocellular injury mostly due to the transplantation conditioning regimens but also to other patient, disease, and treatment-related factors. Understanding risk factors associated with the development of SOS is critical for early initiation of treatment or prophylaxis. The knowledge about genetic contribution is limited; few studies investigated so far selected a set of genes. To get more comprehensive insight in the genetic component, we performed an exome-wide association study using genetic variants derived from whole-exome sequencing. The analyses were performed in a discovery cohort composed of 87 pediatric patients undergoing HSCT following a busulfan-containing conditioning regimen. Eight lead single-nucleotide polymorphisms (SNPs) were identified after correction for multiple testing and subsequently analyzed in a validation cohort (n = 182). Three SNPs were successfully replicated, including rs17146905 (P = .001), rs16931326 (P = .04), and rs2289971 (P = .03), located respectively in the UGT2B10, BHLHE22, and KIAA1715 genes. UGT2B10 and KIAA1715 were retained in a multivariable model while controlling for nongenetic covariates and previously identified risk variants in the GSTA1 promoter. The modulation of associations by conditioning regimens was noted; KIAA1715 was dependent on the intensity of the conditioning regimen, whereas the effect of UGT2B10 was equally applicable to all of them. Combined effect of associated loci was also observed (P = .00006) with a genotype-related SOS risk of 9.8. To our knowledge, this is the first study addressing the genetic component of SOS at an exome-wide level and identifying novel genetic variations conferring a higher risk of SOS, which might be useful for personalized prevention and treatment strategies.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Enfermedad Veno-Oclusiva Hepática , Busulfano/efectos adversos , Niño , Predisposición Genética a la Enfermedad , Glucuronosiltransferasa , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Enfermedad Veno-Oclusiva Hepática/genética , Humanos , Acondicionamiento Pretrasplante/efectos adversos
3.
Rapid Commun Mass Spectrom ; 30(23): 2517-2528, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27599297

RESUMEN

RATIONALE: Busulfan is a bifunctional alkyl sulfonate antineoplastic drug. This alkylating agent was described as forming covalent adducts on proteins. However, only limited data are available regarding the interaction of busulfan with proteins. Mass spectrometry and bioinformatics were used to identify busulfan adducts on human serum albumin and hemoglobin. METHODS: Albumin and hemoglobin were incubated with busulfan or control compounds, digested with trypsin and analyzed by liquid chromatography/tandem mass spectrometry (LC/MS/MS) on a Thermo Fisher LTQ Orbitrap Velos Pro. MS data were used to generate spectral libraries of non-modified peptides and an open modification search was performed to identify potential adduct mass shifts and possible modification sites. Results were confirmed by a second database search including identified mass shifts and by visual inspection of annotated tandem mass spectra of adduct-carrying peptides. RESULTS: Five structures of busulfan adducts were detected and a chemical structure could be attributed to four of them. Two were primary adducts corresponding to busulfan monoalkylation and alkylation of two amino acid residues by a single busulfan molecule. Two others corresponded to secondary adducts generated during sample processing. Adducts were mainly detected on Asp, Glu, and His residues. These findings were confirmed by subsequent database searches and experiments with synthetic peptides. CONCLUSIONS: The combination of in vitro incubation of proteins with the drug of interest or control compounds, high-resolution mass spectrometry, and open modification search allowed confirmation of the direct interaction of busulfan with proteins and characterization of the resulting adducts. Our results also showed that careful analysis of the data is required to detect experimental artifacts. Copyright © 2016 John Wiley & Sons, Ltd.

4.
Virol J ; 10: 191, 2013 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-23758761

RESUMEN

BACKGROUND: Quantification of titers of ubiquitous viruses such as Torque teno virus (TTV) that do not cause clinical symptoms might be helpful in assessing the immune status of an individual. We hereby describe the validation of a SYBR Green-based TTV quantification method for plasma samples. METHODS: Plasmids with TTV specific inserts were used for preparing standards and absolute quantification of TTV was performed using SYBR Green methodology. The method was assessed for its accuracy and precision (intra and inter-day) on four non-consecutive days. TTV was also quantified from plasma samples of 20 healthy volunteers and from 30 hematopoietic stem cell transplant (HSCT) recipients. RESULTS: The assay was specific and showed satisfactory efficiency (82.2%, R2=0.99) with the limit of quantification defined as 100 copies per reaction. The assay had good precision (inter and intra-day coefficient of variation in cycle threshold (CT) < 4%) and accuracy (100 ± 10%) in the range of 100 to 1010 copies/reaction. We found TTV loads ranging from 2.5 - 4.07 log copies/mL of plasma with CT (mean ± SD) of 33.8 ± 1.77 in healthy individuals and 2.06 - 8.49 log copies/mL of plasma with CT (mean ± SD) of 24.3 ± 1.04 in HSCT recipients. CONCLUSION: SYBR Green-based q-PCR assay combines simplicity with satisfactory sensitivity and may be suitable for monitoring the immune status of transplant recipients, where TTV loads over time may serve as a marker for immune reconstitution in human plasma samples.


Asunto(s)
Infecciones por Virus ADN/virología , Compuestos Orgánicos/metabolismo , Plasma/virología , Coloración y Etiquetado/métodos , Torque teno virus/aislamiento & purificación , Carga Viral/métodos , Adulto , Benzotiazoles , Diaminas , Humanos , Quinolinas , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Viremia/virología
5.
Pharmacogenomics ; 24(3): 123-129, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36786192

RESUMEN

The Indo-Swiss symposium on pharmacogenomic strategies for the implementation of personalized medicine was conducted as part of the Jawaharlal Institute of Postgraduate Medical Education and Research Integrated Pharmacogenomics Program in Puducherry, India, on 19 November 2022. The symposium was conducted in hybrid mode. The theme of symposium was the impact of pharmacogenomics on the achievement of personalized medicine/precision medicine in the clinical setting. The symposium sought to promote interaction among the participants to initiate future collaborative research projects. The symposium also served as a platform for young researchers to present their research findings as posters to the audience.


Asunto(s)
Educación Médica , Medicina de Precisión , Humanos , Farmacogenética/educación , India
6.
Rapid Commun Mass Spectrom ; 26(12): 1437-46, 2012 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-22592987

RESUMEN

RATIONALE: Busulfan (Bu) is an important component of the myeloablative conditioning regimen prior to hematopoietic stem cell transplantation (HSCT) especially in children. Intravenously administered Bu exhibits a therapeutic window phenomenon requiring therapeutic drug monitoring. Analytical methods developed for Bu routine monitoring were aimed at using low volumes of biological fluids and development of simple procedures to facilitate the dosage adjustment. In this report, we describe a simple, rapid method for Bu measurement using dried blood spots (DBS) from only 5 µL of whole blood. METHODS: Bu extracted from DBS with methanol was measured by high-performance liquid chromatography with electrospray ionization and tandem mass spectrometry in multiple reaction monitoring mode using D8-Bu as an internal standard. The method was in-house validated evaluating trueness, repeatability, within-laboratory reproducibility, specificity and the lower limit of quantification (LLOQ). RESULTS: The method was linear in the calibration range of 100-2000 ng mL(-1) (r(2)>0.99) encompassing the therapeutic concentrations of Bu. A good trueness (<14%), precision (<10%), and recovery (100%) were observed during validation of the method with quality controls of 300, 600 and 1400 ng mL(-1). The LLOQ was determined as 50 ng mL(-1) and no matrix or carryover effects were observed. The validated method was applied to measure Bu levels in four children receiving infusion of Bu prior to HSCT. A good correlation was observed between the Bu levels measured by DBS and dried plasma spot (DPS) (r(2) =0.96) and between DPS and the GC/MS method (r(2) =0.92). Bu was found to be stable in DBS up to 6 h at room temperature and for 24 h at 4 °C. CONCLUSIONS: The new DBS method facilitates earlier dosage adjustment during Bu therapy by its specific and simple procedure using 5 µL of whole blood.


Asunto(s)
Busulfano/sangre , Cromatografía Líquida de Alta Presión/métodos , Pruebas con Sangre Seca/métodos , Espectrometría de Masas en Tándem/métodos , Busulfano/farmacocinética , Calibración , Niño , Estabilidad de Medicamentos , Humanos , Modelos Lineales , Reproducibilidad de los Resultados , Espectrometría de Masa por Ionización de Electrospray
7.
Anal Bioanal Chem ; 404(6-7): 1831-8, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22918536

RESUMEN

The role of busulfan (Bu) metabolites in the adverse events seen during hematopoietic stem cell transplantation and in drug interactions is not explored. Lack of availability of established analytical methods limits our understanding in this area. The present work describes a novel gas chromatography-tandem mass spectrometric assay for the analysis of sulfolane (Su) in plasma of patients receiving high-dose Bu. Su and Bu were extracted from a single 100 µL plasma sample by liquid-liquid extraction. Bu was separately derivatized with 2,3,5,6-tetrafluorothiophenolfluorinated agent. Mass spectrometric detection of the analytes was performed in the selected reaction monitoring mode on a triple quadrupole instrument after electronic impact ionization. Bu and Su were analyzed with separate chromatographic programs, lasting 5 min each. The assay for Su was found to be linear in the concentration range of 20-400 ng/mL. The method has satisfactory sensitivity (lower limit of quantification, 20 ng/mL) and precision (relative standard deviation less than 15 %) for all the concentrations tested with a good trueness (100 ± 5 %). This method was applied to measure Su from pediatric patients with samples collected 4 h after dose 1 (n = 46), before dose 7 (n = 56), and after dose 9 (n = 54) infusions of Bu. Su (mean ± SD) was detectable in plasma of patients 4 h after dose 1, and higher levels were observed after dose 9 (249.9 ± 123.4 ng/mL). This method may be used in clinical studies investigating the role of Su on adverse events and drug interactions associated with Bu therapy.


Asunto(s)
Busulfano/metabolismo , Cromatografía de Gases y Espectrometría de Masas/métodos , Inmunosupresores/metabolismo , Tiofenos/sangre , Busulfano/sangre , Niño , Preescolar , Femenino , Humanos , Inmunosupresores/sangre , Masculino , Espectrometría de Masas en Tándem/métodos , Tiofenos/metabolismo
8.
J Biomol Struct Dyn ; 40(3): 1430-1440, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-32996404

RESUMEN

Cytosolic glutathione S-transferase (GST) enzymes participate in several cellular processes in addition to facilitating glutathione conjugation reactions that eliminate endogenous and exogenous toxic compounds, especially electrophiles. GSTs are thought to interact with various kinases, resulting in the modulation of apoptotic processes and cellular proliferation. The present research used a combination of in silico and in vitro studies to investigate protein-protein interactions between the seven most abundant cytosolic GSTs-GST alpha-1 (GST-A1), GST alpha-2 (GST-A2), GST mu-1 (GST-M1), GST mu-2 (GST-M2), GST mu-5 (GST-M5), GST theta-1 (GST-T1) and GST pi-1 (GST-P1)-and Mitogen-activated protein kinase 8 (MAPK8) and Apoptosis signal-regulating kinase 1 (ASK1). MAPK8 and ASK1 were chosen as this study's protein interaction partners because of their predominant role in electrophile or cytokine-induced stress-mediated apoptosis, inflammation and fibrosis. The highest degree of sequence homology or sequence similarity was observed in two GST subgroups: the GST-A1, GST-A2 and GST-P1 isoforms constituted subgroup1; the GST-M1, GST-M2 and GST-M5 isoforms constituted subgroup 2. The GST-T1 isoform diverged from these isoforms. In silico investigations revealed that GST-M1 showed a significantly higher binding affinity to MAPK8, and its complex was more structurally stable than the other isoforms, in the order GST-M1 > GST-M5 > GST-P1 > GST-A2 > GST-A1 > GST-M2 > GST-T1. Similarly, GST-A1, GST-P1 and GST-T1 actively interacted with ASK1, and their structural stability was also better, in the order GST-T1 > GST-A1 > GST-P1 > GST-A2 > GST-M5 > GST-M1 > GST-M2. To validate in silico results, we performed in vitro crosslinking and mass spectroscopy experiments. Results indicated that GST-M1 interacted with GST-T1 to form heterodimers and confirmed the predicted interaction between GST-M1 and MAPK8.Communicated by Ramaswamy H. Sarma.


Asunto(s)
MAP Quinasa Quinasa Quinasa 5 , Proteína Quinasa 8 Activada por Mitógenos , Apoptosis , Glutatión/metabolismo , Glutatión Transferasa/metabolismo , Espectrometría de Masas
9.
Front Cardiovasc Med ; 9: 981335, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36407428

RESUMEN

Background: MicroRNAs (miR) have proven to be promising biomarkers for several diseases due to their diverse functions, stability and tissue/organ-specific nature. Identification of new markers with high sensitivity and specificity will help in risk reduction in acute myocardial infarction (AMI) patients with chest pain and also prevent future adverse outcomes. Hence the aim of this study was to perform a detailed in silico analysis for identifying the mechanistic role of miRs involved in the pathogenesis/prognosis of AMI for prospective evaluation in AMI patients. Methods: miR profiling data was extracted from GSE148153 and GSE24591 datasets using the GEO2R gene expression omnibus repository and analyzed using limma algorithm. Differentially expressed miRs were obtained by comparing MI patients with corresponding controls after multiple testing corrections. Data mining for identifying candidate miRs from published literature was also performed. Target prediction and gene enrichment was done using standard bioinformatics tools. Disease specific analysis was performed to identify target genes specific for AMI using open targets platform. Protein-protein interaction and pathway analysis was done using STRING database and Cytoscape platform. Results and conclusion: The analysis revealed significant miRs like let-7b-5p, let-7c-5p, miR-4505, and miR-342-3p in important functions/pathways including phosphatidylinositol-3-kinase/AKT and the mammalian target of rapamycin, advanced glycation end products and its receptor and renin-angiotensin-aldosterone system by directly targeting angiotensin II receptor type 1, forkhead box protein O1, etc. With this approach we were able to prioritize the miR candidates for a prospective clinical association study in AMI patients of south Indian origin.

10.
BMC Mol Cell Biol ; 23(1): 5, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35062878

RESUMEN

BACKGROUND: Sinusoidal occlusion syndrome (SOS) is a potentially severe complication following hematopoietic stem cell transplantation (HSCT) in pediatric patients. Treatment related risk factors such as intensity of conditioning, hepatotoxic co-medication and patient related factors such as genetic variants predispose individuals to develop SOS. The variant allele for SNP rs17146905 in UDP-glucuronosyl transferase 2B10 (UGT2B10) gene was correlated with the occurrence of SOS in an exome-wide association study. UGT2B10 is a phase II drug metabolizing enzyme involved in the N-glucuronidation of tertiary amine containing drugs. METHODS: To shed light on the functionality of UGT2B10 enzyme in the metabolism of drugs used in pediatric HSCT setting, we performed in silico screening against custom based library of putative ligands. First, a list of potential substrates for in silico analysis was prepared using a systematic consensus-based strategy. The list comprised of drugs and their metabolites used in pediatric HSCT setting. The three-dimensional structure of UGT2B10 was not available from the Research Collaboratory Structural Bioinformatics - Protein Data Bank (RCSB - PDB) repository and thus we predicted the first human UGT2B10 3D model by using multiple template homology modeling with MODELLER Version 9.2 and molecular docking calculations with AutoDock Vina Version 1.2 were implemented to quantify the estimated binding affinity between selected putative substrates or ligands and UGT2B10. Finally, we performed molecular dynamics simulations using GROMACS Version 5.1.4 to confirm the potential UGT2B10 ligands prioritized after molecular docking (exhibiting negative free binding energy). RESULTS: Four potential ligands for UGT2B10 namely acetaminophen, lorazepam, mycophenolic acid and voriconazole n-oxide intermediate were identified. Other metabolites of voriconazole satisfied the criteria of being possible ligands of UGT2B10. Except for bilirubin and 4-Hydroxy Voriconazole, all the ligands (particularly voriconazole and hydroxy voriconazole) are oriented in substrate binding site close to the co-factor UDP (mean ± SD; 0.72 ± 0.33 nm). Further in vitro screening of the putative ligands prioritized by in silico pipeline is warranted to understand the nature of the ligands either as inhibitors or substrates of UGT2B10. CONCLUSIONS: These results may indicate the clinical and pharmacological relevance UGT2B10 in pediatric HSCT setting. With this systematic computational methodology, we provide a rational-, time-, and cost-effective way to identify and prioritize the interesting putative substrates or inhibitors of UGT2B10 for further testing in in vitro experiments.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Preparaciones Farmacéuticas , Niño , Glucuronosiltransferasa/genética , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Simulación del Acoplamiento Molecular , Uridina Difosfato
11.
BMJ Open ; 12(1): e052131, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35074812

RESUMEN

INTRODUCTION: Childhood cancer and its treatment may lead to various health complications. Related impairment in quality of life, excess in deaths and accumulated healthcare costs are relevant. Genetic variations are suggested to contribute to the wide inter-individual variability of complications but have been used only rarely to risk-stratify treatment and follow-up care. This study aims to identify germline genetic variants associated with acute and late complications of childhood cancer. METHODS AND ANALYSIS: The Genetic Risks for Childhood Cancer Complications Switzerland (GECCOS) study is a nationwide cohort study. Eligible are patients and survivors who were diagnosed with childhood cancers or Langerhans cell histiocytosis before age 21 years, were registered in the Swiss Childhood Cancer Registry (SCCR) since 1976 and have consented to the Paediatric Biobank for Research in Haematology and Oncology, Geneva, host of the national Germline DNA Biobank Switzerland for Childhood Cancer and Blood Disorders (BISKIDS).GECCOS uses demographic and clinical data from the SCCR and the associated Swiss Childhood Cancer Survivor Study. Clinical outcome data consists of organ function testing, health conditions diagnosed by physicians, second primary neoplasms and self-reported information from participants. Germline genetic samples and sequencing data are collected in BISKIDS. We will perform association analyses using primarily whole-exome or whole-genome sequencing to identify genetic variants associated with specified health conditions. We will use clustering and machine-learning techniques and assess multiple health conditions in different models. DISCUSSION: GECCOS will improve knowledge of germline genetic variants associated with childhood cancer-associated health conditions and help to further individualise cancer treatment and follow-up care, potentially resulting in improved efficacy and reduced side effects. ETHICS AND DISSEMINATION: The Geneva Cantonal Commission for Research Ethics has approved the GECCOS study.Research findings will be disseminated through national and international conferences, publications in peer-reviewed journals and in lay language online. TRIAL REGISTRATION NUMBER: NCT04702321.


Asunto(s)
Neoplasias , Calidad de Vida , Adulto , Niño , Estudios de Cohortes , Estudios Transversales , Células Germinativas , Humanos , Multimorbilidad , Neoplasias/genética , Neoplasias/terapia , Suiza , Adulto Joven
13.
Front Pharmacol ; 12: 749692, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34658889

RESUMEN

Therapeutic drug monitoring (TDM) is uncommon in child and adolescent psychiatry, particularly for selective serotonin reuptake inhibitors (SSRIs)-the first-line pharmacologic treatments for depressive and anxiety disorders. However, TDM in children and adolescents offers the opportunity to leverage individual variability of antidepressant pharmacokinetics to shed light on non-response and partial response, understand drug-drug interactions, evaluate adherence, and characterize the impact of genetic and developmental variation in pharmacokinetic genes. This perspective aims to educate clinicians about TDM principles and examines evolving uses of TDM in SSRI-treated youths and their early applications in clinical practice, as well as barriers to TDM in pediatric patients. First, the impact of pharmacokinetic genes on SSRI pharmacokinetics in youths could be used to predict tolerability and response for some SSRIs (e.g., escitalopram). Second, plasma concentrations are significantly influenced by adherence, which may relate to decreased efficacy. Third, pharmacometric analyses reveal interactions with proton pump inhibitors, oral contraceptives, cannabinoids, and SSRIs in youths. Rapid developments in TDM and associated modeling have enhanced the understanding of variation in SSRI pharmacokinetics, although the treatment of anxiety and depressive disorders with SSRIs in youths often remains a trial-and-error process.

14.
Drug Metab Lett ; 14(3): 163-165, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34984966

RESUMEN

BACKGROUND: Glutathione S-transferases (GSTs) are phase II metabolic enzymes crucial for the metabolism of electrophilic drugs. Additionally, several GST isoforms are involved in protein- protein interaction with mitogen-activated protein kinases (MAPKs), modulating apoptosis pathways. METHODS: To assess the potential change of enzymatic activity, we performed a GST enzyme assay with human recombinant GSTM1 in the presence and absence of MAPK8. Recently, GSTM1 has been demonstrated to interact with MAPK8 both in silico and in vitro. The binding interface predicted in silico comprised amino acid residues present on the surface of the protein and a few were deep in the active site of the protein. RESULTS: The experiment demonstrated that the GSTM1 activity was conserved even in the presence of MAPK8 in the assay. CONCLUSION: The possible alteration in the activity of MAPK8 in this interaction needs to be evaluated in further experiments.


Asunto(s)
Glutatión Transferasa , Proteína Quinasa 8 Activada por Mitógenos , Aminoácidos , Humanos , Isoformas de Proteínas
15.
Bone Marrow Transplant ; 56(11): 2697-2704, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34215854

RESUMEN

The most frequent complication of allogeneic hematopoietic stem cell transplantation is acute Graft versus Host Disease (aGVHD). Proliferation and differentiation of donor T cells initiate inflammatory response affecting the skin, liver, and gastrointestinal tract. Besides recipient-donor HLA disparities, disease type, and the conditioning regimen, variability in the non-HLA genotype have an impact on aGVHD onset, and genetic variability of key cytokines and chemokines was associated with increased risk of aGVHD. To get further insight into the recipient genetic component of aGVHD grades 2-4 in pediatric patients, we performed an exome-wide association study in a discovery cohort (n = 87). Nine loci sustained correction for multiple testing and were analyzed in a validation group (n = 168). Significant associations were replicated for ERC1 rs1046473, PLEK rs3816281, NOP9 rs2332320 and SPRED1 rs11634702 variants through the interaction with non-genetic factors. The ERC1 variant was significant among patients that received the transplant from HLA-matched related individuals (p = 0.03), bone marrow stem cells recipients (p = 0.007), and serotherapy-negative patients (p = 0.004). NOP9, PLEK, and SPRED1 effects were modulated by stem cell source, and serotherapy (p < 0.05). Furthermore, ERC1 and PLEK SNPs correlated with aGVHD 3-4 independently of non-genetic covariates (p = 0.02 and p = 0.003). This study provides additional insight into the genetic component of moderate to severe aGVHD.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Enfermedad Aguda , Niño , Predisposición Genética a la Enfermedad/etiología , Enfermedad Injerto contra Huésped/genética , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Donantes de Tejidos , Acondicionamiento Pretrasplante/efectos adversos
16.
Clin Pharmacol Ther ; 109(6): 1417-1423, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32770672

RESUMEN

Proton pump inhibitors (PPIs) are widely used for acid suppression in the treatment and prevention of many conditions, including gastroesophageal reflux disease, gastric and duodenal ulcers, erosive esophagitis, Helicobacter pylori infection, and pathological hypersecretory conditions. Most PPIs are metabolized primarily by cytochrome P450 2C19 (CYP2C19) into inactive metabolites, and CYP2C19 genotype has been linked to PPI exposure, efficacy, and adverse effects. We summarize the evidence from the literature and provide therapeutic recommendations for PPI prescribing based on CYP2C19 genotype (updates at www.cpicpgx.org). The potential benefits of using CYP2C19 genotype data to guide PPI therapy include (i) identifying patients with genotypes predictive of lower plasma exposure and prescribing them a higher dose that will increase the likelihood of efficacy, and (ii) identifying patients on chronic therapy with genotypes predictive of higher plasma exposure and prescribing them a decreased dose to minimize the risk of toxicity that is associated with long-term PPI use, particularly at higher plasma concentrations.


Asunto(s)
Citocromo P-450 CYP2C19/genética , Farmacogenética/métodos , Inhibidores de la Bomba de Protones/administración & dosificación , Reflujo Gastroesofágico/tratamiento farmacológico , Genotipo , Humanos , Inhibidores de la Bomba de Protones/efectos adversos , Inhibidores de la Bomba de Protones/farmacocinética
17.
J Vis Exp ; (164)2020 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-33104076

RESUMEN

Glutathione S-transferases (GSTs) are metabolic enzymes responsible for the elimination of endogenous or exogenous electrophilic compounds by glutathione (GSH) conjugation. In addition, GSTs are regulators of mitogen-activated protein kinases (MAPKs) involved in apoptotic pathways. Overexpression of GSTs is correlated with decreased therapeutic efficacy among patients undergoing chemotherapy with electrophilic alkylating agents. Using GST inhibitors may be a potential solution to reverse this tendency and augment treatment potency. Achieving this goal requires the discovery of such compounds, with an accurate, quick, and easy enzyme assay. A spectrophotometric protocol using 1-chloro-2,4-dinitrobenzene (CDNB) as the substrate is the most employed method in the literature. However, already described GST inhibition experiments do not provide a protocol detailing each stage of an optimal inhibition assay, such as the measurement of the Michaelis-Menten constant (Km) for CDNB or indication of the employed enzyme concentration, crucial parameters to assess the inhibition potency of a tested compound. Hence, with this protocol, we describe each step of an optimized spectrophotometric GST enzyme assay, to screen libraries of potential inhibitors. We explain the calculation of both the half-maximal inhibitory concentration (IC50) and the constant of inhibition (Ki)-two characteristics used to measure the potency of an enzyme inhibitor. The method described can be implemented using a pool of GSTs extracted from cells or pure recombinant human GSTs, namely GST alpha 1 (GSTA1), GST mu 1 (GSTM1) or GST pi 1 (GSTP1). However, this protocol cannot be applied to GST theta 1 (GSTT1), as CDNB is not a substrate for this isoform. This method was used to test the inhibition potency of curcumin using GSTs from equine liver. Curcumin is a molecule exhibiting anti-cancer properties and showed affinity towards GST isoforms after in silico docking predictions. We demonstrated that curcumin is a potent competitive GST inhibitor, with an IC50 of 31.6 ± 3.6 µM and a Ki of 23.2 ± 3.2 µM. Curcumin has potential to be combined with electrophilic chemotherapy medication to improve its efficacy.


Asunto(s)
Citosol/enzimología , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/análisis , Inhibidores Enzimáticos/farmacología , Glutatión Transferasa/antagonistas & inhibidores , Espectrofotometría/métodos , Animales , Curcumina/farmacología , Dinitrobencenos/metabolismo , Ácido Etacrínico/farmacología , Glutatión/metabolismo , Glutatión Transferasa/metabolismo , Caballos , Concentración 50 Inhibidora , Isoenzimas/metabolismo , Cinética , Hígado/enzimología , Especificidad por Sustrato/efectos de los fármacos
18.
J Biol Methods ; 5(2): e92, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31453242

RESUMEN

DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) specifically remove the methyl/alkyl group from the O6-position of guanine and restore the guanine to its normal form without causing DNA strand breaks. Relationship between MGMT activity and resistance to alkylating therapeutic agents is well established. Non-availability of simple, cost-effective and efficient methods of genotyping may hinder investigations on genotype-phenotype associations. No simple genotyping procedures such as allele-discrimination Taqman Assays were available for two genetic variations in MGMT gene that had previously demonstrated to be affecting its function and expression. These two variants were included to genotype in a clinical study (Clinicaltrail.gov ID: NCT01257854). Hence, the present study is aimed at developing, validating a rapid and simple allele-specific PCR method that genotypes exonic variant rs2308321 (c.520A>G) and a promoter variant rs113813075 (c.-459C>A) with standard PCR instruments. Web-based allele-specific (AS) primer design application called web-based allele-specific primer was used to design primers. Genomic DNA of lymphoblastoid cell line obtained from the Coriell repository with known genotypes were used to standardize the genotyping procedure. The PCR products were analyzed by 3% Agarose gel electrophoresis and by DNA Screen Tape assay with the Agilent 4200 TapeStation. The allele-specific PCR assay described here is a suitable strategy for efficient and reliable genotyping for difficult variants. This method offers cost-effective strategy for genotyping in clinical cohort studies provided positive controls established by Sanger sequencing are available for the variant.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA