Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nucleic Acids Res ; 48(22): 12648-12659, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33238306

RESUMEN

Eukaryotic transcription is epigenetically regulated by chromatin structure and post-translational modifications (PTMs). For example, lysine acetylation in histone H4 is correlated with activation of RNA polymerase I-, II- and III-driven transcription from chromatin templates, which requires prior chromatin remodeling. However, quantitative understanding of the contribution of particular PTM states to the sequential steps of eukaryotic transcription has been hampered partially because reconstitution of a chromatin template with designed PTMs is difficult. In this study, we reconstituted a di-nucleosome with site-specifically acetylated or unmodified histone H4, which contained two copies of the Xenopus somatic 5S rRNA gene with addition of a unique sequence detectable by hybridization-assisted fluorescence correlation spectroscopy. Using a Xenopus oocyte nuclear extract, we analyzed the time course of accumulation of nascent 5S rRNA-derived transcripts generated on chromatin templates in vitro. Our mathematically described kinetic model and fitting analysis revealed that tetra-acetylation of histone H4 at K5/K8/K12/K16 increases the rate of transcriptionally competent chromatin formation ∼3-fold in comparison with the absence of acetylation. We provide a kinetic model for quantitative evaluation of the contribution of epigenetic modifications to chromatin transcription.


Asunto(s)
Cromatina/genética , Epigénesis Genética , Procesamiento Proteico-Postraduccional/genética , Transcripción Genética , Acetilación , Animales , Histonas/genética , Lisina/genética , Nucleosomas/genética , ARN Ribosómico 5S/genética , Xenopus laevis/genética
2.
J Biol Chem ; 292(8): 3201-3212, 2017 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-28082682

RESUMEN

Stress-induced activation of p53 is an essential cellular response to prevent aberrant cell proliferation and cancer development. The ubiquitin ligase MDM2 promotes p53 degradation and limits the duration of p53 activation. It remains unclear, however, how p53 persistently escapes MDM2-mediated negative control for making appropriate cell fate decisions. Here we report that TBP-like protein (TLP), a member of the TBP family, is a new regulatory factor for the p53-MDM2 interplay and thus for p53 activation. We found that TLP acts to stabilize p53 protein to ensure long-lasting p53 activation, leading to potentiation of p53-induced apoptosis and senescence after genotoxic stress. Mechanistically, TLP interferes with MDM2 binding and ubiquitination of p53. Moreover, single cell imaging analysis shows that TLP depletion accelerates MDM2-mediated nuclear export of p53. We further show that a cervical cancer-derived TLP mutant has less p53 binding ability and lacks a proliferation-repressive function. Our findings uncover a role of TLP as a competitive MDM2 blocker, proposing a novel mechanism by which p53 escapes the p53-MDM2 negative feedback loop to modulate cell fate decisions.


Asunto(s)
Mapas de Interacción de Proteínas , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Similares a la Proteína de Unión a TATA-Box/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Apoptosis , Células HCT116 , Células HeLa , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Estabilidad Proteica , Proteolisis , Proteínas Proto-Oncogénicas c-mdm2/análisis , Proteínas Similares a la Proteína de Unión a TATA-Box/análisis , Proteína p53 Supresora de Tumor/análisis , Ubiquitinación
3.
EMBO J ; 32(17): 2392-406, 2013 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-23921552

RESUMEN

Actively transcribed genes are enriched with the histone variant H3.3. Although H3.3 deposition has been linked to transcription, mechanisms controlling this process remain elusive. We investigated the role of the histone methyltransferase Wolf-Hirschhorn syndrome candidate 1 (WHSC1) (NSD2/MMSET) in H3.3 deposition into interferon (IFN) response genes. IFN treatment triggered robust H3.3 incorporation into activated genes, which continued even after cessation of transcription. Likewise, UV radiation caused H3.3 deposition in UV-activated genes. However, in Whsc1(-/-) cells IFN- or UV-triggered H3.3 deposition was absent, along with a marked reduction in IFN- or UV-induced transcription. We found that WHSC1 interacted with the bromodomain protein 4 (BRD4) and the positive transcription elongation factor b (P-TEFb) and facilitated transcriptional elongation. WHSC1 also associated with HIRA, the H3.3-specific histone chaperone, independent of BRD4 and P-TEFb. WHSC1 and HIRA co-occupied IFN-stimulated genes and supported prolonged H3.3 incorporation, leaving a lasting transcriptional mark. Our results reveal a previously unrecognized role of WHSC1, which links transcriptional elongation and H3.3 deposition into activated genes through two molecularly distinct pathways.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Chaperonas de Histonas/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Proteínas de Ciclo Celular/genética , Células Cultivadas , Cromatina/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/efectos de la radiación , Chaperonas de Histonas/genética , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Interferón beta/farmacología , Ratones , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Elongación de la Transcripción Genética , Factores de Transcripción/genética , Rayos Ultravioleta
4.
Nucleic Acids Res ; 43(13): 6285-98, 2015 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-26038314

RESUMEN

TBP-TFIIA interaction is involved in the potentiation of TATA box-driven promoters. TFIIA activates transcription through stabilization of TATA box-bound TBP. The precursor of TFIIA is subjected to Taspase1-directed processing to generate α and ß subunits. Although this processing has been assumed to be required for the promoter activation function of TFIIA, little is known about how the processing is regulated. In this study, we found that TBP-like protein (TLP), which has the highest affinity to TFIIA among known proteins, affects Taspase1-driven processing of TFIIA. TLP interfered with TFIIA processing in vivo and in vitro, and direct binding of TLP to TFIIA was essential for inhibition of the processing. We also showed that TATA box promoters are specifically potentiated by processed TFIIA. Processed TFIIA, but not unprocessed TFIIA, associated with the TATA box. In a TLP-knocked-down condition, not only the amounts of TATA box-bound TFIIA but also those of chromatin-bound TBP were significantly increased, resulting in the stimulation of TATA box-mediated gene expression. Consequently, we suggest that TLP works as a negative regulator of the TFIIA processing and represses TFIIA-governed and TATA-dependent gene expression through preventing TFIIA maturation.


Asunto(s)
Endopeptidasas/metabolismo , Proteínas Represoras/metabolismo , Proteínas Similares a la Proteína de Unión a TATA-Box/metabolismo , TATA Box , Factor de Transcripción TFIIA/metabolismo , Activación Transcripcional , Línea Celular , Cromatina/metabolismo , Células HeLa , Humanos , Proteína de Unión a TATA-Box/metabolismo
5.
Development ; 140(17): 3565-76, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23903187

RESUMEN

Epigenetic modifications influence gene expression and chromatin remodeling. In embryonic pluripotent stem cells, these epigenetic modifications have been extensively characterized; by contrast, the epigenetic events of tissue-specific stem cells are poorly understood. Here, we define a new epigenetic shift that is crucial for differentiation of murine spermatogonia toward meiosis. We have exploited a property of incomplete cytokinesis, which causes male germ cells to form aligned chains of characteristic lengths, as they divide and differentiate. These chains revealed the stage of spermatogenesis, so the epigenetic differences of various stages could be characterized. Single, paired and medium chain-length spermatogonia not expressing Kit (a marker of differentiating spermatogonia) showed no expression of Dnmt3a2 and Dnmt3b (two de novo DNA methyltransferases); they also lacked the transcriptionally repressive histone modification H3K9me2. By contrast, spermatogonia consisting of ~8-16 chained cells with Kit expression dramatically upregulated Dnmt3a2/3b expression and also displayed increased H3K9me2 modification. To explore the function of these epigenetic changes in spermatogonia in vivo, the DNA methylation machinery was destabilized by ectopic Dnmt3b expression or Np95 ablation. Forced Dnmt3b expression induced expression of Kit; whereas ablation of Np95, which is essential for maintaining DNA methylation, interfered with differentiation and viability only after spermatogonia become Kit positive. These data suggest that the epigenetic status of spermatogonia shifts dramatically during the Kit-negative to Kit-positive transition. This shift might serve as a switch that determines whether spermatogonia self-renew or differentiate.


Asunto(s)
Diferenciación Celular/fisiología , Epigénesis Genética/fisiología , Células Germinativas/fisiología , Proteínas Proto-Oncogénicas c-kit/metabolismo , Espermatogénesis/fisiología , Espermatogonias/crecimiento & desarrollo , Animales , Western Blotting , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/fisiología , Cartilla de ADN/genética , Citometría de Flujo , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Espermatogonias/citología , ADN Metiltransferasa 3B
6.
Nature ; 460(7252): 287-91, 2009 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-19483677

RESUMEN

Diverse histone modifications are catalysed and recognized by various specific proteins, establishing unique modification patterns that act as transcription signals. In particular, histone H3 trimethylation at lysine 36 (H3K36me3) is associated with actively transcribed regions and has been proposed to provide landmarks for continuing transcription; however, the control mechanisms and functions of H3K36me3 in higher eukaryotes are unknown. Here we show that the H3K36me3-specific histone methyltransferase (HMTase) Wolf-Hirschhorn syndrome candidate 1 (WHSC1, also known as NSD2 or MMSET) functions in transcriptional regulation together with developmental transcription factors whose defects overlap with the human disease Wolf-Hirschhorn syndrome (WHS). We found that mouse Whsc1, one of five putative Set2 homologues, governed H3K36me3 along euchromatin by associating with the cell-type-specific transcription factors Sall1, Sall4 and Nanog in embryonic stem cells, and Nkx2-5 in embryonic hearts, regulating the expression of their target genes. Whsc1-deficient mice showed growth retardation and various WHS-like midline defects, including congenital cardiovascular anomalies. The effects of Whsc1 haploinsufficiency were increased in Nkx2-5 heterozygous mutant hearts, indicating their functional link. We propose that WHSC1 functions together with developmental transcription factors to prevent the inappropriate transcription that can lead to various pathophysiologies.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Síndrome de Wolf-Hirschhorn/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/deficiencia , N-Metiltransferasa de Histona-Lisina/genética , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/genética , Lisina/metabolismo , Metilación , Ratones , Ratones Endogámicos C57BL , Proteína Homeótica Nanog , Unión Proteica , Proteínas Represoras/metabolismo , Factores de Transcripción/genética , Transcripción Genética
7.
Nucleic Acids Res ; 39(3): 874-88, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20923784

RESUMEN

In mammals, DNA methylation is catalyzed by DNA methyltransferases (DNMTs) encoded by Dnmt1, Dnmt3a and Dnmt3b. Since, the mechanisms of regulation of Dnmts are still largely unknown, the physical interaction between Dnmt3b and chromatin was investigated in vivo and in vitro. In embryonic stem cell nuclei, Dnmt3b preferentially associated with histone H1-containing heterochromatin without any significant enrichment of silent-specific histone methylation. Recombinant Dnmt3b preferentially associated with nucleosomal DNA rather than naked DNA. Incorporation of histone H1 into nucleosomal arrays promoted the association of Dnmt3b with chromatin, whereas histone acetylation reduced Dnmt3b binding in vitro. In addition, Dnmt3b associated with histone deacetylase SirT1 in the nuclease resistant chromatin. These findings suggest that Dnmt3b is preferentially recruited into hypoacetylated and condensed chromatin. We propose that Dnmt3b is a 'reader' of higher-order chromatin structure leading to gene silencing through DNA methylation.


Asunto(s)
Cromatina/enzimología , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Acetilación , Línea Celular , Núcleo Celular/enzimología , Células Cultivadas , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/análisis , ADN (Citosina-5-)-Metiltransferasas/análisis , Heterocromatina/química , Heterocromatina/enzimología , Histonas/análisis , Histonas/metabolismo , Nucleosomas/enzimología , ADN Metiltransferasa 3B
8.
Stem Cells ; 27(4): 796-805, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19350679

RESUMEN

Sall4 is a mouse homolog of a causative gene of the autosomal dominant disorder Okihiro syndrome. We previously showed that the absence of Sall4 leads to lethality during peri-implantation and that Sall4-null embryonic stem (ES) cells proliferate poorly with intact pluripotency when cultured on feeder cells. Here, we report that, in the absence of feeder cells, Sall4-null ES cells express the trophectoderm marker Cdx2, but are maintained for a long period in an undifferentiated state with minimally affected Oct3/4 expression. Feeder-free Sall4-null ES cells contribute solely to the inner cell mass and epiblast in vivo, indicating that these cells still retain pluripotency and do not fully commit to the trophectoderm. These phenotypes could arise from derepression of the Cdx2 promoter, which is normally suppressed by Sall4 and the Mi2/NuRD HDAC complex. However, proliferation was impaired and G1 phase prolonged in the absence of Sall4, suggesting another role for Sall4 in cell cycle control. Although Sall1, also a Sall family gene, is known to genetically interact with Sall4 in vivo, Sall1-null ES cells have no apparent defects and no exacerbation is observed in ES cells lacking both Sall1 and Sall4, compared with Sall4-null cells. This suggests a unique role for Sall4 in ES cells. Thus, though Sall4 does not contribute to the central machinery of the pluripotency, it stabilizes ES cells by repressing aberrant trophectoderm gene expression.


Asunto(s)
Diferenciación Celular/fisiología , Proteínas de Unión al ADN/fisiología , Células Madre Embrionarias/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Células Madre Pluripotentes/fisiología , Factores de Transcripción/fisiología , Animales , Factor de Transcripción CDX2 , Ciclo Celular/genética , Desarrollo Embrionario/genética , Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Inmunoprecipitación , Ratones , Microscopía Confocal , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
9.
PLoS One ; 15(12): e0244790, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33382846

RESUMEN

Ribonucleoside triphosphates are often incorporated into genomic DNA during DNA replication. The accumulation of unrepaired ribonucleotides is associated with genomic instability, which is mediated by DNA topoisomerase 1 (Top1) processing of embedded ribonucleotides. The cleavage initiated by Top1 at the site of a ribonucleotide leads to the formation of a Top1-DNA cleavage complex (Top1cc), occasionally resulting in a DNA double-strand break (DSB). In humans, tyrosyl-DNA phosphodiesterases (TDPs) are essential repair enzymes that resolve the trapped Top1cc followed by downstream repair factors. However, there is limited cellular evidence of the involvement of TDPs in the processing of incorporated ribonucleotides in mammals. We assessed the role of TDPs in mutagenesis induced by a single ribonucleotide embedded into DNA. A supF shuttle vector site-specifically containing a single riboguanosine (rG) was introduced into the human lymphoblastoid TK6 cell line and its TDP1-, TDP2-, and TDP1/TDP2-deficient derivatives. TDP1 and TDP2 insufficiency remarkably decreased the mutant frequency caused by an embedded rG. The ratio of large deletion mutations induced by rG was also substantially lower in TDP1/TDP2-deficient cells than wild-type cells. Furthermore, the disruption of TDPs reduced the length of rG-mediated large deletion mutations. The recovery ratio of the propagated plasmid was also increased in TDP1/TDP2-deficient cells after the transfection of the shuttle vector containing rG. The results suggest that TDPs-mediated ribonucleotide processing cascade leads to unfavorable consequences, whereas in the absence of these repair factors, a more error-free processing pathway might function to suppress the ribonucleotide-induced mutagenesis. Furthermore, base substitution mutations at sites outside the position of rG were detected in the supF gene via a TDPs-independent mechanism. Overall, we provide new insights into the mechanism of mutagenesis induced by an embedded ribonucleotide in mammalian cells, which may lead to the fatal phenotype in the ribonucleotide excision repair deficiency.


Asunto(s)
Mutagénesis/fisiología , Mutágenos , Hidrolasas Diéster Fosfóricas/genética , Ribonucleótidos/genética , Línea Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Hidrolasas Diéster Fosfóricas/metabolismo , Ribonucleótidos/metabolismo
10.
Sci Rep ; 9(1): 13910, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31558768

RESUMEN

DNA polymerases often incorporate non-canonical nucleotide, i.e., ribonucleoside triphosphates into the genomic DNA. Aberrant accumulation of ribonucleotides in the genome causes various cellular abnormalities. Here, we show the possible role of human nucleotide excision repair (NER) and DNA polymerase η (Pol η) in processing of a single ribonucleotide embedded into DNA. We found that the reconstituted NER system can excise the oxidized ribonucleotide on the plasmid DNA. Taken together with the evidence that Pol η accurately bypasses a ribonucleotide, i.e., riboguanosine (rG) or its oxidized derivative (8-oxo-rG) in vitro, we further assessed the mutagenic potential of the embedded ribonucleotide in human cells lacking NER or Pol η. A single rG on the supF reporter gene predominantly induced large deletion mutations. An embedded 8-oxo-rG caused base substitution mutations at the 3'-neighboring base rather than large deletions in wild-type cells. The disruption of XPA, an essential factor for NER, or Pol η leads to the increased mutant frequency of 8-oxo-rG. Furthermore, the frequency of 8-oxo-rG-mediated large deletions was increased by the loss of Pol η, but not XPA. Collectively, our results suggest that base oxidation of the embedded ribonucleotide enables processing of the ribonucleotide via alternative DNA repair and damage tolerance pathways.


Asunto(s)
Reparación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Guanosina Trifosfato/análogos & derivados , Línea Celular Tumoral , ADN Polimerasa Dirigida por ADN/genética , Guanosina Trifosfato/metabolismo , Humanos , Proteína de la Xerodermia Pigmentosa del Grupo A/genética , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo
11.
J Biochem ; 143(3): 287-93, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18234717

RESUMEN

Recently, the existence of a 'histone code' has been proposed to explain the link between the covalent chemical modification of histone proteins and the epigenetic regulation of gene activity. Although the role of the four 'core' histones has been extensively studied, little is known about the involvement of the linker histone, histone H1 and its variants, in this code. For many years, few sites of chemical modification had been mapped in linker histones, but this has changed recently with the use of functional proteomic techniques, principally mass spectrometry, to characterize these modifications. The functionality of many of these sites, however, remains to be determined.


Asunto(s)
Código de Histonas , Animales , Células Eucariotas/metabolismo , Eliminación de Gen , Histonas/química , Histonas/metabolismo , Humanos , Espectrometría de Masas , Procesamiento Proteico-Postraduccional
12.
Cell Rep ; 19(8): 1586-1601, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28538178

RESUMEN

Immunodeficiency is one of the most important causes of mortality associated with Wolf-Hirschhorn syndrome (WHS), a severe rare disease originated by a deletion in chromosome 4p. The WHS candidate 1 (WHSC1) gene has been proposed as one of the main genes responsible for many of the alterations in WHS, but its mechanism of action is still unknown. Here, we present in vivo genetic evidence showing that Whsc1 plays an important role at several points of hematopoietic development. Particularly, our results demonstrate that both differentiation and function of Whsc1-deficient B cells are impaired at several key developmental stages due to profound molecular defects affecting B cell lineage specification, commitment, fitness, and proliferation, demonstrating a causal role for WHSC1 in the immunodeficiency of WHS patients.


Asunto(s)
Linfocitos B/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Síndrome de Wolf-Hirschhorn/metabolismo , Animales , Apoptosis , Ciclo Celular , Diferenciación Celular , Proliferación Celular , Replicación del ADN , Centro Germinal/citología , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Heterocigoto , Ratones , Recombinación Genética/genética , Estrés Fisiológico
13.
J Biochem ; 139(3): 503-15, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16567415

RESUMEN

In mammals, the resetting of DNA methylation patterns in early embryos and germ cells is crucial for development. De novo type DNA methyltransferases Dnmt3a and Dnmt3b are responsible for creating DNA methylation patterns during embryogenesis and in germ cells. Although their in vitro DNA methylation properties are similar, Dnmt3a and Dnmt3b methylate different genomic DNA regions in vivo. In the present study, we have examined the DNA methylation activity of Dnmt3a and Dnmt3b towards nucleosomes reconstituted from recombinant histones and DNAs, and compared it to that of the corresponding naked DNAs. Dnmt3a showed higher DNA methylation activity than Dnmt3b towards naked DNA and the naked part of nucleosomal DNA. On the other hand, Dnmt3a scarcely methylated the DNA within the nucleosome core region, while Dnmt3b significantly did, although the activity was low. We propose that the preferential DNA methylation activity of Dnmt3a towards the naked part of nucleosomal DNA and the significant methylation activity of Dnmt3b towards the nucleosome core region contribute to their distinct methylation of genomic DNA in vivo.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/fisiología , Metilación de ADN , ADN/metabolismo , Nucleosomas/metabolismo , Animales , ADN Metiltransferasa 3A , Células HeLa , Humanos , Virus del Tumor Mamario del Ratón/genética , Xenopus , ADN Metiltransferasa 3B
14.
Dis Model Mech ; 8(9): 1027-35, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26092122

RESUMEN

WHSC1 is a histone methyltransferase (HMT) that catalyses the addition of methyl groups to lysine 36 on histone 3. In humans, WHSC1 haploinsufficiency is associated with all known cases of Wolf-Hirschhorn syndrome (WHS). The cardinal feature of WHS is a craniofacial dysmorphism, which is accompanied by sensorineural hearing loss in 15% of individuals with WHS. Here, we show that WHSC1-deficient mice display craniofacial defects that overlap with WHS, including cochlea anomalies. Although auditory hair cells are specified normally, their stereocilia hair bundles required for sound perception fail to develop the appropriate morphology. Furthermore, the orientation and cellular organisation of cochlear hair cells and their innervation are defective. These findings identify, for the first time, the likely cause of sensorineural hearing loss in individuals with WHS.


Asunto(s)
Células Ciliadas Auditivas/patología , Pérdida Auditiva Sensorineural/genética , N-Metiltransferasa de Histona-Lisina/genética , Síndrome de Wolf-Hirschhorn/genética , Animales , Cóclea/anomalías , Cóclea/embriología , Cóclea/patología , Modelos Animales de Enfermedad , Eliminación de Gen , Heterocigoto , Histonas/metabolismo , Humanos , Incidencia , Ratones , Ratones Transgénicos , Mutación , Fenotipo , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Transducción de Señal
15.
BMC Res Notes ; 8: 278, 2015 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-26123730

RESUMEN

BACKGROUND: Targeted gene modification by homologous recombination provides a powerful tool for studying gene function in cells and animals. In higher eukaryotes, non-homologous integration of targeting vectors occurs several orders of magnitude more frequently than does targeted integration, making the gene-targeting technology highly inefficient. For this reason, negative-selection strategies have been employed to reduce the number of drug-resistant clones associated with non-homologous vector integration, particularly when artificial nucleases to introduce a DNA break at the target site are unavailable or undesirable. As such, an exon-trap strategy using a promoterless drug-resistance marker gene provides an effective way to counterselect non-homologous integrants. However, constructing exon-trapping targeting vectors has been a time-consuming and complicated process. RESULTS: By virtue of highly efficient att-mediated recombination, we successfully developed a simple and rapid method to construct plasmid-based vectors that allow for exon-trapping gene targeting. These exon-trap vectors were useful in obtaining correctly targeted clones in mouse embryonic stem cells and human HT1080 cells. Most importantly, with the use of a conditionally cytotoxic gene, we further developed a novel strategy for negative selection, thereby enhancing the efficiency of counterselection for non-homologous integration of exon-trap vectors. CONCLUSIONS: Our methods will greatly facilitate exon-trapping gene-targeting technologies in mammalian cells, particularly when combined with the novel negative selection strategy.


Asunto(s)
Exones/genética , Marcación de Gen/métodos , Vectores Genéticos/genética , Animales , Línea Celular , Humanos , Ratones , Células Madre
16.
Gene ; 310: 151-9, 2003 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-12801642

RESUMEN

The Dnmt3b gene encodes a de novo DNA methyltransferase that is essential for normal mouse development. It is highly expressed in early embryos and embryonic stem (ES) cells but downregulated in most adult somatic tissues. To gain insight into the regulation of Dnmt3b, we have isolated a mouse genomic bacterial artificial chromosome clone that contains the Dnmt3b gene. Complete sequence analysis of the clone demonstrated that Dnmt3b consists of at least 24 exons and spans 38 kilobases. S1 nuclease analysis identified two adjacent transcriptional start sites located downstream of a unique TATA-like element in a CpG island. There was an unknown gene which we named mU(3) 17 kb upstream of the Dnmt3b locus, and it was transcribed ubiquitously and in the opposite direction of Dnmt3b. Transfection analysis revealed that the minimal promoter region containing an Sp1 site was active even in somatic cells, and that there were several repressor elements within 7.9 kb upstream of Dnmt3b downregulated this gene specifically in somatic cells but not in ES cells. These findings provide a basis for future detailed studies of the mechanisms controlling Dnmt3b expression.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Regiones Promotoras Genéticas/genética , Células 3T3 , Región de Flanqueo 5'/genética , Animales , Secuencia de Bases , Línea Celular , ADN/química , ADN/genética , Embrión de Mamíferos/enzimología , Embrión de Mamíferos/metabolismo , Exones , Femenino , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Genes/genética , Intrones , Luciferasas/genética , Luciferasas/metabolismo , Masculino , Ratones , Datos de Secuencia Molecular , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Análisis de Secuencia de ADN , Sitio de Iniciación de la Transcripción , ADN Metiltransferasa 3B
17.
Sci Rep ; 4: 4863, 2014 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-24798879

RESUMEN

Homologous recombination plays essential roles in mitotic DNA double strand break (DSB) repair and meiotic genetic recombination. In eukaryotes, RAD51 promotes the central homologous-pairing step during homologous recombination, but is not sufficient to overcome the reaction barrier imposed by nucleosomes. RAD54, a member of the ATP-dependent nucleosome remodeling factor family, is required to promote the RAD51-mediated homologous pairing in nucleosomal DNA. In higher eukaryotes, most nucleosomes form higher-ordered chromatin containing the linker histone H1. However, the mechanism by which RAD51/RAD54-mediated homologous pairing occurs in higher-ordered chromatin has not been elucidated. In this study, we found that a histone chaperone, Nap1, accumulates on DSB sites in human cells, and DSB repair is substantially decreased in Nap1-knockdown cells. We determined that Nap1 binds to RAD54, enhances the RAD54-mediated nucleosome remodeling by evicting histone H1, and eventually stimulates the RAD51-mediated homologous pairing in higher-ordered chromatin containing histone H1.


Asunto(s)
Cromatina/metabolismo , ADN Helicasas/metabolismo , Histonas/metabolismo , Recombinación Homóloga/genética , Proteínas Nucleares/metabolismo , Proteínas/metabolismo , Recombinasa Rad51/metabolismo , Adenosina Trifosfatasas/metabolismo , Línea Celular , Cromatina/genética , ADN Helicasas/genética , Reparación del ADN/genética , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN , Escherichia coli/genética , Escherichia coli/metabolismo , Histonas/genética , Humanos , Proteínas Nucleares/genética , Nucleosomas/genética , Nucleosomas/metabolismo , Recombinasa Rad51/genética , ARNt Metiltransferasas
18.
PLoS One ; 7(11): e49211, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23209566

RESUMEN

Recruitment of 53BP1 to chromatin flanking double strand breaks (DSBs) requires γH2AX/MDC1/RNF8-dependent ubiquitination of chromatin and interaction of 53BP1 with histone H4 methylated on lysine 20 (H4K20me). Several histone methyltransferases have been implicated in 53BP1 recruitment, but their quantitative contributions to the 53BP1 response are unclear. We have developed a multi-photon laser (MPL) system to target DSBs to subfemtoliter nuclear volumes and used this to mathematically model DSB response kinetics of MDC1 and of 53BP1. In contrast to MDC1, which revealed first order kinetics, the 53BP1 MPL-DSB response is best fitted by a Gompertz growth function. The 53BP1 MPL response shows the expected dependency on MDC1 and RNF8. We determined the impact of altered H4K20 methylation on 53BP1 MPL response kinetics in mouse embryonic fibroblasts (MEFs) lacking key H4K20 histone methyltransferases. This revealed no major requirement for the known H4K20 dimethylases Suv4-20h1 and Suv4-20h2 in 53BP1 recruitment or DSB repair function, but a key role for the H4K20 monomethylase, PR-SET7. The histone methyltransferase MMSET/WHSC1 has recently been implicated in 53BP1 DSB recruitment. We found that WHSC1 homozygous mutant MEFs reveal an alteration in balance of H4K20 methylation patterns; however, 53BP1 DSB responses in these cells appear normal.


Asunto(s)
Cromatina/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Animales , Línea Celular , Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN , N-Metiltransferasa de Histona-Lisina/deficiencia , N-Metiltransferasa de Histona-Lisina/genética , Histonas/química , Humanos , Cinética , Rayos Láser/efectos adversos , Metilación , Ratones , Transporte de Proteínas , Proteína 1 de Unión al Supresor Tumoral P53 , Ubiquitina-Proteína Ligasas/metabolismo
20.
J Mol Med (Berl) ; 88(12): 1213-20, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20714703

RESUMEN

Histone modifications contribute to the precise regulation of transcription by recruiting non-histone proteins and controlling chromatin conformation. These covalent modifications are dynamically regulated by many enzymes that modify histones at specific residues in different ways. Histone modifiers contribute to development as well as cellular responses to extracellular stimuli. Mutations in the genes encoding them cause various diseases, including developmental disorders and certain malignancies. Haploinsufficiency for some histone methyltransferases, one of the principal modifiers of the histone modification network, are associated with particular congenital diseases, including Sotos syndrome, Wolf-Hirschhorn syndrome, and 9q syndrome. In this review, we discuss the molecular function of the histone methyltransferases and the human diseases associated with their dysfunction.


Asunto(s)
Enfermedad/genética , Regulación de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/metabolismo , Transcripción Genética , Histona Metiltransferasas , Histonas/metabolismo , Humanos , Proteínas Represoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA