RESUMEN
Bacterial strains of the genera Arthrobacter, Bacillus, Dietzia, Kocuria, and Micrococcus were isolated from oil-contaminated soils of the Balgimbaev, Dossor, and Zaburunye oil fields in Kazakhstan. They were selected from 1376 isolated strains based on their unique ability to use crude oil and polyaromatic hydrocarbons (PAHs) as sole source of carbon and energy in growth experiments. The isolated strains degraded a wide range of aliphatic and aromatic components from crude oil to generate a total of 170 acid metabolites. Eight metabolites were detected during the degradation of anthracene and of phenanthrene, two of which led to the description of a new degradation pathway. The selected bacterial strains Arthrobacter bussei/agilis SBUG 2290, Bacillus atrophaeus SBUG 2291, Bacillus subtilis SBUG 2285, Dietzia kunjamensis SBUG 2289, Kocuria rosea SBUG 2287, Kocuria polaris SBUG 2288, and Micrococcus luteus SBUG 2286 promoted the growth of barley shoots and roots in oil-contaminated soil, demonstrating the enormous potential of isolatable and cultivable soil bacteria in soil remediation. KEY POINTS: ⢠Special powerful bacterial strains as potential crude oil and PAH degraders. ⢠Growth on crude oil or PAHs as sole source of carbon and energy. ⢠Bacterial support of barley growth as resource for soil remediation.
Asunto(s)
Hordeum , Hidrocarburos Aromáticos , Petróleo , Contaminantes del Suelo , Petróleo/microbiología , Yacimiento de Petróleo y Gas , Hordeum/metabolismo , Contaminantes del Suelo/metabolismo , Hidrocarburos Aromáticos/metabolismo , Bacillus subtilis/metabolismo , Carbono/metabolismo , Suelo , Biodegradación Ambiental , Microbiología del Suelo , Hidrocarburos/metabolismoRESUMEN
In temperate regions, climate warming alters temperature and precipitation regimes. During winter, a decline in insulating snow cover changes the soil environment, where especially frost exposure can have severe implications for soil microorganisms and subsequently for soil nutrient dynamics. Here, we investigated winter climate change responses in European beech forests soil microbiome. Nine study sites with each three treatments (snow exclusion, insolation, and ambient) were investigated. Long-term adaptation to average climate was explored by comparing across sites. Triplicated treatment plots were used to evaluate short-term (one single winter) responses. Community profiles of bacteria, archaea and fungi were created using amplicon sequencing. Correlations between the microbiome, vegetation and soil physicochemical properties were found. We identify core members of the forest-microbiome and link them to key processes, for example, mycorrhizal symbiont and specialized beech wood degraders (fungi) and nitrogen cycling (bacteria, archaea). For bacteria, the shift of the microbiome composition due to short-term soil temperature manipulations in winter was similar to the community differences observed between long-term relatively cold to warm conditions. The results suggest a strong link between the changes in the microbiomes and changes in environmental processes, for example, nitrogen dynamics, driven by variations in winter climate.
Asunto(s)
Fagus , Micorrizas , Ecosistema , Archaea/genética , Suelo/química , Bosques , Bacterias/genética , Cambio Climático , Estaciones del Año , Nieve , NitrógenoRESUMEN
Rewetted peatlands are reestablished hot spots for CH4 emissions, which are subject to increased drought events in the course of climate change. However, the dynamics of soil methane-cycling microbiomes in rewetted peatlands during summer drought are still poorly characterized. Using a quantitative metatranscriptomic approach, we investigated the changes in the transcript abundances of methanogen and methanotroph rRNA, as well as mcrA and pmoA mRNA before, during, and after the 2018 summer drought in a coastal and a percolation fen in northern Germany. Drought changed the community structure of methane-cycling microbiomes and decreased the CH4 fluxes as well as the rRNA and mRNA transcript abundances of methanogens and methanotrophs, but they showed no recovery or increase after the drought ended. The rRNA transcript abundance of methanogens was not correlated with CH4 fluxes in both fens. In the percolation fen, however, the mcrA transcript abundance showed a positive and significant correlation with CH4 fluxes. Importantly, when integrating pmoA abundance, a stronger correlation was observed between CH4 fluxes and mcrA/pmoA, suggesting that relationships between methanogens and methanotrophs are the key determinant of CH4 turnover. Our study provides a comprehensive understanding of the methane-cycling microbiome feedbacks to drought events in rewetted peatlands.
Asunto(s)
Euryarchaeota , Microbiota , Metano , Suelo , Sequías , Microbiología del SueloRESUMEN
Butanetriol and pentanetriol dibiphytanyl glycerol tetraethers (BDGTs and PDGTs, respectively) are recently identified classes of archaeal membrane lipids that are prominent constituents in anoxic subseafloor sediments. These lipids are intriguing, as they possess unusual backbones with four or five carbon atoms instead of the canonical three-carbon glycerol backbone. In this study, we examined the biosynthesis of BDGTs and PDGTs by the methanogen Methanomassiliicoccus luminyensis, the only available isolate known to produce these compounds, via stable isotope labeling with [methyl-13C]methionine followed by mass spectrometry analysis. We show that their biosynthesis proceeds from transfer(s) of the terminal methyl group of methionine to the more common archaeal membrane lipids, i.e., glycerol dibiphytanyl glycerol tetraethers (GDGTs). As this methylation targets a methylene group, a radical mechanism involving a radical S-adenosylmethionine (SAM) enzyme is probable. Over the course of the incubation, the abundance of PDGTs relative to BDGTs, expressed as backbone methylation index, increased, implying that backbone methylation may be related to the growth shift to stationary conditions, possibly due to limited energy and/or substrate availability. The increase of the backbone methylation index with increasing sediment age in a sample set from the Mediterranean Sea adds support for such a relationship. IMPORTANCE Butanetriol and pentanetriol dibiphytanyl glycerol tetraethers are membrane lipids recently discovered in anoxic environments. These lipids differ from typical membrane-spanning tetraether lipids because they possess a non-glycerol backbone. The biosynthetic pathway and physiological role of these unique lipids are currently unknown. Here, we show that in the strain Methanomassiliicoccus luminyensis, these lipids are the result of methyl transfer(s) from an S-adenosyl methionine (SAM) intermediate. We observed a relative increase of the doubly methylated compound, pentanetriol dibiphytanyl glycerol tetraether, in the stationary phase of M. luminyensis as well as in the subseafloor of the Mediterranean Sea and thus introduced a backbone methylation index, which could be used to further explore microbial activity in natural settings.
Asunto(s)
Archaea , Euryarchaeota , Archaea/metabolismo , Glicerol/metabolismo , Lípidos de la Membrana/metabolismo , MetilaciónRESUMEN
Aerated topsoils are important sinks for atmospheric methane (CH4 ) via oxidation by CH4 -oxidizing bacteria (MOB). However, intensified management of grasslands and forests may reduce the CH4 sink capacity of soils. We investigated the influence of grassland land-use intensity (150 sites) and forest management type (149 sites) on potential atmospheric CH4 oxidation rates (PMORs) and the abundance and diversity of MOB (with qPCR) in topsoils of three temperate regions in Germany. PMORs measurements in microcosms under defined conditions yielded approximately twice as much CH4 oxidation in forest than in grassland soils. High land-use intensity of grasslands had a negative effect on PMORs (-40%) in almost all regions and fertilization was the predominant factor of grassland land-use intensity leading to PMOR reduction by 20%. In contrast, forest management did not affect PMORs in forest soils. Upland soil cluster (USC)-α was the dominant group of MOBs in the forests. In contrast, USC-γ was absent in more than half of the forest soils but present in almost all grassland soils. USC-α abundance had a direct positive effect on PMOR in forest, while in grasslands USC-α and USC-γ abundance affected PMOR positively with a more pronounced contribution of USC-γ than USC-α. Soil bulk density negatively influenced PMOR in both forests and grasslands. We further found that the response of the PMORs to pH, soil texture, soil water holding capacity and organic carbon and nitrogen content differ between temperate forest and grassland soils. pH had no direct effects on PMOR, but indirect ones via the MOB abundances, showing a negative effect on USC-α, and a positive on USC-γ abundance. We conclude that reduction in grassland land-use intensity and afforestation has the potential to increase the CH4 sink function of soils and that different parameters determine the microbial methane sink in forest and grassland soils.
Asunto(s)
Metano , Suelo , Bosques , Alemania , Pradera , Metano/análisis , Microbiología del SueloRESUMEN
The yeast strain Moniliella spathulata SBUG-Y 2180 was isolated from oil-contaminated soil at the Tengiz oil field in the Atyrau region of Kazakhstan on the basis of its unique ability to use crude oil and its components as the sole carbon and energy source. This yeast used a large number of hydrocarbons as substrates (more than 150), including n-alkanes with chain lengths ranging from C10 to C32, monomethyl- and monoethyl-substituted alkanes (C9-C23), and n-alkylcyclo alkanes with alkyl chain lengths from 3 to 24 carbon atoms as well as substituted monoaromatic and diaromatic hydrocarbons. Metabolism of this huge range of hydrocarbon substrates produced a very large number of aliphatic, alicyclic, and aromatic acids. Fifty-one of these were identified by GC/MS analyses. This is the first report of the degradation and formation of such a large number of compounds by a yeast. Inoculation of barley seeds with M. spathulata SBUG-Y 2180 had a positive effect on shoot and root development of plants grown in oil-contaminated sand, pointing toward potential applications of the yeast in bioremediation of polluted soils. KEY POINTS: ⢠Moniliella spathulata an oil-degrading yeast ⢠Increase of the growth of barley.
Asunto(s)
Hordeum , Petróleo , Contaminantes del Suelo , Basidiomycota , Biodegradación Ambiental , Hidrocarburos , Saccharomyces cerevisiae , SueloRESUMEN
Comparative analyses determined the relationship between the structure of bisphenol A (BPA) as well as of seven bisphenol analogues (bisphenol B (BPB), bisphenol C (BPC), bisphenol E (BPE), bisphenol F (BPF), bisphenol Z (BPZ), bisphenol AP (BPAP), bisphenol PH (BPPH)) and their biotransformability by the biphenyl-degrading bacterium Cupriavidus basilensis SBUG 290. All bisphenols were substrates for bacterial transformation with conversion rates ranging from 6 to 98% within 216 h and 36 different metabolites were characterized. Transformation by biphenyl-grown cells comprised four different pathways: (a) formation of ortho-hydroxylated bisphenols, hydroxylating either one or both phenols of the compounds; (b) ring fission; (c) transamination followed by acetylation or dimerization; and (d) oxidation of ring substituents, such as methyl groups and aromatic ring systems, present on the 3-position. However, the microbial attack of bisphenols by C. basilensis was limited to the phenol rings and its substituents, while substituents on the carbon bridge connecting the rings were not oxidized. All bisphenol analogues with modifications at the carbon bridge could be oxidized up to ring cleavage, while substituents at the 3-position of the phenol ring other than hydroxyl groups did not allow this reaction. Replacing one methyl group at the carbon bridge of BPA by a hydrophobic aromatic or alicyclic ring system inhibited both dimerization and transamination followed by acetylation. While most of the bisphenol analogues exhibited estrogenic activity, four biotransformation products tested were not estrogenically active.
Asunto(s)
Compuestos de Bencidrilo/metabolismo , Biotransformación , Cupriavidus/metabolismo , Compuestos de Bencidrilo/clasificación , Ciclohexanos/metabolismo , Fenoles/metabolismo , Microbiología del Suelo , Relación Estructura-Actividad , Espectrometría de Masas en TándemRESUMEN
Research on methanogenic Archaea has experienced a revival, with many novel lineages of methanogens recently being found through cultivation and suggested via metagenomics approaches, respectively. Most of these lineages comprise Archaea (potentially) capable of methanogenesis from methylated compounds, a pathway that had previously received comparably little attention. In this review, we provide an overview of these new lineages with a focus on the Methanomassiliicoccales. These lack the Wood-Ljungdahl pathway and employ a hydrogen-dependent methylotrophic methanogenesis pathway fundamentally different from traditional methylotrophic methanogens. Several archaeal candidate lineages identified through metagenomics, such as the Ca. Verstraetearchaeota and Ca. Methanofastidiosa, encode genes for a methylotrophic methanogenesis pathway similar to the Methanomassiliicoccales. Thus, the latter are emerging as a model system for physiological, biochemical and ecological studies of hydrogen-dependent methylotrophic methanogens. Methanomassiliicoccales occur in a large variety of anoxic habitats including wetlands and animal intestinal tracts, i.e. in the major natural and anthropogenic sources of methane emissions, respectively. Especially in ruminant animals, they likely are among the major methane producers. Taken together, (hydrogen-dependent) methylotrophic methanogens are much more diverse and widespread than previously thought. Considering the role of methane as potent greenhouse gas, resolving the methanogenic nature of a broad range of putative novel methylotrophic methanogens and assessing their role in methane emitting environments are pressing issues for future research on methanogens.
Asunto(s)
Archaea/fisiología , Metano/metabolismo , Animales , Archaea/genética , Archaea/metabolismo , Ciclo del Carbono , Genes Arqueales , Hidrógeno/metabolismo , Rumiantes , HumedalesRESUMEN
Bacteria and fungi were isolated from eight different soil samples from different regions in Kazakhstan contaminated with oil or salt or aromatic compounds. For the isolation of the organisms, we used, on the one hand, typical hydrocarbons such as the well utilizable aliphatic alkane tetradecane, the hardly degradable multiple-branched alkane pristane, and the biaromatic compound biphenyl as enrichment substrates. On the other hand, we also used oxygenated derivatives of alicyclic and monoaromatic hydrocarbons, such as cyclohexanone and p-tert-amylphenol, which are known as problematic pollutants. Seventy-nine bacterial and fungal strains were isolated, and 32 of them that were clearly able to metabolize some of these substrates, as tested by HPLC-UV/Vis and GC-MS analyses, were characterized taxonomically by DNA sequencing. Sixty-two percent of the 32 isolated strains from 14 different genera belong to well-described hydrocarbon degraders like some Rhodococci as well as Acinetobacter, Pseudomonas, Fusarium, Candida, and Yarrowia species. However, species of the bacterial genus Curtobacterium, the yeast genera Lodderomyces and Pseudozyma, as well as the filamentous fungal genera Purpureocillium and Sarocladium, which have rarely been described as hydrocarbon degrading, were isolated and shown to be efficient tetradecane degraders, mostly via monoterminal oxidation. Pristane was exclusively degraded by Rhodococcus isolates. Candida parapsilosis, Fusarium oxysporum, Fusarium solani, and Rhodotorula mucilaginosa degraded cyclohexanone, and in doing so accumulate ε-caprolactone or hexanedioic acid as metabolites. Biphenyl was transformed by Pseudomonas/Stenotrophomonas isolates. When p-tert-amylphenol was used as growth substrate, none of the isolated strains were able to use it.
Asunto(s)
Bacterias/metabolismo , Hongos/metabolismo , Hidrocarburos/metabolismo , Petróleo/microbiología , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Biodegradación Ambiental , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificaciónRESUMEN
Helminth infections in children are associated with impaired cognitive development; however, the biological mechanisms for this remain unclear. Using a murine model of gastrointestinal helminth infection, we demonstrate that early-life exposure to helminths promotes local and systemic inflammatory responses and transient changes in the gastrointestinal microbiome. Behavioral and cognitive analyses performed 9-months postinfection revealed deficits in spatial recognition memory and an anxiety-like behavioral phenotype in worm-infected mice, which was associated with neuropathology and increased microglial activation within the brain. This study demonstrates a previously unrecognized mechanism through which helminth infections may influence cognitive function, via perturbations in the gut-immune-brain axis.
Asunto(s)
Conducta Animal/fisiología , Encéfalo/parasitología , Tracto Gastrointestinal/parasitología , Helmintiasis/complicaciones , Animales , Ansiedad/parasitología , Modelos Animales de Enfermedad , Helmintiasis/parasitología , Helmintos/patogenicidad , Masculino , Trastornos de la Memoria/parasitología , Ratones , Ratones Endogámicos C57BL , Neuropatología/métodosRESUMEN
Phototrophic biofilms are ubiquitous in freshwater and marine environments where they are critical for biogeochemical cycling, food webs and in industrial applications. In streams, phototrophic biofilms dominate benthic microbial life and harbour an immense prokaryotic and eukaryotic microbial biodiversity with biotic interactions across domains and trophic levels. Here, we examine how community structure and function of these biofilms respond to varying light availability, as the crucial energy source for phototrophic biofilms. Using metatranscriptomics, we found that under light limitation-dominant phototrophs, including diatoms and cyanobacteria, displayed a remarkable plasticity in their photosynthetic machinery manifested as higher abundance of messenger RNAs (mRNAs) involved in photosynthesis and chloroplast ribosomal RNA. Under higher light availability, bacterial mRNAs involved in phosphorus metabolism, mainly from Betaproteobacteria and Cyanobacteria, increased, likely compensating for nutrient depletion in thick biofilms with high biomass. Consumers, including diverse ciliates, displayed community shifts indicating preferential grazing on algae instead of bacteria under higher light. For the first time, we show that the functional integrity of stream biofilms under variable light availability is maintained by structure-function adaptations on several trophic levels. Our findings shed new light on complex biofilms, or "microbial jungles", where in analogy to forests, diverse and multitrophic level communities lend stability to ecosystem functioning. This multitrophic level perspective, coupling metatranscriptomics to process measurements, could advance understanding of microbial-driven ecosystems beyond biofilms, including planktonic and soil environments.
Asunto(s)
Biopelículas/crecimiento & desarrollo , Cianobacterias/crecimiento & desarrollo , Ecosistema , Fotosíntesis/genética , Biodiversidad , Biopelículas/efectos de la radiación , Biomasa , Cianobacterias/genética , Cianobacterias/efectos de la radiación , Agua Dulce , Fósforo/metabolismo , Procesos Fototróficos/efectos de la radiación , ARN Mensajero/genética , RíosRESUMEN
Climate change in Arctic ecosystems fosters permafrost thaw and makes massive amounts of ancient soil organic carbon (OC) available to microbial breakdown. However, fractions of the organic matter (OM) may be protected from rapid decomposition by their association with minerals. Little is known about the effects of mineral-organic associations (MOA) on the microbial accessibility of OM in permafrost soils and it is not clear which factors control its temperature sensitivity. In order to investigate if and how permafrost soil OC turnover is affected by mineral controls, the heavy fraction (HF) representing mostly MOA was obtained by density fractionation from 27 permafrost soil profiles of the Siberian Arctic. In parallel laboratory incubations, the unfractionated soils (bulk) and their HF were comparatively incubated for 175 days at 5 and 15°C. The HF was equivalent to 70 ± 9% of the bulk CO2 respiration as compared to a share of 63 ± 1% of bulk OC that was stored in the HF. Significant reduction of OC mineralization was found in all treatments with increasing OC content of the HF (HF-OC), clay-size minerals and Fe or Al oxyhydroxides. Temperature sensitivity (Q10) decreased with increasing soil depth from 2.4 to 1.4 in the bulk soil and from 2.9 to 1.5 in the HF. A concurrent increase in the metal-to-HF-OC ratios with soil depth suggests a stronger bonding of OM to minerals in the subsoil. There, the younger 14 C signature in CO2 than that of the OC indicates a preferential decomposition of the more recent OM and the existence of a MOA fraction with limited access of OM to decomposers. These results indicate strong mineral controls on the decomposability of OM after permafrost thaw and on its temperature sensitivity. Thus, we here provide evidence that OM temperature sensitivity can be attenuated by MOA in permafrost soils.
Asunto(s)
Carbono/análisis , Minerales/análisis , Hielos Perennes , Suelo/química , Temperatura , Regiones Árticas , Cambio Climático , SiberiaRESUMEN
Arctic permafrost soils store large amounts of soil organic carbon (SOC) that could be released into the atmosphere as methane (CH4) in a future warmer climate. How warming affects the complex microbial network decomposing SOC is not understood. We studied CH4 production of Arctic peat soil microbiota in anoxic microcosms over a temperature gradient from 1 to 30 °C, combining metatranscriptomic, metagenomic, and targeted metabolic profiling. The CH4 production rate at 4 °C was 25% of that at 25 °C and increased rapidly with temperature, driven by fast adaptations of microbial community structure, metabolic network of SOC decomposition, and trophic interactions. Below 7 °C, syntrophic propionate oxidation was the rate-limiting step for CH4 production; above this threshold temperature, polysaccharide hydrolysis became rate limiting. This change was associated with a shift within the functional guild for syntrophic propionate oxidation, with Firmicutes being replaced by Bacteroidetes. Correspondingly, there was a shift from the formate- and H2-using Methanobacteriales to Methanomicrobiales and from the acetotrophic Methanosarcinaceae to Methanosaetaceae. Methanogenesis from methylamines, probably stemming from degradation of bacterial cells, became more important with increasing temperature and corresponded with an increased relative abundance of predatory protists of the phylum Cercozoa. We concluded that Arctic peat microbiota responds rapidly to increased temperatures by modulating metabolic and trophic interactions so that CH4 is always highly produced: The microbial community adapts through taxonomic shifts, and cascade effects of substrate availability cause replacement of functional guilds and functional changes within taxa.
Asunto(s)
Archaea/metabolismo , Calentamiento Global , Metano/biosíntesis , Microbiología del Suelo , Archaea/genética , Regiones Árticas , Carbono/química , Dióxido de Carbono/química , Cromatografía de Gases , Cromatografía Líquida de Alta Presión , Ecosistema , Ambiente , Fermentación , Perfilación de la Expresión Génica , Hidrógeno/química , Hidrólisis , Modelos Lineales , Microbiota , Polisacáridos/química , ARN Ribosómico/metabolismo , Suelo/química , Sphagnopsida , TemperaturaRESUMEN
In the intestinal tract, IL-22 activates STAT3 to promote intestinal epithelial cell (IEC) homeostasis and tissue healing. The mechanism has remained obscure, but we demonstrate that IL-22 acts via tyrosine kinase 2 (Tyk2), a member of the Jak family. Using a mouse model for colitis, we show that Tyk2 deficiency is associated with an altered composition of the gut microbiota and exacerbates inflammatory bowel disease. Colitic Tyk2(-/-) mice have less p-STAT3 in colon tissue and their IECs proliferate less efficiently. Tyk2-deficient primary IECs show reduced p-STAT3 in response to IL-22 stimulation, and expression of IL-22-STAT3 target genes is reduced in IECs from healthy and colitic Tyk2(-/-) mice. Experiments with conditional Tyk2(-/-) mice reveal that IEC-specific depletion of Tyk2 aggravates colitis. Disease symptoms can be alleviated by administering high doses of rIL-22-Fc, indicating that Tyk2 deficiency can be rescued via the IL-22 receptor complex. The pivotal function of Tyk2 in IL-22-dependent colitis was confirmed in Citrobacter rodentium-induced disease. Thus, Tyk2 protects against acute colitis in part by amplifying inflammation-induced epithelial IL-22 signaling to STAT3.
Asunto(s)
Colitis/inmunología , Interleucinas/inmunología , Mucosa Intestinal/inmunología , Transducción de Señal/inmunología , TYK2 Quinasa/inmunología , Animales , Citrobacter rodentium/inmunología , Colitis/genética , Colitis/patología , Infecciones por Enterobacteriaceae/genética , Infecciones por Enterobacteriaceae/inmunología , Infecciones por Enterobacteriaceae/patología , Interleucinas/genética , Mucosa Intestinal/patología , Síndrome de Job/genética , Síndrome de Job/inmunología , Síndrome de Job/patología , Ratones , Ratones Noqueados , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/inmunología , Transducción de Señal/genética , TYK2 Quinasa/deficiencia , TYK2 Quinasa/genética , Interleucina-22RESUMEN
UNLABELLED: A new clade of archaea has recently been proposed to constitute the seventh methanogenic order, the Methanomassiliicoccales, which is related to the Thermoplasmatales and the uncultivated archaeal clades deep-sea hydrothermal vent Euryarchaeota group 2 and marine group II Euryarchaeota but only distantly related to other methanogens. In this study, we investigated the membrane lipid composition of Methanomassiliicoccus luminyensis, the sole cultured representative of this seventh order. The lipid inventory of M. luminyensis comprises a unique assemblage of novel lipids as well as lipids otherwise typical for thermophilic, methanogenic, or halophilic archaea. For instance, glycerol sesterpanyl-phytanyl diether core lipids found mainly in halophilic archaea were detected, and so were compounds bearing either heptose or methoxylated glycosidic head groups, neither of which have been reported so far for other archaea. The absence of quinones or methanophenazines is consistent with a biochemistry of methanogenesis different from that of the methanophenazine-containing methylotrophic methanogens. The most distinctive characteristic of the membrane lipid composition of M. luminyensis, however, is the presence of tetraether lipids in which one glycerol backbone is replaced by either butane- or pentanetriol, i.e., lipids recently discovered in marine sediments. Butanetriol dibiphytanyl glycerol tetraether (BDGT) constitutes the most abundant core lipid type (>50% relative abundance) in M. luminyensis We have thus identified a source for these unusual orphan lipids. The complementary analysis of diverse marine sediment samples showed that BDGTs are widespread in anoxic layers, suggesting an environmental significance of Methanomassiliicoccales and/or related BDGT producers beyond gastrointestinal tracts. IMPORTANCE: Cellular membranes of members of all three domains of life, Archaea, Bacteria, and Eukarya, are largely formed by lipids in which glycerol serves as backbone for the hydrophobic alkyl chains. Recently, however, archaeal tetraether lipids with either butanetriol or pentanetriol as a backbone were identified in marine sediments and attributed to uncultured sediment-dwelling archaea. Here we show that the butanetriol-based dibiphytanyl tetraethers constitute the major lipids in Methanomassiliicoccus luminyensis, currently the only isolate of the novel seventh order of methanogens. Given the absence of these lipids in a large set of archaeal isolates, these compounds may be diagnostic for the Methanomassiliicoccales and/or closely related archaea.
Asunto(s)
Butanos/metabolismo , Euryarchaeota/aislamiento & purificación , Euryarchaeota/metabolismo , Metabolismo de los Lípidos , Metanol/metabolismo , Agua de Mar/microbiología , Euryarchaeota/clasificación , Euryarchaeota/genética , Sedimentos Geológicos/microbiología , Lípidos/química , FilogeniaRESUMEN
Soils host the most complex communities on Earth, including the most diverse and abundant eukaryotes, i.e. heterotrophic protists. Protists are generally considered as bacterivores, but evidence for negative interactions with nematodes both from laboratory and field studies exist. However, direct impacts of protists on nematodes remain unknown. We isolated the soil-borne testate amoeba Cryptodifflugia operculata and found a highly specialized and effective pack-hunting strategy to prey on bacterivorous nematodes. Enhanced reproduction in presence of prey nematodes suggests a beneficial predatory life history of these omnivorous soil amoebae. Cryptodifflugia operculata appears to selectively impact the nematode community composition as reductions of nematode numbers were species specific. Furthermore, we investigated 12 soil metatranscriptomes from five distinct locations throughout Europe for 18S ribosomal RNA transcripts of C. operculata. The presence of C. operculata transcripts in all samples, representing up to 4% of the active protist community, indicates a potential ecological importance of nematophagy performed by C. operculata in soil food webs. The unique pack-hunting strategy on nematodes that was previously unknown from protists, together with molecular evidence that these pack hunters are likely to be abundant and widespread in soils, imply a considerable importance of the hitherto neglected trophic link 'nematophagous protists' in soil food webs.
Asunto(s)
Amoeba/patogenicidad , Interacciones Huésped-Parásitos/fisiología , Nematodos/parasitología , Conducta Predatoria/fisiología , Suelo/parasitología , Amoeba/genética , Amoeba/aislamiento & purificación , Animales , Europa (Continente) , Cadena Alimentaria , ARN Ribosómico 18S/genética , Especificidad de la Especie , Transcriptoma/genéticaRESUMEN
The contribution of the innate immune system to inflammatory bowel disease (IBD) is under intensive investigation. Research in animal models has demonstrated that type I interferons (IFN-Is) protect from IBD. In contrast, studies of patients with IBD have produced conflicting results concerning the therapeutic potential of IFN-Is. Here, we present data suggesting that IFN-Is play dual roles as regulators of intestinal inflammation in dextran sodium sulfate (DSS)-treated C57BL/6 mice. Though IFN-Is reduced acute intestinal damage and the abundance of colitis-associated intestinal bacteria caused by treatment with a high dose of DSS, they also inhibited the resolution of inflammation after DSS treatment. IFN-Is played an anti-inflammatory role by suppressing the release of IL-1ß from the colon MHC class II(+) cells. Consistently, IL-1 receptor blockade reduced the severity of inflammation in IFN-I receptor-deficient mice and myeloid cell-restricted ablation of the IFN-I receptor was detrimental. The proinflammatory role of IFN-Is during recovery from DSS treatment was caused by IFN-I-dependent cell apoptosis as well as an increase in chemokine production and infiltrating inflammatory monocytes and neutrophils. Thus, IFN-Is play opposing roles in specific phases of intestinal injury and inflammation, which may be important for guiding treatment strategies in patients.
Asunto(s)
Colitis/inmunología , Enfermedades Inflamatorias del Intestino/inmunología , Interferón Tipo I/inmunología , Intestinos/inmunología , Animales , Colitis/inducido químicamente , Colitis/genética , Colitis/patología , Sulfato de Dextran/toxicidad , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/inmunología , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Enfermedades Inflamatorias del Intestino/inducido químicamente , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/patología , Interferón Tipo I/genética , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Intestinos/patología , Macrófagos/inmunología , Macrófagos/patología , Ratones , Ratones Noqueados , Infiltración Neutrófila/efectos de los fármacos , Infiltración Neutrófila/genética , Infiltración Neutrófila/inmunología , Neutrófilos/inmunología , Neutrófilos/patologíaRESUMEN
Glaciers harbour diverse microorganisms, which upon ice melt can be released downstream. In glacier-fed streams microorganisms can attach to stones or sediments to form benthic biofilms. We used 454-pyrosequencing to explore the bulk (16S rDNA) and putatively active (16S rRNA) microbial communities of stone and sediment biofilms across 26 glacier-fed streams. We found differences in community composition between bulk and active communities among streams and a stronger congruence between biofilm types. Relative abundances of rRNA and rDNA were positively correlated across different taxa and taxonomic levels, but at lower taxonomic levels, the higher abundance in either the active or the bulk communities became more apparent. Here, environmental variables played a minor role in structuring active communities. However, we found a large number of rare taxa with higher relative abundances in rRNA compared with rDNA. This suggests that rare taxa contribute disproportionately to microbial community dynamics in glacier-fed streams. Our findings propose that high community turnover, where taxa repeatedly enter and leave the 'seed bank', contributes to the maintenance of microbial biodiversity in harsh ecosystems with continuous environmental perturbations, such as glacier-fed streams.
Asunto(s)
Bacterias/clasificación , Cubierta de Hielo/microbiología , Filogenia , Microbiología del Agua , Bacterias/genética , Biodiversidad , Biopelículas/crecimiento & desarrollo , Ecosistema , Sedimentos Geológicos/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento , ARN Ribosómico 16S/genéticaRESUMEN
Deep-sea hydrothermal vents are unique environments on Earth, as they host chemosynthetic ecosystems fuelled by geochemical energy with chemolithoautotrophic microorganisms at the basis of the food webs. Whereas discrete high-temperature venting systems have been studied extensively, the microbiotas associated with low-temperature diffuse venting are not well understood. We analysed the structure and functioning of microbial communities in two diffuse venting sediments from the Jan Mayen vent fields in the Norwegian-Greenland Sea, applying an integrated 'omics' approach combining metatranscriptomics, metaproteomics and metagenomics. Polymerase chain reaction-independent three-domain community profiling showed that the two sediments hosted highly similar communities dominated by Epsilonproteobacteria, Deltaproteobacteria and Gammaproteobacteria, besides ciliates, nematodes and various archaeal taxa. Active metabolic pathways were identified through transcripts and peptides, with genes of sulphur and methane oxidation, and carbon fixation pathways highly expressed, in addition to genes of aerobic and anaerobic (nitrate and sulphate) respiratory chains. High expression of chemotaxis and flagella genes reflected a lifestyle in a dynamic habitat rich in physico-chemical gradients. The major metabolic pathways could be assigned to distinct taxonomic groups, thus enabling hypotheses about the function of the different prokaryotic and eukaryotic taxa. This study advances our understanding of the functioning of microbial communities in diffuse hydrothermal venting sediments.