Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 182(5): 1232-1251.e22, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32822576

RESUMEN

Lung cancer, the leading cause of cancer mortality, exhibits heterogeneity that enables adaptability, limits therapeutic success, and remains incompletely understood. Single-cell RNA sequencing (scRNA-seq) of metastatic lung cancer was performed using 49 clinical biopsies obtained from 30 patients before and during targeted therapy. Over 20,000 cancer and tumor microenvironment (TME) single-cell profiles exposed a rich and dynamic tumor ecosystem. scRNA-seq of cancer cells illuminated targetable oncogenes beyond those detected clinically. Cancer cells surviving therapy as residual disease (RD) expressed an alveolar-regenerative cell signature suggesting a therapy-induced primitive cell-state transition, whereas those present at on-therapy progressive disease (PD) upregulated kynurenine, plasminogen, and gap-junction pathways. Active T-lymphocytes and decreased macrophages were present at RD and immunosuppressive cell states characterized PD. Biological features revealed by scRNA-seq were biomarkers of clinical outcomes in independent cohorts. This study highlights how therapy-induced adaptation of the multi-cellular ecosystem of metastatic cancer shapes clinical outcomes.


Asunto(s)
Neoplasias Pulmonares/genética , Biomarcadores de Tumor/genética , Línea Celular , Ecosistema , Humanos , Neoplasias Pulmonares/patología , Macrófagos/patología , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Linfocitos T/patología , Microambiente Tumoral/genética
2.
J Biol Chem ; 299(6): 104789, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37149146

RESUMEN

Sprouty-related EVH-1 domain-containing (SPRED) proteins are a family of proteins that negatively regulate the RAS-Mitogen-Activated Protein Kinase (MAPK) pathway, which is involved in the regulation of the mitogenic response and cell proliferation. However, the mechanism by which these proteins affect RAS-MAPK signaling has not been elucidated. Patients with mutations in SPRED give rise to unique disease phenotypes; thus, we hypothesized that distinct interactions across SPRED proteins may account for alternative nodes of regulation. To characterize the SPRED interactome and evaluate how members of the SPRED family function through unique binding partners, we performed affinity purification mass spectrometry. We identified 90-kDa ribosomal S6 kinase 2 (RSK2) as a specific interactor of SPRED2 but not SPRED1 or SPRED3. We identified that the N-terminal kinase domain of RSK2 mediates the interaction between amino acids 123 to 201 of SPRED2. Using X-ray crystallography, we determined the structure of the SPRED2-RSK2 complex and identified the SPRED2 motif, F145A, as critical for interaction. We found that the formation of this interaction is regulated by MAPK signaling events. We also find that this interaction between SPRED2 and RSK2 has functional consequences, whereby the knockdown of SPRED2 resulted in increased phosphorylation of RSK substrates, YB1 and CREB. Furthermore, SPRED2 knockdown hindered phospho-RSK membrane and nuclear subcellular localization. We report that disruption of the SPRED2-RSK complex has effects on RAS-MAPK signaling dynamics. Our analysis reveals that members of the SPRED family have unique protein binding partners and describes the molecular and functional determinants of SPRED2-RSK2 complex dynamics.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos , Proteínas Represoras , Proteínas Quinasas S6 Ribosómicas 90-kDa , Transducción de Señal , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Proteínas Quinasas S6 Ribosómicas 90-kDa/química , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Transducción de Señal/genética , Humanos , Línea Celular , Dominios Proteicos , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Técnicas de Silenciamiento del Gen , Transporte de Proteínas/genética , Unión Proteica , Estructura Terciaria de Proteína , Modelos Moleculares , Neurofibromina 1/metabolismo
3.
Nucleic Acids Res ; 50(10): 5772-5792, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35556128

RESUMEN

Axonally synthesized proteins support nerve regeneration through retrograde signaling and local growth mechanisms. RNA binding proteins (RBP) are needed for this and other aspects of post-transcriptional regulation of neuronal mRNAs, but only a limited number of axonal RBPs are known. We used targeted proteomics to profile RBPs in peripheral nerve axons. We detected 76 proteins with reported RNA binding activity in axoplasm, and levels of several change with axon injury and regeneration. RBPs with altered levels include KHSRP that decreases neurite outgrowth in developing CNS neurons. Axonal KHSRP levels rapidly increase after injury remaining elevated up to 28 days post axotomy. Khsrp mRNA localizes into axons and the rapid increase in axonal KHSRP is through local translation of Khsrp mRNA in axons. KHSRP can bind to mRNAs with 3'UTR AU-rich elements and targets those transcripts to the cytoplasmic exosome for degradation. KHSRP knockout mice show increased axonal levels of KHSRP target mRNAs, Gap43, Snap25, and Fubp1, following sciatic nerve injury and these mice show accelerated nerve regeneration in vivo. Together, our data indicate that axonal translation of the RNA binding protein Khsrp mRNA following nerve injury serves to promote decay of other axonal mRNAs and slow axon regeneration.


Asunto(s)
Axones , Regeneración Nerviosa , Regiones no Traducidas 3'/genética , Animales , Axones/metabolismo , Ratones , Regeneración Nerviosa/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ratas , Ratas Sprague-Dawley , Nervio Ciático/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34380736

RESUMEN

RAS proteins are molecular switches that interact with effector proteins when bound to guanosine triphosphate, stimulating downstream signaling in response to multiple stimuli. Although several canonical downstream effectors have been extensively studied and tested as potential targets for RAS-driven cancers, many of these remain poorly characterized. In this study, we undertook a biochemical and structural approach to further study the role of Sin1 as a RAS effector. Sin1 interacted predominantly with KRAS isoform 4A in cells through an atypical RAS-binding domain that we have characterized by X-ray crystallography. Despite the essential role of Sin1 in the assembly and activity of mTORC2, we find that the interaction with RAS is not required for these functions. Cells and mice expressing a mutant of Sin1 that is unable to bind RAS are proficient for activation and assembly of mTORC2. Our results suggest that Sin1 is a bona fide RAS effector that regulates downstream signaling in an mTORC2-independent manner.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Regulación de la Expresión Génica/fisiología , Células HEK293 , Humanos , Espectrometría de Masas , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Modelos Moleculares , Conformación Proteica , Isoformas de Proteínas , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal
5.
Proteomics ; 23(7-8): e2200021, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36228107

RESUMEN

Early events associated with chronic inflammation and cancer involve significant remodeling of the extracellular matrix (ECM), which greatly affects its composition and functional properties. Using lung squamous cell carcinoma (LSCC), a chronic inflammation-associated cancer (CIAC), we optimized a robust proteomic pipeline to discover potential biomarker signatures and protein changes specifically in the stroma. We combined ECM enrichment from fresh human tissues, data-independent acquisition (DIA) strategies, and stringent statistical processing to analyze "Tumor" and matched adjacent histologically normal ("Matched Normal") tissues from patients with LSCC. Overall, 1802 protein groups were quantified with at least two unique peptides, and 56% of those proteins were annotated as "extracellular." Confirming dramatic ECM remodeling during CIAC progression, 529 proteins were significantly altered in the "Tumor" compared to "Matched Normal" tissues. The signature was typified by a coordinated loss of basement membrane proteins and small leucine-rich proteins. The dramatic increase in the stromal levels of SERPINH1/heat shock protein 47, that was discovered using our ECM proteomic pipeline, was validated by immunohistochemistry (IHC) of "Tumor" and "Matched Normal" tissues, obtained from an independent cohort of LSCC patients. This integrated workflow provided novel insights into ECM remodeling during CIAC progression, and identified potential biomarker signatures and future therapeutic targets.


Asunto(s)
Carcinoma de Células Escamosas , Proteómica , Humanos , Matriz Extracelular/metabolismo , Pulmón/metabolismo , Carcinoma de Células Escamosas/patología , Inflamación/metabolismo , Proteínas de la Matriz Extracelular/metabolismo
6.
Mod Pathol ; 35(10): 1349-1361, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35590107

RESUMEN

Neuroendocrine carcinomas (NEC) of the breast are exceedingly rare tumors, which are classified in the WHO system as small cell (SCNEC) and large cell (LCNEC) carcinoma based on indistinguishable features from their lung counterparts. In contrast to lung and enteropancreatic NEC, the genomics of breast NEC have not been well-characterized. In this study, we examined the clinicopathologic, immunohistochemical, and genetic features of 13 breast NEC (7 SCNEC, 4 LCNEC, 2 NEC with ambiguous small versus large cell morphology [ANEC]). Co-alterations of TP53 and RB1 were identified in 86% (6/7) SCNEC, 100% (2/2) ANEC, and 50% (2/4) LCNEC. The one SCNEC without TP53/RB1 alteration had other p53 pathway aberrations (MDM2 and MDM4 amplification) and was immunohistochemically RB negative. PIK3CA/PTEN pathway alterations and ZNF703 amplifications were each identified in 46% (6/13) NEC. Two tumors (1 SCNEC, 1 LCNEC) were CDH1 mutated. By immunohistochemistry, 100% SCNEC (6/6) and ANEC (2/2) and 50% (2/4) LCNEC (83% NEC) showed RB loss, compared to 0% (0/8) grade 3 neuroendocrine tumors (NET) (p < 0.001) and 38% (36/95) grade 3 invasive ductal carcinomas of no special type (IDC-NST) (p = 0.004). NEC were also more often p53 aberrant (60% vs 0%, p = 0.013), ER negative (69% vs 0%, p = 0.005), and GATA3 negative (67% vs 0%, p = 0.013) than grade 3 NET. Two mixed NEC had IDC-NST components, and 69% (9/13) of tumors were associated with carcinoma in situ (6 neuroendocrine DCIS, 2 non-neuroendocrine DCIS, 1 non-neuroendocrine LCIS). NEC and IDC-NST components of mixed tumors were clonally related and immunophenotypically distinct, lacking ER and GATA3 expression in NEC relative to IDC-NST, with RB loss only in NEC of one ANEC. The findings provide insight into the pathogenesis of breast NEC, underscore their classification as a distinct tumor type, and highlight genetic similarities to extramammary NEC, including highly prevalent p53/RB pathway aberrations in SCNEC.


Asunto(s)
Neoplasias de la Mama , Carcinoma Intraductal no Infiltrante , Carcinoma de Células Grandes , Carcinoma Neuroendocrino , Tumores Neuroendocrinos , Neoplasias de la Mama/genética , Carcinoma de Células Grandes/genética , Carcinoma de Células Grandes/patología , Carcinoma Neuroendocrino/patología , Proteínas Portadoras , Proteínas de Ciclo Celular , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Femenino , Humanos , Tumores Neuroendocrinos/patología , Proteínas Proto-Oncogénicas/metabolismo , Proteína p53 Supresora de Tumor/genética
7.
Kidney Int ; 100(6): 1303-1315, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34352311

RESUMEN

Kidney failure is common in patients with Coronavirus Disease-19 (COVID-19), resulting in increased morbidity and mortality. In an international collaboration, 284 kidney biopsies were evaluated to improve understanding of kidney disease in COVID-19. Diagnoses were compared to five years of 63,575 native biopsies prior to the pandemic and 13,955 allograft biopsies to identify diseases that have increased in patients with COVID-19. Genotyping for APOL1 G1 and G2 alleles was performed in 107 African American and Hispanic patients. Immunohistochemistry for SARS-CoV-2 was utilized to assess direct viral infection in 273 cases along with clinical information at the time of biopsy. The leading indication for native biopsy was acute kidney injury (45.4%), followed by proteinuria with or without concurrent acute kidney injury (42.6%). There were more African American patients (44.6%) than patients of other ethnicities. The most common diagnosis in native biopsies was collapsing glomerulopathy (25.8%), which was associated with high-risk APOL1 genotypes in 91.7% of cases. Compared to the five-year biopsy database, the frequency of myoglobin cast nephropathy and proliferative glomerulonephritis with monoclonal IgG deposits was also increased in patients with COVID-19 (3.3% and 1.7%, respectively), while there was a reduced frequency of chronic conditions (including diabetes mellitus, IgA nephropathy, and arterionephrosclerosis) as the primary diagnosis. In transplants, the leading indication was acute kidney injury (86.4%), for which rejection was the predominant diagnosis (61.4%). Direct SARS-CoV-2 viral infection was not identified. Thus, our multi-center large case series identified kidney diseases that disproportionately affect patients with COVID-19 and demonstrated a high frequency of APOL1 high-risk genotypes within this group, with no evidence of direct viral infection within the kidney.


Asunto(s)
Lesión Renal Aguda , COVID-19 , Apolipoproteína L1/genética , Humanos , Riñón , Estudios Retrospectivos , SARS-CoV-2
8.
Proc Natl Acad Sci U S A ; 115(10): 2353-2358, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29467287

RESUMEN

Regulation of gene expression at the level of protein synthesis is a crucial element in driving how the genetic landscape is expressed. However, we are still limited in technologies that can quantitatively capture the immediate proteomic changes that allow cells to respond to specific stimuli. Here, we present a method to capture and identify nascent proteomes in situ across different cell types without disturbing normal growth conditions, using O-propargyl-puromycin (OPP). Cell-permeable OPP rapidly labels nascent elongating polypeptides, which are subsequently conjugated to biotin-azide, using click chemistry, and captured with streptavidin beads, followed by digestion and analysis, using liquid chromatography-tandem mass spectrometry. Our technique of OPP-mediated identification (OPP-ID) allows detection of widespread proteomic changes within a short 2-hour pulse of OPP. We illustrate our technique by recapitulating alterations of proteomic networks induced by a potent mammalian target of rapamycin inhibitor, MLN128. In addition, by employing OPP-ID, we identify more than 2,100 proteins and uncover distinct protein networks underlying early erythroid progenitor and differentiation states not amenable to alternative approaches such as amino acid analog labeling. We present OPP-ID as a method to quantitatively identify nascent proteomes across an array of biological contexts while preserving the subtleties directing signaling in the native cellular environment.


Asunto(s)
Diferenciación Celular/fisiología , Proteoma/análisis , Proteómica/métodos , Transducción de Señal/fisiología , Cromatografía Liquida , Descubrimiento de Drogas , Humanos , Células K562 , Biosíntesis de Proteínas , Proteoma/química , Proteoma/metabolismo , Puromicina/análogos & derivados , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Espectrometría de Masas en Tándem
9.
J Cell Mol Med ; 24(1): 1087-1098, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31755214

RESUMEN

Cyclin-dependent kinase 7 (CDK7) is a protein kinase that plays a major role in transcription initiation. Yes-associated protein (YAP) is a main effector of the Hippo/YAP signalling pathway. Here, we investigated the role of CDK7 on YAP regulation in human malignant pleural mesothelioma (MPM). We found that in microarray samples of human MPM tissue, immunohistochemistry staining showed correlation between the expression level of CDK7 and YAP (n = 70, r = .513). In MPM cells, CDK7 expression level was significantly correlated with GTIIC reporter activity (r = .886, P = .019). Inhibition of CDK7 by siRNA decreased the YAP protein level and the GTIIC reporter activity in the MPM cell lines 211H, H290 and H2052. Degradation of the YAP protein was accelerated after CDK7 knockdown in 211H, H290 and H2052 cells. Inhibition of CDK7 reduced tumour cell migration and invasion, as well as tumorsphere formation ability. Restoration of the CDK7 gene rescued the YAP protein level and GTIIC reporter activity after siRNA knockdown in 211H and H2052 cells. Finally, we performed a co-immunoprecipitation analysis using an anti-YAP antibody and captured the CDK7 protein in 211H cells. Our results suggest that CDK7 inhibition reduces the YAP protein level by promoting its degradation and suppresses the migration and invasion of MPM cells. Cyclin-dependent kinase 7 may be a promising therapeutic target for MPM.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Biomarcadores de Tumor/metabolismo , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Regulación Neoplásica de la Expresión Génica , Mesotelioma/patología , Neoplasias Pleurales/patología , Factores de Transcripción/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis , Biomarcadores de Tumor/genética , Estudios de Casos y Controles , Proliferación Celular , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Regulación hacia Abajo , Humanos , Mesotelioma/genética , Mesotelioma/metabolismo , Neoplasias Pleurales/genética , Neoplasias Pleurales/metabolismo , Pronóstico , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Células Tumorales Cultivadas , Proteínas Señalizadoras YAP , Quinasa Activadora de Quinasas Ciclina-Dependientes
10.
Mol Cell Proteomics ; 16(1): 39-56, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27834733

RESUMEN

Glioblastoma multiformes (GBMs) are high-grade astrocytomas and the most common brain malignancies. Primary GBMs are often associated with disturbed RAS signaling, and expression of oncogenic HRAS results in a malignant phenotype in glioma cell lines. Secondary GBMs arise from lower-grade astrocytomas, have slower progression than primary tumors, and contain IDH1 mutations in over 70% of cases. Despite significant amount of accumulating genomic and transcriptomic data, the fundamental mechanistic differences of gliomagenesis in these two types of high-grade astrocytoma remain poorly understood. Only a few studies have attempted to investigate the proteome, phosphorylation signaling, and epigenetic regulation in astrocytoma. In the present study, we applied quantitative phosphoproteomics to identify the main signaling differences between oncogenic HRAS and mutant IDH1-driven glioma cells as models of primary and secondary GBM, respectively. Our analysis confirms the driving roles of the MAPK and PI3K/mTOR signaling pathways in HRAS driven cells and additionally uncovers dysregulation of other signaling pathways. Although a subset of the signaling changes mediated by HRAS could be reversed by a MEK inhibitor, dual inhibition of MEK and PI3K resulted in more complete reversal of the phosphorylation patterns produced by HRAS expression. In contrast, cells expressing mutant IDH1 did not show significant activation of MAPK or PI3K/mTOR pathways. Instead, global downregulation of protein expression was observed. Targeted proteomic analysis of histone modifications identified significant histone methylation, acetylation, and butyrylation changes in the mutant IDH1 expressing cells, consistent with a global transcriptional repressive state. Our findings offer novel mechanistic insight linking mutant IDH1 associated inhibition of histone demethylases with specific histone modification changes to produce global transcriptional repression in secondary glioblastoma. Our proteomic datasets are available for download and provide a comprehensive catalogue of alterations in protein abundance, phosphorylation, and histone modifications in oncogenic HRAS and IDH1 driven astrocytoma cells beyond the transcriptomic level.


Asunto(s)
Neoplasias Encefálicas/patología , Glioblastoma/patología , Isocitrato Deshidrogenasa/genética , Fosfoproteínas/análisis , Proteómica/métodos , Proteínas Proto-Oncogénicas p21(ras)/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Glioblastoma/genética , Glioblastoma/metabolismo , Código de Histonas , Histonas/metabolismo , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutación , Fosfatidilinositol 3-Quinasas/metabolismo , Mapas de Interacción de Proteínas , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
11.
Mol Cell Proteomics ; 16(2): 265-277, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27940637

RESUMEN

Reliable quantitation of protein abundances in defined sets of cellular proteins is critical to numerous biological applications. Traditional immunodetection-based methods are limited by the quality and availability of specific antibodies, especially for site-specific post-translational modifications. Targeted proteomic methods, including the recently developed parallel reaction monitoring (PRM) mass spectrometry, have enabled accurate quantitative measurements of up to a few hundred specific target peptides. However, the degree of practical multiplexing in label-free PRM workflows remains a significant limitation for the technique. Here we present a strategy for significantly increasing multiplexing in label-free PRM that takes advantage of the superior separation characteristics and retention time stability of meter-scale monolithic silica-C18 column-based chromatography. We show the utility of the approach in quantifying kinase abundances downstream of previously developed active kinase enrichment methodology based on multidrug inhibitor beads. We examine kinase activation dynamics in response to three different MAP kinase inhibitors in colorectal carcinoma cells and demonstrate reliable quantitation of over 800 target peptides from over 150 kinases in a single label-free PRM run. The kinase activity profiles obtained from these analyses reveal compensatory activation of TGF-ß family receptors as a response to MAPK blockade. The gains achieved using this label-free PRM multiplexing strategy will benefit a wide array of biological applications.


Asunto(s)
Neoplasias Colorrectales/enzimología , Espectrometría de Masas/métodos , Fosfotransferasas/análisis , Inhibidores de Proteínas Quinasas/farmacología , Proteómica/métodos , Animales , Línea Celular Tumoral , Cromatografía Liquida/métodos , Activación Enzimática , Células HCT116 , Humanos , Ratones , Péptidos/análisis , Flujo de Trabajo
12.
J Cell Mol Med ; 22(6): 3073-3085, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29575527

RESUMEN

Yes-associated protein (YAP) is a main mediator of the Hippo pathway and promotes cancer development and progression in human lung cancer. We sought to determine whether inhibition of YAP suppresses metastasis of human lung adenocarcinoma in a murine model. We found that metastatic NSCLC cell lines H2030-BrM3(K-rasG12C mutation) and PC9-BrM3 (EGFRΔexon19 mutation) had a significantly decreased p-YAP(S127)/YAP ratio compared to parental H2030 (K-rasG12C mutation) and PC9 (EGFRΔexon19 mutation) cells (P < .05). H2030-BrM3 cells had significantly increased YAP mRNA and expression of Hippo downstream genes CTGF and CYR61 compared to parental H2030 cells (P < .05). Inhibition of YAP by short hairpin RNA (shRNA) and small interfering RNA (siRNA) significantly decreased mRNA expression in downstream genes CTGF and CYR61 in H2030-BrM3 cells (P < .05). In addition, inhibiting YAP by YAP shRNA significantly decreased migration and invasion abilities of H2030-BrM3 cells (P < .05). We are first to show that mice inoculated with YAP shRNA-transfected H2030-BrM3 cells had significantly decreased metastatic tumour burden and survived longer than control mice (P < .05). Collectively, our results suggest that YAP plays an important role in promoting lung adenocarcinoma brain metastasis and that direct inhibition of YAP by shRNA suppresses H2030-BrM3 cell brain metastasis in a murine model.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Adenocarcinoma del Pulmón/genética , Neoplasias Encefálicas/genética , Carcinogénesis/genética , Fosfoproteínas/genética , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/terapia , Animales , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/terapia , Línea Celular Tumoral , Factor de Crecimiento del Tejido Conjuntivo/genética , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/genética , Receptores ErbB/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Ratones , Mutación , Fosfoproteínas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , ARN Interferente Pequeño/administración & dosificación , Transducción de Señal , Factores de Transcripción , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas Señalizadoras YAP
13.
Oncologist ; 22(7): 768-773, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28507205

RESUMEN

A challenge in precision medicine requires identification of actionable driver mutations. Critical to such effort is the deployment of sensitive and well-validated assays for mutation detection. Although identification of such alterations within the tumor tissue remains the gold standard, many advanced non-small cell lung cancer cases have only limited tissue samples, derived from small biopsies or fine-needle aspirates, available for testing. More recently, noninvasive methods using either circulating tumor cells or tumor DNA (ctDNA) have become an alternative method for identifying molecular biomarkers and screening patients eligible for targeted therapies. In this article, we present a case of a 52-year-old never-smoking male who presented with widely metastatic atypical neuroendocrine tumor to the bones and the brain. Molecular genotyping using DNA harvested from a bone metastasis was unsuccessful due to limited material. Subsequent ctDNA analysis revealed an ALK translocation. The clinical significance of the mutation in this particular cancer type and therapeutic strategies are discussed. KEY POINTS: To our knowledge, this index case represents the first reported ALK translocation identified in an atypical carcinoid tumor.Liquid biopsy such as circulating tumor DNA is a feasible alternative platform for identifying sensitizing genomic alterations.Second-generation ALK inhibitors represent a new paradigm for treating ALK-positive patients with brain metastases.


Asunto(s)
Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/terapia , Tumores Neuroendocrinos/patología , Tumores Neuroendocrinos/terapia , Proteínas Tirosina Quinasas Receptoras/genética , Translocación Genética , Quinasa de Linfoma Anaplásico , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Humanos , Biopsia Líquida , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida/métodos , Tumores Neuroendocrinos/diagnóstico por imagen , Tumores Neuroendocrinos/genética
14.
Thorax ; 72(5): 424-429, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28082530

RESUMEN

BACKGROUND: Recent studies have suggested that non-definitive patterns on high-resolution CT (HRCT) scan provide sufficient diagnostic specificity to forgo surgical lung biopsy in the diagnosis of idiopathic pulmonary fibrosis (IPF). The objective of this study was to determine test characteristics of non-definitive HRCT patterns for identifying histopathological usual interstitial pneumonia (UIP). METHODS: Patients with biopsy-proven interstitial lung disease (ILD) and non-definitive HRCT scans were identified from two academic ILD centres. Test characteristics for HRCT patterns as predictors of UIP on surgical lung biopsy were derived and validated in independent cohorts. RESULTS: In the derivation cohort, 64/385 (17%) had possible UIP pattern on HRCT; 321/385 (83%) had inconsistent with UIP pattern. 113/385 (29%) patients had histopathological UIP pattern in the derivation cohort. Possible UIP pattern had a specificity of 91.2% (95% CI 87.2% to 94.3%) and a positive predictive value (PPV) of 62.5% (95% CI 49.5% to 74.3%) for UIP pattern on surgical lung biopsy. The addition of age, sex and total traction bronchiectasis score improved the PPV. Inconsistent with UIP pattern demonstrated poor PPV (22.7%, 95% CI 18.3% to 27.7%). HRCT pattern specificity was nearly identical in the validation cohort (92.7%, 95% CI 82.4% to 98.0%). The substantially higher prevalence of UIP pattern in the validation cohort improved the PPV of HRCT patterns. CONCLUSIONS: A possible UIP pattern on HRCT has high specificity for UIP on surgical lung biopsy, but PPV is highly dependent on underlying prevalence. Adding clinical and radiographic features to possible UIP pattern on HRCT may provide sufficient probability of histopathological UIP across prevalence ranges to change clinical decision-making.


Asunto(s)
Enfermedades Pulmonares Intersticiales/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Anciano , Biopsia , California , Femenino , Humanos , Enfermedades Pulmonares Intersticiales/patología , Masculino , Persona de Mediana Edad , Minnesota , Probabilidad , Estudios Prospectivos , Sensibilidad y Especificidad
16.
Semin Respir Crit Care Med ; 35(2): 201-12, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24668535

RESUMEN

A significant proportion of patients with autoimmune connective tissue disease (CTD) show lung involvement that results in clinical interstitial lung disease (ILD). Surgical lung biopsy is helpful for diagnosis of CTD-ILD in many cases. In this review, we discuss the histologic manifestations of different types of CTD-ILD, focusing on patterns of disease and their differential diagnoses. Acquired autoimmune connective tissue diseases will be covered in this review, while lung involvement in vasculitides, heritable connective tissue disorders, and drug-induced CTD-like conditions will not be discussed.


Asunto(s)
Enfermedades Autoinmunes/complicaciones , Enfermedades del Tejido Conjuntivo/complicaciones , Enfermedades Pulmonares Intersticiales/etiología , Enfermedades Autoinmunes/fisiopatología , Biopsia , Enfermedades del Tejido Conjuntivo/inmunología , Enfermedades del Tejido Conjuntivo/fisiopatología , Diagnóstico Diferencial , Humanos , Enfermedades Pulmonares Intersticiales/diagnóstico , Enfermedades Pulmonares Intersticiales/fisiopatología
17.
Am J Respir Crit Care Med ; 187(4): 417-23, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23239157

RESUMEN

RATIONALE: Lung transplantation offers great promise for otherwise terminal lung diseases, but the development of bronchiolitis obliterans syndrome (BOS) continues to limit survival. Although acute rejection and lymphocytic bronchiolitis have been identified as risk factors for the development of BOS, it is unclear whether large-airway lymphocytic inflammation conveys the same risk. OBJECTIVES: We evaluated lymphocytic bronchitis on endobronchial biopsies as a risk factor for BOS and mortality. METHODS: Endobronchial biopsies were collected and graded during surveillance after lung transplantation. We assessed samples with negative cultures collected in the first 90 days from 298 subjects and compared large-airway lymphocytic bronchitis assessed by a 0-2 "E-score" and with standard A and BR pathology scores for acute rejection and small-airway lymphocytic bronchiolitis, respectively. MEASUREMENTS AND MAIN RESULTS: We found surprisingly little association between large- and small-airway lymphocytic inflammation scores from a given bronchoscopy. Endobronchial lymphocytic bronchitis was more prevalent in subjects in BOS stage 0p and BOS stages 1-3 at the time of biopsy. Within 90 days after transplantation, increasing maximum E-score was associated with greater risk of BOS (adjusted hazard ratio, 1.76; 95% confidence interval, 1.11-2.78; P = 0.02) and in this analysis 90-day maximum E-scores were the only score type predictive of BOS (P < 0.01). CONCLUSIONS: These results support a multicenter study to evaluate endoscopic biopsies for the identification of patients at increased risk for BOS. The association of endobronchial lymphocytic inflammation and BOS may have mechanistic implications.


Asunto(s)
Bronquios/patología , Bronquiolitis Obliterante/patología , Trasplante de Pulmón/patología , Linfocitos/patología , Biopsia , Bronquitis/patología , Broncoscopía/métodos , Femenino , Rechazo de Injerto/patología , Humanos , Inflamación/patología , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Factores de Riesgo , Índice de Severidad de la Enfermedad , Síndrome
18.
Nat Commun ; 15(1): 1684, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38396004

RESUMEN

Traditional histochemical staining of post-mortem samples often confronts inferior staining quality due to autolysis caused by delayed fixation of cadaver tissue, and such chemical staining procedures covering large tissue areas demand substantial labor, cost and time. Here, we demonstrate virtual staining of autopsy tissue using a trained neural network to rapidly transform autofluorescence images of label-free autopsy tissue sections into brightfield equivalent images, matching hematoxylin and eosin (H&E) stained versions of the same samples. The trained model can effectively accentuate nuclear, cytoplasmic and extracellular features in new autopsy tissue samples that experienced severe autolysis, such as COVID-19 samples never seen before, where the traditional histochemical staining fails to provide consistent staining quality. This virtual autopsy staining technique provides a rapid and resource-efficient solution to generate artifact-free H&E stains despite severe autolysis and cell death, also reducing labor, cost and infrastructure requirements associated with the standard histochemical staining.


Asunto(s)
Redes Neurales de la Computación , Hematoxilina , Eosina Amarillenta-(YS) , Coloración y Etiquetado
19.
Kidney Int Rep ; 9(2): 370-382, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38344713

RESUMEN

Introduction: Antibrush border antibody disease (ABBA) is an autoimmune tubulointerstitial kidney disease that primarily affects older individuals and results in progressive kidney failure. It is rare with only 20 reported cases. Here, we describe a case series to further define the clinicopathologic spectrum and natural history, and to inform management. Methods: We identified 67 patients with ABBA who underwent kidney biopsy, including 65 native and 2 transplants. Demographics, clinical findings, and laboratory data were obtained. Histopathologic data included light microscopy, immunofluorescence, electron microscopy and immunostaining for LRP2, CUBN, and AMN. Follow-up data, including treatment(s), laboratory values, and outcomes, were available from 51 patients. Results: Patients with ABBA were predominantly male with a median age of 72 years. Median serum creatinine was 2.7 mg/dl, proteinuria was 2.8 g/day, and hematuria was present in two-thirds of the patients. Tubular injury with LRP2-positive tubular basement membrane (TBM) deposits were seen in 94.2% of patients. Thirty-eight patients (56.7%) had a second kidney disease, commonly glomerular diseases with high-grade proteinuria. These diseases included podocytopathies, membranous nephropathy (MN), IgA nephropathy, diabetic glomerulopathy, lupus nephritis (LN), crescentic glomerulonephritis (GN), tubulointerstitial nephritis, and involvement by lymphoma. The majority of patients were treated with immunosuppression. Of those patients with follow-up, 29.4% achieved remission, 70.6% had no response, and 52.8% required dialysis or were deceased. Untreated patients were at the highest risk. Conclusion: ABBA is a rare autoimmune kidney disease that often occurs with other kidney diseases. Although the overall prognosis of ABBA is poor, there is potential benefit from immunosuppression.

20.
Front Med (Lausanne) ; 10: 1167806, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37206472

RESUMEN

Atypical hemolytic uremic syndrome (aHUS) is a rare disease caused by genetic abnormalities, infections, autoimmune diseases, drugs, and malignancies. Anti-C5 monoclonal antibody eculizumab is the mainstay of treatment of aHUS caused by the genetic defects of the alternative complement pathway. However, the utility of eculizumab in non-genetic forms of aHUS and the timing of treatment discontinuation remain controversial. Here, we report successful short-term eculizumab use in two young adult patients with aHUS due to rare infectious and autoimmune etiologies: Lemierre's syndrome and post-infectious glomerulonephritis, respectively. Eculizumab was rapidly discontinued in both patients with no aHUS recurrence during long-term follow-up. Considering its favorable safety profile with appropriate meningococcal prophylaxis, eculizumab can be considered as a treatment option for non-genetic aHUS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA