Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nat Commun ; 4: 2774, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24216614

RESUMEN

Understanding and controlling the behaviour of dislocations is crucial for a wide range of applications, from nano-electronics and solar cells to structural engineering alloys. Quantitative X-ray diffraction measurements of the strain fields due to individual dislocations, particularly in the bulk, however, have thus far remained elusive. Here we report the first characterization of a single dislocation in a freestanding GaAs/In0.2Ga0.8As/GaAs membrane by synchrotron X-ray micro-beam Laue diffraction. Our experimental X-ray data agrees closely with textbook anisotropic elasticity solutions for dislocations, providing one of few experimental validations of this fundamental theory. On the basis of the experimental uncertainty in our measurements, we predict the X-ray beam size required for three-dimensional measurements of lattice strains and rotations due to individual dislocations in the material bulk. These findings have important implications for the in situ study of dislocation structure formation, self-organization and evolution in the bulk.

2.
Langmuir ; 21(5): 1866-74, 2005 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-15723483

RESUMEN

The adsorption and decomposition pathways of 1-propanethiol on a Ga-rich GaAs(100) surface have been investigated using the techniques of temperature programmed desorption, X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). 1-Propanethiol adsorbs dissociatively on a clean GaAs(100) surface to form propanethiolate and hydrogen. Further reactions of these species to form new products compete with the recombinative desorption of molecular propanethiol. The C-S bond scission in the propanethiolate results in the formation of propyl species and elemental sulfur. The generation of propene via beta-hydride elimination then follows. In addition, propane and hydrogen form via reductive elimination processes. A recombinative high-temperature propanethiol desorption state is also observed. XPS and TOF-SIMS analyses confirm the presence of sulfur on the GaAs(100) surface following thermal decomposition. This paper discusses the mechanisms by which these products form on the GaAs(100) surface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA