Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cereb Cortex ; 33(10): 5906-5923, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36573432

RESUMEN

The Na-K-2Cl cotransporter NKCC1 is widely expressed in cells within and outside the brain. However, our understanding of its roles in brain functions throughout development, as well as in neuropsychiatric and neurological disorders, has been severely hindered by the lack of reliable data on its developmental and (sub)cellular expression patterns. We provide here the first properly controlled analysis of NKCC1 protein expression in various cell types of the mouse brain using custom-made antibodies and an NKCC1 knock-out validated immunohistochemical procedure, with parallel data based on advanced mRNA approaches. NKCC1 protein and mRNA are expressed at remarkably high levels in oligodendrocytes. In immature neurons, NKCC1 protein was located in the somata, whereas in adult neurons, only NKCC1 mRNA could be clearly detected. NKCC1 immunoreactivity is also seen in microglia, astrocytes, developing pericytes, and in progenitor cells of the dentate gyrus. Finally, a differential expression of NKCC1 splice variants was observed, with NKCC1a predominating in non-neuronal cells and NKCC1b in neurons. Taken together, our data provide a cellular basis for understanding NKCC1 functions in the brain and enable the identification of major limitations and promises in the development of neuron-targeting NKCC1-blockers.


Asunto(s)
Encéfalo , Neuronas , Ratones , Animales , Miembro 2 de la Familia de Transportadores de Soluto 12/genética , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Encéfalo/metabolismo , Neuronas/metabolismo , ARN Mensajero/metabolismo , Hipocampo/metabolismo
2.
EMBO Rep ; 22(4): e50145, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33719157

RESUMEN

Intracellular pH is a potent modulator of neuronal functions. By catalyzing (de)hydration of CO2 , intracellular carbonic anhydrase (CAi ) isoforms CA2 and CA7 contribute to neuronal pH buffering and dynamics. The presence of two highly active isoforms in neurons suggests that they may serve isozyme-specific functions unrelated to CO2 -(de)hydration. Here, we show that CA7, unlike CA2, binds to filamentous actin, and its overexpression induces formation of thick actin bundles and membrane protrusions in fibroblasts. In CA7-overexpressing neurons, CA7 is enriched in dendritic spines, which leads to aberrant spine morphology. We identified amino acids unique to CA7 that are required for direct actin interactions, promoting actin filament bundling and spine targeting. Disruption of CA7 expression in neocortical neurons leads to higher spine density due to increased proportion of small spines. Thus, our work demonstrates highly distinct subcellular expression patterns of CA7 and CA2, and a novel, structural role of CA7.


Asunto(s)
Actinas , Anhidrasas Carbónicas , Citoesqueleto de Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Anhidrasas Carbónicas/genética , Espinas Dendríticas/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo
3.
EMBO Rep ; 21(4): e48880, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32064760

RESUMEN

KCC2, encoded in humans by the SLC12A5 gene, is a multifunctional neuron-specific protein initially identified as the chloride (Cl- ) extruder critical for hyperpolarizing GABAA receptor currents. Independently of its canonical function as a K-Cl cotransporter, KCC2 regulates the actin cytoskeleton via molecular interactions mediated through its large intracellular C-terminal domain (CTD). Contrary to the common assumption that embryonic neocortical projection neurons express KCC2 at non-significant levels, here we show that loss of KCC2 enhances apoptosis of late-born upper-layer cortical projection neurons in the embryonic brain. In utero electroporation of plasmids encoding truncated, transport-dead KCC2 constructs retaining the CTD was as efficient as of that encoding full-length KCC2 in preventing elimination of migrating projection neurons upon conditional deletion of KCC2. This was in contrast to the effect of a full-length KCC2 construct bearing a CTD missense mutation (KCC2R952H ), which disrupts cytoskeletal interactions and has been found in patients with neurological and psychiatric disorders, notably seizures and epilepsy. Together, our findings indicate ion transport-independent, CTD-mediated regulation of developmental apoptosis by KCC2 in migrating cortical projection neurons.


Asunto(s)
Apoptosis , Epilepsia , Neuronas/patología , Simportadores/genética , Apoptosis/genética , Cloruros/metabolismo , Humanos , Neuronas/metabolismo
4.
Proc Natl Acad Sci U S A ; 114(50): E10819-E10828, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29183979

RESUMEN

During birth in mammals, a pronounced surge of fetal peripheral stress hormones takes place to promote survival in the transition to the extrauterine environment. However, it is not known whether the hormonal signaling involves central pathways with direct protective effects on the perinatal brain. Here, we show that arginine vasopressin specifically activates interneurons to suppress spontaneous network events in the perinatal hippocampus. Experiments done on the altricial rat and precocial guinea pig neonate demonstrated that the effect of vasopressin is not dependent on the level of maturation (depolarizing vs. hyperpolarizing) of postsynaptic GABAA receptor actions. Thus, the fetal mammalian brain is equipped with an evolutionarily conserved mechanism well-suited to suppress energetically expensive correlated network events under conditions of reduced oxygen supply at birth.


Asunto(s)
Encéfalo/embriología , Interneuronas/fisiología , Vasopresinas/fisiología , Animales , Encéfalo/crecimiento & desarrollo , Potenciales Evocados , Femenino , Cobayas , Hipocampo/embriología , Hipocampo/crecimiento & desarrollo , Hipocampo/fisiología , Masculino , Red Nerviosa/fisiología , Parto , Ratas , Ratas Wistar , Ácido gamma-Aminobutírico/metabolismo
5.
J Biol Chem ; 292(15): 6190-6201, 2017 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-28235805

RESUMEN

Synaptic inhibition depends on a transmembrane gradient of chloride, which is set by the neuron-specific K+-Cl- co-transporter KCC2. Reduced KCC2 levels in the neuronal membrane contribute to the generation of epilepsy, neuropathic pain, and autism spectrum disorders; thus, it is important to characterize the mechanisms regulating KCC2 expression. In the present study, we determined the role of KCC2-protein interactions in regulating total and surface membrane KCC2 expression. Using quantitative immunofluorescence in cultured mouse hippocampal neurons, we discovered that the kainate receptor subunit GluK2 and the auxiliary subunit Neto2 significantly increase the total KCC2 abundance in neurons but that GluK2 exclusively increases the abundance of KCC2 in the surface membrane. Using a live cell imaging assay, we further determined that KCC2 recycling primarily occurs within 1-2 h and that GluK2 produces an ∼40% increase in the amount of KCC2 recycled to the membrane during this time period. This GluK2-mediated increase in surface recycling translated to a significant increase in KCC2 expression in the surface membrane. Moreover, we found that KCC2 recycling is enhanced by protein kinase C-mediated phosphorylation of the GluK2 C-terminal residues Ser-846 and Ser-868. Lastly, using gramicidin-perforated patch clamp recordings, we found that the GluK2-mediated increase in KCC2 recycling to the surface membrane translates to a hyperpolarization of the reversal potential for GABA (EGABA). In conclusion, our results have revealed a mechanism by which kainate receptors regulate KCC2 expression in the hippocampus.


Asunto(s)
Membrana Celular/metabolismo , Hipocampo/metabolismo , Potenciales de la Membrana/fisiología , Neuronas/metabolismo , Receptores de Ácido Kaínico/metabolismo , Simportadores/metabolismo , Animales , Membrana Celular/genética , Células Cultivadas , Hipocampo/citología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Neuronas/citología , Receptores de Ácido Kaínico/genética , Simportadores/genética , Cotransportadores de K Cl , Receptor de Ácido Kaínico GluK2
6.
BMC Neurosci ; 18(1): 23, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28143398

RESUMEN

BACKGROUND: Cation-chloride cotransporters (CCCs) are indispensable for maintaining chloride homeostasis in multiple cell types, but K-Cl cotransporter KCC2 is the only CCC member with an exclusively neuronal expression in mammals. KCC2 is critical for rendering fast hyperpolarizing responses of ionotropic γ-aminobutyric acid and glycine receptors in adult neurons, for neuronal migration in the developing central nervous system, and for the formation and maintenance of small dendritic protrusions-dendritic spines. Deficit in KCC2 expression and/or activity is associated with epilepsy and neuropathic pain, and effective strategies are required to search for novel drugs augmenting KCC2 function. RESULTS: We revised current methods to develop a noninvasive optical approach for assessing KCC2 transport activity using a previously characterized genetically encoded chloride sensor. Our protocol directly assesses dynamics of KCC2-mediated chloride efflux and allows measuring genuine KCC2 activity with good spatial and temporal resolution. As a proof of concept, we used this approach to compare transport activities of the two known KCC2 splice isoforms, KCC2a and KCC2b, in mouse neuronal Neuro-2a cells. CONCLUSIONS: Our noninvasive optical protocol proved to be efficient for assessment of furosemide-sensitive chloride fluxes. Transport activities of the N-terminal splice isoforms KCC2a and KCC2b obtained by the novel approach matched to those reported previously using standard methods for measuring chloride fluxes.


Asunto(s)
Cloruros/metabolismo , Neuronas/metabolismo , Imagen Óptica/métodos , Simportadores/metabolismo , Animales , Línea Celular Tumoral , Furosemida/administración & dosificación , Ratones , Neuronas/efectos de los fármacos , Isoformas de Proteínas/metabolismo , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/administración & dosificación , Simportadores/antagonistas & inhibidores , Cotransportadores de K Cl
7.
J Neurosci ; 32(25): 8746-51, 2012 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-22723714

RESUMEN

KCC2 is the neuron-specific member of the of K(+)-Cl(-) cotransporter gene family. It is also the only member of its family that is active under physiologically normal conditions, in the absence of osmotic stress. By extruding Cl(-) from the neuron under isotonic conditions, this transporter maintains a low concentration of neuronal Cl(-), which is essential for fast inhibitory synaptic transmission by GABA and glycine in the mature nervous system. The other members of this K(+)-Cl(-) cotransporter gene family are exclusively swelling-activated. Here we demonstrate that a 15 aa region near the end of the C terminus, unique to KCC2 (termed the ISO domain), is required for KCC2 to cotransport K(+) and Cl(-) out of the neuron under isotonic conditions. We made this discovery by overexpressing chimeric KCC2-KCC4 cDNA constructs in cultured hippocampal neurons prepared from Sprague Dawley rat embryos and assaying neuronal Cl(-) through gramicidin perforated patch-clamp recordings. We found that when neurons had been transfected with a chimeric KCC2 that lacked the unique ISO domain, hyperpolarizing responses to GABA were abolished. This finding indicates that the ISO domain is required for neuronal Cl(-) regulation. Furthermore, we discovered that when KCC2 lacks the ISO domain, it still retains swelling-activated transport, which demonstrates that there are exclusive molecular determinants of isotonic and swelling-induced K(+)-Cl(-) cotransport in neurons.


Asunto(s)
Simportadores/fisiología , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/fisiología , Animales , Transporte Biológico Activo/fisiología , Tamaño de la Célula , Cloruros/metabolismo , ADN/genética , ADN/aislamiento & purificación , Femenino , Hipocampo/citología , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Transporte Iónico , Microscopía Confocal , Oocitos/metabolismo , Técnicas de Placa-Clamp , Potasio/metabolismo , Embarazo , Ratas , Ratas Sprague-Dawley , Xenopus , Cotransportadores de K Cl
8.
J Neurosci ; 31(2): 644-9, 2011 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-21228173

RESUMEN

A major event in the maturation of CNS GABAergic transmission is the qualitative change in GABA(A)-mediated responses from depolarizing to hyperpolarizing. In cortical regions, this is attributed to the increased expression of potassium chloride cotransporter 2b (KCC2b), the main isoform of the neuron-specific K-Cl cotransporter KCC2. We have previously shown that transcription factor early growth response 4 (Egr4) can activate the KCC2b promoter. Here we demonstrate that in immature hippocampal neurons BDNF robustly induces ERK1/2 (extracellular signal-regulated kinase 1/2)-dependent Egr4 expression and rapid Egr4-dependent activation of the KCC2b promoter. The subsequent increase in KCC2b mRNA contributes to the expression of total KCC2 protein levels. These results indicate that Egr4 is an important component in the mechanism of BDNF-dependent KCC2 gene regulation via the ERK1/2 pathway in immature neurons.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Factores de Transcripción de la Respuesta de Crecimiento Precoz/fisiología , Simportadores/biosíntesis , Animales , Sitios de Unión , Células Cultivadas , Hipocampo/metabolismo , Ratones , Proteína Quinasa 1 Activada por Mitógenos/fisiología , Proteína Quinasa 3 Activada por Mitógenos/fisiología , Neuronas/metabolismo , Regiones Promotoras Genéticas , ARN Mensajero/biosíntesis , Transducción de Señal , Simportadores/genética , Transcripción Genética , Cotransportadores de K Cl
9.
Neural Plast ; 2011: 1-8, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21837281

RESUMEN

The K-Cl cotransporter KCC2 plays a crucial role in the functional development of GABA(A)-mediated responses rendering GABA hyperpolarizing in adult neurons. We have previously shown that BDNF upregulates KCC2 in immature neurons through the transcription factor Egr4. The effect of BDNF on Egr4 and KCC2 was shown to be dependent on the activation of ERK1/2. Here we demonstrate that the trophic factor neurturin can also trigger Egr4 expression and upregulate KCC2 in an ERK1/2-dependent manner. These results show that Egr4 is an important component in the mechanism for trophic factor-mediated upregulation of KCC2 in immature neurons involving the activation of specific intracellular pathways common to BDNF and Neurturin.


Asunto(s)
Factores de Transcripción de la Respuesta de Crecimiento Precoz/biosíntesis , Sistema de Señalización de MAP Quinasas/fisiología , Neuronas/metabolismo , Neurturina/fisiología , Simportadores/biosíntesis , Regulación hacia Arriba/fisiología , Animales , Animales Recién Nacidos , Células Cultivadas , Factores de Transcripción de la Respuesta de Crecimiento Precoz/fisiología , Hipocampo/metabolismo , Ratones , Proteínas Quinasas Activadas por Mitógenos/fisiología , Técnicas de Cultivo de Órganos , Simportadores/fisiología , Cotransportadores de K Cl
10.
Trends Neurosci ; 44(5): 378-392, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33640193

RESUMEN

KCC2, best known as the neuron-specific chloride-extruder that sets the strength and polarity of GABAergic currents during neuronal maturation, is a multifunctional molecule that can regulate cytoskeletal dynamics via its C-terminal domain (CTD). We describe the molecular and cellular mechanisms involved in the multiple functions of KCC2 and its splice variants, ranging from developmental apoptosis and the control of early network events to the formation and plasticity of cortical dendritic spines. The versatility of KCC2 actions at the cellular and subcellular levels is also evident in mature neurons during plasticity, disease, and aging. Thus, KCC2 has emerged as one of the most important molecules that shape the overall neuronal phenotype.


Asunto(s)
Simportadores , Cloruros/metabolismo , Humanos , Neuronas/metabolismo
11.
Cells ; 9(12)2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33291778

RESUMEN

Ionotropic GABA transmission is mediated by anion (mainly Cl-)-permeable GABAA receptors (GABAARs). In immature neurons, GABA exerts depolarizing and sometimes functionally excitatory actions, based on active uptake of Cl- by the Na-K-2Cl cotransporter NKCC1. While functional evidence firmly shows NKCC1-mediated ion transport in immature and diseased neurons, molecular detection of NKCC1 in the brain has turned out to be extremely difficult. In this review, we describe the highly inconsistent data that are available on the cell type-specific expression patterns of the NKCC1 mRNA and protein in the CNS. We discuss the major technical caveats, including a lack of knock-out-controlled immunohistochemistry in the forebrain, possible effects of alternative splicing on the binding of antibodies and RNA probes, and the wide expression of NKCC1 in different cell types, which make whole-tissue analyses of NKCC1 useless for studying its neuronal expression. We also review novel single-cell RNAseq data showing that most of the NKCC1 in the adult CNS may, in fact, be expressed in non-neuronal cells, especially in glia. As future directions, we suggest single-cell NKCC1 mRNA and protein analyses and the use of genetically tagged endogenous proteins or systematically designed novel antibodies, together with proper knock-out controls, for the visualization of endogenous NKCC1 in distinct brain cell types and their subcellular compartments.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Empalme Alternativo , Animales , Sistema Nervioso Central/metabolismo , Cloruros/metabolismo , Epilepsia/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Inmunohistoquímica , Transporte Iónico , Ratones , Neuroglía/metabolismo , Neuronas/metabolismo , Prosencéfalo , ARN Mensajero/metabolismo , RNA-Seq , Ratas , Receptores de GABA-A/metabolismo , Simportadores/metabolismo , Ácido gamma-Aminobutírico
12.
Brain Res ; 1236: 8-15, 2008 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-18755167

RESUMEN

The neuron-specific K-Cl cotransporter (KCC2) maintains a low intracellular Cl(-) concentration in neurons and is necessary for fast hyperpolarizing responses to GABA and glycine. The mammalian KCC2 gene (alias Slc12a5) generates two neuron-specific isoforms by using alternative promoters and first exons. Expression of the major isoform, KCC2b, is strongly upregulated during neuronal maturation, and is modulated by neuronal activity, trauma, and neurotrophic factors. In the present study, we have focused on the regulatory influence of the upstream stimulating factors USF1 and USF2 via an E-box control element in the KCC2b promoter (E-boxKCC2b). Electrophoretic mobility shift assay in cell lines and chromatin immunoprecipitation in neurons demonstrated binding of endogenous USF1 and USF2 to the E-box(KCC2b) element. Mutation of the E-boxKCC2b site resulted in reduced KCC2b promoter activity in cell lines and cortical neurons. Overexpression of a dominant-negative form of USF confirmed the involvement of endogenous USF proteins in the regulation of the KCC2b gene. The results suggest that binding of USF proteins to the E-boxKCC2b may contribute to the upregulation of KCC2b gene expression in developing brain.


Asunto(s)
Elementos E-Box/fisiología , Neuronas/metabolismo , Simportadores/metabolismo , Regulación hacia Arriba/fisiología , Factores Estimuladores hacia 5'/fisiología , Animales , Células Cultivadas , Corteza Cerebral/citología , Inmunoprecipitación de Cromatina , Ensayo de Cambio de Movilidad Electroforética , Embrión de Mamíferos , Luciferasas/biosíntesis , Luciferasas/genética , Ratones , Ratas , Simportadores/genética , Transfección , Cotransportadores de K Cl
13.
eNeuro ; 5(5)2018.
Artículo en Inglés | MEDLINE | ID: mdl-30406192

RESUMEN

In central respiratory circuitry, synaptic excitation is responsible for synchronizing neuronal activity in the different respiratory rhythm phases, whereas chloride-mediated inhibition is important for shaping the respiratory pattern itself. The potassium chloride cotransporter KCC2, which serves to maintain low intraneuronal Cl- concentration and thus render chloride-mediated synaptic signaling inhibitory, exists in two isoforms, KCC2a and KCC2b. KCC2 is essential for functional breathing motor control at birth, but the specific contribution of the KCC2a isoform remains unknown. Here, to address this issue, we investigated the respiratory phenotype of mice deficient for KCC2a. In vivo plethysmographic recordings revealed that KCC2a-deficient pups at P0 transiently express an abnormally low breathing rate and a high occurrence of apneas. Immunostainings confirmed that KCC2a is normally expressed in the brainstem neuronal groups involved in breathing (pre-Bötzinger complex, parafacial respiratory group, hypoglossus nucleus) and is absent in these regions in the KCC2a-/- mutant. However, in variously reduced in vitro medullary preparations, spontaneous rhythmic respiratory activity is similar to that expressed in wild-type preparations, as is hypoglossal motor output, and no respiratory pauses are detected, suggesting that the rhythm-generating networks are not intrinsically affected in mutants at P0. In contrast, inhibitory neuromodulatory influences exerted by the pons on respiratory rhythmogenesis are stronger in the mutant, thereby explaining the breathing anomalies observed in vivo. Thus, our results indicate that the KCC2a isoform is important for establishing proper breathing behavior at the time of birth, but by acting at sites that are extrinsic to the central respiratory networks themselves.


Asunto(s)
Neuronas/metabolismo , Simportadores/metabolismo , Animales , Tronco Encefálico/metabolismo , Bulbo Raquídeo/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Parto/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Frecuencia Respiratoria , Simportadores/genética , Cotransportadores de K Cl
14.
J Neurosci ; 26(52): 13463-73, 2006 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-17192429

RESUMEN

The expression of the neuron-specific K+/Cl- cotransporter (KCC2) is restricted to the CNS and is strongly upregulated during neuronal maturation, yielding a low intracellular chloride concentration that is required for fast synaptic inhibition in adult neurons. To elucidate the mechanisms of KCC2 gene regulation, we analyzed the KCC2 (alias Slc12a5) promoter and proximal intron-1 regions and revealed 10 candidate transcription factor binding sites that are highly conserved in mammalian KCC2 genes. Here we focus on one of these factors, early growth response 4 (Egr4), which shows a similar developmental upregulation in CNS neurons as KCC2. KCC2 luciferase reporter constructs containing the Egr4 site (Egr4(KCC2)) were strongly induced by Egr4 overexpression in neuro-2a neuroblastoma cells and in cultured neurons. Egr4-mediated induction was decreased significantly by point-mutating the Egr4(KCC2). Insertion of Egr4(KCC2) into the KCC2 basal promoter in the endogenous reverse, but not in the opposite, orientation reestablished Egr4-mediated induction. Electrophoretic mobility shift assay confirmed specific Egr4 binding to Egr4(KCC2). Interference RNA-mediated knock-down of Egr4 and a dominant-negative isoform of Egr4 significantly inhibited KCC2 reporter induction and endogenous KCC2 expression in cultured neurons. Together, the results indicate an important role for Egr4 in the developmental upregulation of KCC2 gene expression.


Asunto(s)
Cloruros/fisiología , Factores de Transcripción de la Respuesta de Crecimiento Precoz/biosíntesis , Neuronas/metabolismo , Potasio/fisiología , Simportadores/biosíntesis , Regulación hacia Arriba/fisiología , Animales , Secuencia de Bases , Sitios de Unión/genética , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Línea Celular Tumoral , Cloruros/metabolismo , Factores de Transcripción de la Respuesta de Crecimiento Precoz/antagonistas & inhibidores , Factores de Transcripción de la Respuesta de Crecimiento Precoz/genética , Factores de Transcripción de la Respuesta de Crecimiento Precoz/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Humanos , Ratones , Datos de Secuencia Molecular , Pan troglodytes , Mutación Puntual , Potasio/metabolismo , Ratas , Simportadores/antagonistas & inhibidores , Simportadores/genética , Simportadores/metabolismo , Cotransportadores de K Cl
15.
Brain Res ; 1675: 87-101, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-28888841

RESUMEN

The neuron-specific K-Cl cotransporter KCC2 maintains the low intracellular chloride concentration required for the fast hyperpolarizing responses of the inhibitory neurotransmitters γ-aminobutyric acid (GABA) and glycine. The two KCC2 isoforms, KCC2a and KCC2b differ by their N-termini as a result of alternative promoter usage. Whereas the role of KCC2b in mediating the chloride transport is unequivocal, the physiological role of KCC2a in neurons has remained obscure. We show that KCC2a isoform can decrease the intracellular chloride concentration in cultured neurons and attenuate calcium responses evoked by application of the GABAA receptor agonist muscimol. While the biotinylation assay detected both KCC2 isoforms at the cell surface of cultured neurons, KCC2a was not detected at the plasma membrane in immunostainings, suggesting that the N-terminal KCC2a epitope is masked. Confirming this hypothesis, KCC2a surface expression was detected by the C-terminal KCC2 pan antibody but not by the N-terminal KCC2a antibody in KCC2b-deficient neurons. One possible cause for the epitope masking is the binding site of Ste20-related proline-alanine-rich kinase (SPAK) in the KCC2a N-terminus. SPAK, a known regulator of K-Cl cotransporters, was co-immunoprecipitated in a complex with KCC2a but not KCC2b isoform. Moreover, SPAK overexpression decreased the transport activity of KCC2a but not that of KCC2b, as revealed by rubidium flux assay in HEK293 cells. Thus, our data indicate that both KCC2 isoforms perform as chloride cotransporters in neuronal cells, while their N-terminal heterogeneity could play an important role in fine-tuning of the K-Cl transport activity.


Asunto(s)
Neuronas/fisiología , Simportadores/fisiología , Secuencia de Aminoácidos , Animales , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Isoformas de Proteínas/fisiología , Ratas , Cotransportadores de K Cl
16.
Elife ; 62017 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-29028184

RESUMEN

KCC2 is a neuron-specific K+-Cl- cotransporter essential for establishing the Cl- gradient required for hyperpolarizing inhibition in the central nervous system (CNS). KCC2 is highly localized to excitatory synapses where it regulates spine morphogenesis and AMPA receptor confinement. Aberrant KCC2 function contributes to human neurological disorders including epilepsy and neuropathic pain. Using functional proteomics, we identified the KCC2-interactome in the mouse brain to determine KCC2-protein interactions that regulate KCC2 function. Our analysis revealed that KCC2 interacts with diverse proteins, and its most predominant interactors play important roles in postsynaptic receptor recycling. The most abundant KCC2 interactor is a neuronal endocytic regulatory protein termed PACSIN1 (SYNDAPIN1). We verified the PACSIN1-KCC2 interaction biochemically and demonstrated that shRNA knockdown of PACSIN1 in hippocampal neurons increases KCC2 expression and hyperpolarizes the reversal potential for Cl-. Overall, our global native-KCC2 interactome and subsequent characterization revealed PACSIN1 as a novel and potent negative regulator of KCC2.


Asunto(s)
Neuronas/fisiología , Neuropéptidos/metabolismo , Fosfoproteínas/metabolismo , Mapas de Interacción de Proteínas , Simportadores/metabolismo , Sinapsis/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Encéfalo/citología , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular , Espectrometría de Masas , Ratones Endogámicos C57BL , Proteómica , Cotransportadores de K Cl
17.
Brain Res ; 1648(Pt A): 214-223, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27425428

RESUMEN

Perineuronal nets (PNN) ensheath GABAergic and glutamatergic synapses on neuronal cell surface in the central nervous system (CNS), have neuroprotective effect in animal models of Alzheimer disease and regulate synaptic plasticity during development and regeneration. Crucial insights were obtained recently concerning molecular composition and physiological importance of PNN but the microstructure of the network remains largely unstudied. Here we used histochemistry, fluorescent microscopy and quantitative image analysis to study the PNN structure in adult mouse and rat neurons from layers IV and VI of the somatosensory cortex. Vast majority of meshes have quadrangle, pentagon or hexagon shape with mean mesh area of 1.29µm(2) in mouse and 1.44µm(2) in rat neurons. We demonstrate two distinct patterns of chondroitin sulfate distribution within a single mesh - with uniform (nonpolar) and node-enriched (polar) distribution of the Wisteria floribunda agglutinin-positive signal. Vertices of the node-enriched pattern match better with local maxima of chondroitin sulfate density as compared to the uniform pattern. PNN is organized into clusters of meshes with distinct morphologies on the neuronal cell surface. Our findings suggest the role for the PNN microstructure in the synaptic transduction and plasticity.


Asunto(s)
Red Nerviosa/citología , Neuronas/citología , Corteza Somatosensorial/citología , Animales , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Matriz Extracelular/metabolismo , Ratones , Red Nerviosa/metabolismo , Neuronas/metabolismo , Lectinas de Plantas/metabolismo , Ratas , Receptores N-Acetilglucosamina/metabolismo , Corteza Somatosensorial/metabolismo
18.
Cell Rep ; 14(4): 808-822, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26776509

RESUMEN

The four members of the LRRTM family (LRRTM1-4) are postsynaptic adhesion molecules essential for excitatory synapse development. They have also been implicated in neuropsychiatric diseases. Here, we focus on LRRTM3, showing that two distinct LRRTM3 variants generated by alternative splicing regulate LRRTM3 interaction with PSD-95, but not its excitatory synapse-promoting activity. Overexpression of either LRRTM3 variant increased excitatory synapse density in dentate gyrus (DG) granule neurons, whereas LRRTM3 knockdown decreased it. LRRTM3 also controlled activity-regulated AMPA receptor surface expression in an alternative splicing-dependent manner. Furthermore, Lrrtm3-knockout mice displayed specific alterations in excitatory synapse density, excitatory synaptic transmission and excitability in DG granule neurons but not in CA1 pyramidal neurons. Lastly, LRRTM3 required only specific splice variants of presynaptic neurexins for their synaptogenic activity. Collectively, our data highlight alternative splicing and differential presynaptic ligand utilization in the regulation of LRRTMs, revealing key regulatory mechanisms for excitatory synapse development.


Asunto(s)
Empalme Alternativo , Moléculas de Adhesión Celular Neuronal/metabolismo , Potenciales Postsinápticos Excitadores , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/crecimiento & desarrollo , Región CA1 Hipocampal/metabolismo , Moléculas de Adhesión Celular Neuronal/genética , Células Cultivadas , Giro Dentado/citología , Giro Dentado/crecimiento & desarrollo , Giro Dentado/metabolismo , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Transporte de Proteínas , Células Piramidales/metabolismo , Células Piramidales/fisiología , Ratas , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Sinapsis/fisiología
19.
PLoS One ; 9(2): e89910, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24587117

RESUMEN

Leucine-rich repeat transmembrane neuronal proteins (LRRTMs) form in mammals a family of four postsynaptic adhesion proteins, which have been shown to bind neurexins and heparan sulphate proteoglycan (HSPG) glypican on the presynaptic side. Mutations in the genes encoding LRRTMs and neurexins are implicated in human cognitive disorders such as schizophrenia and autism. Our analysis shows that in most jawed vertebrates, lrrtm1, lrrtm2, and lrrtm3 genes are nested on opposite strands of large conserved intron of α-catenin genes ctnna2, ctnna1, and ctnna3, respectively. No lrrtm genes could be found in tunicates or lancelets, while two lrrtm genes are found in the lamprey genome, one of which is adjacent to a single ctnna homolog. Based on similar highly positive net charge of lamprey LRRTMs and the HSPG-binding LRRTM3 and LRRTM4 proteins, we speculate that the ancestral LRRTM might have bound HSPG before acquiring neurexins as binding partners. Our model suggests that lrrtm gene translocated into the large ctnna intron in early vertebrates, and that subsequent duplications resulted in three lrrtm/ctnna gene pairs present in most jawed vertebrates. However, we detected three prominent exceptions: (1) the lrrtm3/ctnna3 gene structure is absent in the ray-finned fish genomes, (2) the genomes of clawed frogs contain ctnna1 but lack the corresponding nested (lrrtm2) gene, and (3) contain lrrtm3 gene in the syntenic position but lack the corresponding host (ctnna3) gene. We identified several other protein-coding nested gene structures of which either the host or the nested gene has presumably been lost in the frog or chicken lineages. Interestingly, majority of these nested genes comprise LRR domains.


Asunto(s)
Evolución Molecular , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Filogenia , Vertebrados/genética , alfa Catenina/genética , Empalme Alternativo/genética , Secuencia de Aminoácidos , Animales , Mapeo Cromosómico , Cartilla de ADN/genética , Humanos , Funciones de Verosimilitud , Modelos Genéticos , Mutación/genética , Reacción en Cadena de la Polimerasa , Alineación de Secuencia , Especificidad de la Especie , Sintenía/genética
20.
Front Cell Neurosci ; 8: 27, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24567703

RESUMEN

In the mammalian central nervous system (CNS), the inhibitory strength of chloride (Cl(-))-permeable GABAA and glycine receptors (GABAAR and GlyR) depends on the intracellular Cl(-) concentration ([Cl(-)]i). Lowering [Cl(-)]i enhances inhibition, whereas raising [Cl(-)]i facilitates neuronal activity. A neuron's basal level of [Cl(-)]i, as well as its Cl(-) extrusion capacity, is critically dependent on the activity of the electroneutral K(+)-Cl(-) cotransporter KCC2, a member of the SLC12 cation-Cl(-) cotransporter (CCC) family. KCC2 deficiency compromises neuronal migration, formation and the maturation of GABAergic and glutamatergic synaptic connections, and results in network hyperexcitability and seizure activity. Several neurological disorders including multiple epilepsy subtypes, neuropathic pain, and schizophrenia, as well as various insults such as trauma and ischemia, are associated with significant decreases in the Cl(-) extrusion capacity of KCC2 that result in increases of [Cl(-)]i and the subsequent hyperexcitability of neuronal networks. Accordingly, identifying the key upstream molecular mediators governing the functional regulation of KCC2, and modifying these signaling pathways with small molecules, might constitute a novel neurotherapeutic strategy for multiple diseases. Here, we discuss recent advances in the understanding of the mechanisms regulating KCC2 activity, and of the role these mechanisms play in neuronal Cl(-) homeostasis and GABAergic neurotransmission. As KCC2 mediates electroneutral transport, the experimental recording of its activity constitutes an important research challenge; we therefore also, provide an overview of the different methodological approaches utilized to monitor function of KCC2 in both physiological and pathological conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA