Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Biochem Biophys Res Commun ; 500(2): 391-397, 2018 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-29654756

RESUMEN

PPM1B is a metal-dependent serine/threonine protein phosphatase, with a similar structure and function to the well-known oncogene in breast cancer, PPM1D (WIP1). However, clinical significance of PPM1B as a pharmacological target in cancer therapy has not been explored. To test if PPM1B can be a drug target in the cellular proliferation and death pathway, the lentiviral PPM1B shRNA was stably expressed in cancer cell lines and its regulatory function in the RB1-E2F1 pathway was examined. We found that PPM1B depletion suppressed cellular proliferation of U2OS cells, accompanied by hyper-phosphorylation of RB1 and up-regulation of E2F1 target genes, p27 and caspase 7. Notably, PPM1B depletion significantly sensitised U2OS cells to bleomycin-induced cell death at a minimal effective concentration. Our results suggest that PPM1B plays a negative role in the activation of the p38-RB1-E2F1 pathway and that targeting PPM1B could be useful in certain types of cancer by stimulating chemotherapy-induced cell death.


Asunto(s)
Apoptosis , Factor de Transcripción E2F1/metabolismo , Proteína Fosfatasa 2C/deficiencia , Proteínas de Unión a Retinoblastoma/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo , Bleomicina , Línea Celular Tumoral , Proliferación Celular , Humanos , Fosforilación , Proteína Fosfatasa 2C/metabolismo , Regulación hacia Arriba/genética
2.
PLoS Genet ; 8(4): e1002613, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22496666

RESUMEN

The Mediator complex is an essential co-regulator of RNA polymerase II that is conserved throughout eukaryotes. Here we present the first study of Mediator in the pathogenic fungus Candida albicans. We focused on the Middle domain subunit Med31, the Head domain subunit Med20, and Srb9/Med13 from the Kinase domain. The C. albicans Mediator shares some roles with model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, such as functions in the response to certain stresses and the role of Med31 in the expression of genes regulated by the activator Ace2. The C. albicans Mediator also has additional roles in the transcription of genes associated with virulence, for example genes related to morphogenesis and gene families enriched in pathogens, such as the ALS adhesins. Consistently, Med31, Med20, and Srb9/Med13 contribute to key virulence attributes of C. albicans, filamentation, and biofilm formation; and ALS1 is a biologically relevant target of Med31 for development of biofilms. Furthermore, Med31 affects virulence of C. albicans in the worm infection model. We present evidence that the roles of Med31 and Srb9/Med13 in the expression of the genes encoding cell wall adhesins are different between S. cerevisiae and C. albicans: they are repressors of the FLO genes in S. cerevisiae and are activators of the ALS genes in C. albicans. This suggests that Mediator subunits regulate adhesion in a distinct manner between these two distantly related fungal species.


Asunto(s)
Candida albicans/genética , Proteínas Fúngicas/genética , Regulación de la Expresión Génica , Complejo Mediador , Saccharomyces cerevisiae , Biopelículas/crecimiento & desarrollo , Candida albicans/patogenicidad , Proteínas Fúngicas/metabolismo , Regulación de la Expresión Génica/genética , Complejo Mediador/genética , Complejo Mediador/metabolismo , Estructura Terciaria de Proteína/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/crecimiento & desarrollo , Schizosaccharomyces/metabolismo , Especificidad de la Especie , Virulencia/genética
3.
Mol Microbiol ; 79(4): 968-89, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21299651

RESUMEN

The cell wall is essential for viability of fungi and is an effective drug target in pathogens such as Candida albicans. The contribution of post-transcriptional gene regulators to cell wall integrity in C. albicans is unknown. We show that the C. albicans Ccr4-Pop2 mRNA deadenylase, a regulator of mRNA stability and translation, is required for cell wall integrity. The ccr4/pop2 mutants display reduced wall ß-glucans and sensitivity to the echinocandin caspofungin. Moreover, the deadenylase mutants are compromised for filamentation and virulence. We demonstrate that defective cell walls in the ccr4/pop2 mutants are linked to dysfunctional mitochondria and phospholipid imbalance. To further understand mitochondrial function in cell wall integrity, we screened a Saccharomyces cerevisiae collection of mitochondrial mutants. We identify several mitochondrial proteins required for caspofungin tolerance and find a connection between mitochondrial phospholipid homeostasis and caspofungin sensitivity. We focus on the mitochondrial outer membrane SAM complex subunit Sam37, demonstrating that it is required for both trafficking of phospholipids between the ER and mitochondria and cell wall integrity. Moreover, in C. albicans also Sam37 is essential for caspofungin tolerance. Our study provides the basis for an integrative view of mitochondrial function in fungal cell wall biogenesis and resistance to echinocandin antifungal drugs.


Asunto(s)
Candida albicans/genética , Pared Celular/ultraestructura , Proteínas Fúngicas/metabolismo , Mitocondrias/metabolismo , Ribonucleasas/metabolismo , Animales , Candida albicans/efectos de los fármacos , Candida albicans/metabolismo , Candida albicans/patogenicidad , Caspofungina , Pared Celular/química , Pared Celular/efectos de los fármacos , Equinocandinas/farmacología , Proteínas Fúngicas/genética , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Homeostasis , Lipopéptidos , Ratones , Ratones Endogámicos BALB C , Mitocondrias/ultraestructura , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosfolípidos/análisis , Poliadenilación , ARN de Hongos/genética , Ribonucleasas/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Virulencia , beta-Glucanos/análisis
4.
Front Immunol ; 12: 553911, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33717058

RESUMEN

Intra-abdominal infection (peritonitis) is a leading cause of severe disease in surgical intensive care units, as over 70% of patients diagnosed with peritonitis develop septic shock. A critical role of the immune system is to return to homeostasis after combating infection. S100A8/A9 (calprotectin) is an antimicrobial and pro-inflammatory protein complex used as a biomarker for diagnosis of numerous inflammatory disorders. Here we describe the role of S100A8/A9 in inflammatory collateral tissue damage (ICTD). Using a mouse model of disseminated intra-abdominal candidiasis (IAC) in wild-type and S100A8/A9-deficient mice in the presence or absence of S100A9 inhibitor paquinimod, the role of S100A8/A9 during ICTD and fungal clearance were investigated. S100A8/A9-deficient mice developed less ICTD than wild-type mice. Restoration of S100A8/A9 in knockout mice by injection of recombinant protein resulted in increased ICTD and fungal clearance comparable to wild-type levels. Treatment with paquinimod abolished ICTD and S100A9-deficient mice showed increased survival compared to wild-type littermates. The data indicates that S100A8/A9 controls ICTD levels and antimicrobial activity during IAC and that targeting of S100A8/A9 could serve as promising adjunct therapy against this challenging disease.


Asunto(s)
Calgranulina A/metabolismo , Calgranulina B/metabolismo , Interacciones Huésped-Patógeno/inmunología , Micosis/etiología , Micosis/metabolismo , Peritonitis/etiología , Peritonitis/metabolismo , Animales , Biomarcadores , Recuento de Colonia Microbiana , Citocinas/metabolismo , Modelos Animales de Enfermedad , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Susceptibilidad a Enfermedades , Inmunomodulación , Mediadores de Inflamación , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Micosis/mortalidad , Micosis/patología , Peritonitis/mortalidad , Peritonitis/patología , Pronóstico
5.
mBio ; 5(2): e00003-14, 2014 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-24667705

RESUMEN

The fungal pathogen Candida albicans causes macrophage death and escapes, but the molecular mechanisms remained unknown. Here we used live-cell imaging to monitor the interaction of C. albicans with macrophages and show that C. albicans kills macrophages in two temporally and mechanistically distinct phases. Early upon phagocytosis, C. albicans triggers pyroptosis, a proinflammatory macrophage death. Pyroptosis is controlled by the developmental yeast-to-hypha transition of Candida. When pyroptosis is inactivated, wild-type C. albicans hyphae cause significantly less macrophage killing for up to 8 h postphagocytosis. After the first 8 h, a second macrophage-killing phase is initiated. This second phase depends on robust hyphal formation but is mechanistically distinct from pyroptosis. The transcriptional regulator Mediator is necessary for morphogenesis of C. albicans in macrophages and the establishment of the wild-type surface architecture of hyphae that together mediate activation of macrophage cell death. Our data suggest that the defects of the Mediator mutants in causing macrophage death are caused, at least in part, by reduced activation of pyroptosis. A Mediator mutant that forms hyphae of apparently wild-type morphology but is defective in triggering early macrophage death shows a breakdown of cell surface architecture and reduced exposed 1,3 ß-glucan in hyphae. Our report shows how Candida uses host and pathogen pathways for macrophage killing. The current model of mechanical piercing of macrophages by C. albicans hyphae should be revised to include activation of pyroptosis by hyphae as an important mechanism mediating macrophage cell death upon C. albicans infection. IMPORTANCE Upon phagocytosis by macrophages, Candida albicans can transition to the hyphal form, which causes macrophage death and enables fungal escape. The current model is that the highly polarized growth of hyphae results in macrophage piercing. This model is challenged by recent reports of C. albicans mutants that form hyphae of wild-type morphology but are defective in killing macrophages. We show that C. albicans causes macrophage cell death by at least two mechanisms. Phase 1 killing (first 6 to 8 h) depends on the activation of the pyroptotic programmed host cell death by fungal hyphae. Phase 2 (up to 24 h) is rapid and depends on robust hyphal formation but is independent of pyroptosis. Our data provide a new model for how the interplay between fungal morphogenesis and activation of a host cell death pathway mediates macrophage killing by C. albicans hyphae.


Asunto(s)
Candida albicans/inmunología , Candidiasis/microbiología , Muerte Celular , Hifa/inmunología , Evasión Inmune , Macrófagos/microbiología , Animales , Candida albicans/metabolismo , Candida albicans/patogenicidad , Candidiasis/inmunología , Humanos , Hifa/metabolismo , Hifa/patogenicidad , Macrófagos/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Imagen Óptica
6.
Genetics ; 191(4): 1387-91, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22595243

RESUMEN

Regulation of the FLO11 adhesin is a model for gene expression control by extracellular signals and developmental switches. We establish that the major mRNA decay pathway regulates FLO11 expression. mRNA deadenylation of transcriptional repressors of FLO11 by the exonuclease Ccr4 keeps their levels low, thereby allowing FLO11 transcription.


Asunto(s)
Biopelículas , Regulación Fúngica de la Expresión Génica , Glicoproteínas de Membrana/genética , Estabilidad del ARN , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Adhesión Celular/genética , Glicoproteínas de Membrana/metabolismo , Modelos Biológicos , Mutación , Fenotipo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA