Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nature ; 582(7813): 561-565, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32365353

RESUMEN

Reverse genetics has been an indispensable tool to gain insights into viral pathogenesis and vaccine development. The genomes of large RNA viruses, such as those from coronaviruses, are cumbersome to clone and manipulate in Escherichia coli owing to the size and occasional instability of the genome1-3. Therefore, an alternative rapid and robust reverse-genetics platform for RNA viruses would benefit the research community. Here we show the full functionality of a yeast-based synthetic genomics platform to genetically reconstruct diverse RNA viruses, including members of the Coronaviridae, Flaviviridae and Pneumoviridae families. Viral subgenomic fragments were generated using viral isolates, cloned viral DNA, clinical samples or synthetic DNA, and these fragments were then reassembled in one step in Saccharomyces cerevisiae using transformation-associated recombination cloning to maintain the genome as a yeast artificial chromosome. T7 RNA polymerase was then used to generate infectious RNA to rescue viable virus. Using this platform, we were able to engineer and generate chemically synthesized clones of the virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)4, which has caused the recent pandemic of coronavirus disease (COVID-19), in only a week after receipt of the synthetic DNA fragments. The technical advance that we describe here facilitates rapid responses to emerging viruses as it enables the real-time generation and functional characterization of evolving RNA virus variants during an outbreak.


Asunto(s)
Betacoronavirus/genética , Clonación Molecular/métodos , Infecciones por Coronavirus/virología , Genoma Viral/genética , Genómica/métodos , Neumonía Viral/virología , Genética Inversa/métodos , Biología Sintética/métodos , Animales , COVID-19 , China/epidemiología , Chlorocebus aethiops , Cromosomas Artificiales de Levadura/metabolismo , Infecciones por Coronavirus/epidemiología , ARN Polimerasas Dirigidas por ADN/metabolismo , Evolución Molecular , Humanos , Mutación , Pandemias/estadística & datos numéricos , Neumonía Viral/epidemiología , Virus Sincitiales Respiratorios/genética , SARS-CoV-2 , Saccharomyces cerevisiae/genética , Células Vero , Proteínas Virales/metabolismo , Virus Zika/genética
2.
PLoS Biol ; 19(12): e3001490, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34962926

RESUMEN

Over the past 20 years, 3 highly pathogenic human coronaviruses (HCoVs) have emerged-Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and, most recently, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)-demonstrating that coronaviruses (CoVs) pose a serious threat to human health and highlighting the importance of developing effective therapies against them. Similar to other viruses, CoVs are dependent on host factors for their survival and replication. We hypothesized that evolutionarily distinct CoVs may exploit similar host factors and pathways to support their replication cycles. Herein, we conducted 2 independent genome-wide CRISPR/Cas-9 knockout (KO) screens to identify MERS-CoV and HCoV-229E host dependency factors (HDFs) required for HCoV replication in the human Huh7 cell line. Top scoring genes were further validated and assessed in the context of MERS-CoV and HCoV-229E infection as well as SARS-CoV and SARS-CoV-2 infection. Strikingly, we found that several autophagy-related genes, including TMEM41B, MINAR1, and the immunophilin FKBP8, were common host factors required for pan-CoV replication. Importantly, inhibition of the immunophilin protein family with the compounds cyclosporine A, and the nonimmunosuppressive derivative alisporivir, resulted in dose-dependent inhibition of CoV replication in primary human nasal epithelial cell cultures, which recapitulate the natural site of virus replication. Overall, we identified host factors that are crucial for CoV replication and demonstrated that these factors constitute potential targets for therapeutic intervention by clinically approved drugs.


Asunto(s)
Autofagia/genética , Sistemas CRISPR-Cas , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , SARS-CoV-2/genética , Antivirales/farmacología , Técnicas de Silenciamiento del Gen , Interacciones Huésped-Patógeno , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Replicación Viral
3.
PLoS Biol ; 19(3): e3001158, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33780434

RESUMEN

Since its emergence in December 2019, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has spread globally and become a major public health burden. Despite its close phylogenetic relationship to SARS-CoV, SARS-CoV-2 exhibits increased human-to-human transmission dynamics, likely due to efficient early replication in the upper respiratory epithelium of infected individuals. Since different temperatures encountered in the human upper and lower respiratory tract (33°C and 37°C, respectively) have been shown to affect the replication kinetics of several respiratory viruses, as well as host innate immune response dynamics, we investigated the impact of temperature on SARS-CoV-2 and SARS-CoV infection using the primary human airway epithelial cell culture model. SARS-CoV-2, in contrast to SARS-CoV, replicated to higher titers when infections were performed at 33°C rather than 37°C. Although both viruses were highly sensitive to type I and type III interferon pretreatment, a detailed time-resolved transcriptome analysis revealed temperature-dependent interferon and pro-inflammatory responses induced by SARS-CoV-2 that were inversely proportional to its replication efficiency at 33°C or 37°C. These data provide crucial insight on pivotal virus-host interaction dynamics and are in line with characteristic clinical features of SARS-CoV-2 and SARS-CoV, as well as their respective transmission efficiencies.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Regulación Viral de la Expresión Génica/genética , SARS-CoV-2/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Animales , Antivirales/farmacología , Células Cultivadas , Chlorocebus aethiops , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/virología , Regulación Viral de la Expresión Génica/efectos de los fármacos , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/genética , Humanos , Interferones/farmacología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Especificidad de la Especie , Temperatura , Células Vero , Replicación Viral/efectos de los fármacos , Replicación Viral/genética
4.
Emerg Infect Dis ; 27(7): 1811-1820, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34152956

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread globally, and the number of worldwide cases continues to rise. The zoonotic origins of SARS-CoV-2 and its intermediate and potential spillback host reservoirs, besides humans, remain largely unknown. Because of ethical and experimental constraints and more important, to reduce and refine animal experimentation, we used our repository of well-differentiated airway epithelial cell (AEC) cultures from various domesticated and wildlife animal species to assess their susceptibility to SARS-CoV-2. We observed that SARS-CoV-2 replicated efficiently only in monkey and cat AEC culture models. Whole-genome sequencing of progeny viruses revealed no obvious signs of nucleotide transitions required for SARS-CoV-2 to productively infect monkey and cat AEC cultures. Our findings, together with previous reports of human-to-animal spillover events, warrant close surveillance to determine the potential role of cats, monkeys, and closely related species as spillback reservoirs for SARS-CoV-2.


Asunto(s)
Animales Salvajes , COVID-19 , Animales , Células Epiteliales , Humanos , Sistema Respiratorio , SARS-CoV-2
5.
J Virol ; 94(4)2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31776274

RESUMEN

Coronavirus (CoV) nucleocapsid (N) proteins are key for incorporating genomic RNA into progeny viral particles. In infected cells, N proteins are present at the replication-transcription complexes (RTCs), the sites of CoV RNA synthesis. It has been shown that N proteins are important for viral replication and that the one of mouse hepatitis virus (MHV), a commonly used model CoV, interacts with nonstructural protein 3 (nsp3), a component of the RTCs. These two aspects of the CoV life cycle, however, have not been linked. We found that the MHV N protein binds exclusively to nsp3 and not other RTC components by using a systematic yeast two-hybrid approach, and we identified two distinct regions in the N protein that redundantly mediate this interaction. A selective N protein variant carrying point mutations in these two regions fails to bind nsp3 in vitro, resulting in inhibition of its recruitment to RTCs in vivo Furthermore, in contrast to the wild-type N protein, this N protein variant impairs the stimulation of genomic RNA and viral mRNA transcription in vivo and in vitro, which in turn leads to impairment of MHV replication and progeny production. Altogether, our results show that N protein recruitment to RTCs, via binding to nsp3, is an essential step in the CoV life cycle because it is critical for optimal viral RNA synthesis.IMPORTANCE CoVs have long been regarded as relatively harmless pathogens for humans. Severe respiratory tract infection outbreaks caused by severe acute respiratory syndrome CoV and Middle East respiratory syndrome CoV, however, have caused high pathogenicity and mortality rates in humans. These outbreaks highlighted the relevance of being able to control CoV infections. We used a model CoV, MHV, to investigate the importance of the recruitment of N protein, a central component of CoV virions, to intracellular platforms where CoVs replicate, transcribe, and translate their genomes. By identifying the principal binding partner at these intracellular platforms and generating a specific mutant, we found that N protein recruitment to these locations is crucial for promoting viral RNA synthesis. Moreover, blocking this recruitment strongly inhibits viral infection. Thus, our results explain an important aspect of the CoV life cycle and reveal an interaction of viral proteins that could be targeted in antiviral therapies.


Asunto(s)
Virus de la Hepatitis Murina/fisiología , Proteínas de la Nucleocápside/metabolismo , ARN Viral/biosíntesis , Transcripción Genética/fisiología , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/fisiología , Animales , Línea Celular , Humanos , Ratones , Proteínas de la Nucleocápside/genética , ARN Viral/genética , Proteínas no Estructurales Virales/genética
6.
Emerg Infect Dis ; 26(7): 1592-1595, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32284092

RESUMEN

Infection control instructions call for use of alcohol-based hand rub solutions to inactivate severe acute respiratory syndrome coronavirus 2. We determined the virucidal activity of World Health Organization-recommended hand rub formulations, at full strength and multiple dilutions, and of the active ingredients. All disinfectants demonstrated efficient virus inactivation.


Asunto(s)
Alcoholes/farmacología , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/prevención & control , Desinfectantes/farmacología , Desinfección de las Manos/métodos , Pandemias/prevención & control , Neumonía Viral/prevención & control , Inactivación de Virus , COVID-19 , Humanos , SARS-CoV-2 , Organización Mundial de la Salud
7.
PLoS Pathog ; 13(2): e1006195, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28158275

RESUMEN

Coronaviruses are of veterinary and medical importance and include highly pathogenic zoonotic viruses, such as SARS-CoV and MERS-CoV. They are known to efficiently evade early innate immune responses, manifesting in almost negligible expression of type-I interferons (IFN-I). This evasion strategy suggests an evolutionary conserved viral function that has evolved to prevent RNA-based sensing of infection in vertebrate hosts. Here we show that the coronavirus endonuclease (EndoU) activity is key to prevent early induction of double-stranded RNA (dsRNA) host cell responses. Replication of EndoU-deficient coronaviruses is greatly attenuated in vivo and severely restricted in primary cells even during the early phase of the infection. In macrophages we found immediate induction of IFN-I expression and RNase L-mediated breakdown of ribosomal RNA. Accordingly, EndoU-deficient viruses can retain replication only in cells that are deficient in IFN-I expression or sensing, and in cells lacking both RNase L and PKR. Collectively our results demonstrate that the coronavirus EndoU efficiently prevents simultaneous activation of host cell dsRNA sensors, such as Mda5, OAS and PKR. The localization of the EndoU activity at the site of viral RNA synthesis-within the replicase complex-suggests that coronaviruses have evolved a viral RNA decay pathway to evade early innate and intrinsic antiviral host cell responses.


Asunto(s)
Coronaviridae/enzimología , Infecciones por Coronavirus/inmunología , Endonucleasas/inmunología , Evasión Inmune/fisiología , Proteínas Virales/inmunología , Animales , Coronaviridae/inmunología , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata/inmunología , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena en Tiempo Real de la Polimerasa
8.
Artículo en Inglés | MEDLINE | ID: mdl-30181371

RESUMEN

The virus family Flaviviridae encompasses several viruses, including (re)emerging viruses which cause widespread morbidity and mortality throughout the world. Members of this virus family are positive-strand RNA viruses and replicate their genome in close association with reorganized intracellular host cell membrane compartments. This evolutionarily conserved strategy facilitates efficient viral genome replication and contributes to evasion from host cell cytosolic defense mechanisms. We have previously described the identification of a small-compound inhibitor, K22, which exerts a potent antiviral activity against a broad range of coronaviruses by targeting membrane-bound viral RNA replication. To analyze the antiviral spectrum of this inhibitor, we assessed the inhibitory potential of K22 against several members of the Flaviviridae family, including the reemerging Zika virus (ZIKV). We show that ZIKV is strongly affected by K22. Time-of-addition experiments revealed that K22 acts during a postentry phase of the ZIKV life cycle, and combination regimens of K22 together with ribavirin (RBV) or interferon alpha (IFN-α) further increased the extent of viral inhibition. Ultrastructural electron microscopy studies revealed severe alterations of ZIKV-induced intracellular replication compartments upon infection of K22-treated cells. Importantly, the antiviral activity of K22 was demonstrated against several other members of the Flaviviridae family. It is tempting to speculate that K22 exerts its broad antiviral activity against several positive-strand RNA viruses via a similar mechanism and thereby represents an attractive candidate for development as a panviral inhibitor.


Asunto(s)
Antivirales/farmacología , Membrana Celular/efectos de los fármacos , Infecciones por Flaviviridae/tratamiento farmacológico , Flaviviridae/efectos de los fármacos , Aedes , Animales , Línea Celular , Membrana Celular/virología , Chlorocebus aethiops , Infecciones por Flaviviridae/virología , Humanos , Interferón-alfa/farmacología , ARN Viral/genética , Ribavirina/farmacología , Células Vero , Replicación Viral/efectos de los fármacos
9.
Traffic ; 14(10): 1029-41, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23837619

RESUMEN

Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved intracellular catabolic transport route that generally allows the lysosomal degradation of cytoplasmic components, including bulk cytosol, protein aggregates, damaged or superfluous organelles and invading microbes. Target structures are sequestered by double-membrane vesicles called autophagosomes, which are formed through the concerted action of the autophagy (ATG)-related proteins. Until recently it was assumed that ATG proteins were exclusively involved in autophagy. A growing number of studies, however, have attributed functions to some of them that are distinct from their classical role in autophagosome biogenesis. Autophagy-independent roles of the ATG proteins include the maintenance of cellular homeostasis and resistance to pathogens. For example, they assist and enhance the turnover of dead cells and microbes upon their phagocytic engulfment, and inhibit murine norovirus replication. Moreover, bone resorption by osteoclasts, innate immune regulation triggered by cytoplasmic DNA and the ER-associated degradation regulation all have in common the requirement of a subset of ATG proteins. Microorganisms such as coronaviruses, Chlamydia trachomatis or Brucella abortus have even evolved ways to manipulate autophagy-independent functions of ATG proteins in order to ensure the completion of their intracellular life cycle. Taken together these novel mechanisms add to the repertoire of functions and extend the number of cellular processes involving the ATG proteins.


Asunto(s)
Autofagia/fisiología , Proteínas/metabolismo , Animales , Homeostasis/fisiología , Humanos , Fagosomas/metabolismo , Fagosomas/fisiología
10.
Nat Microbiol ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997518

RESUMEN

Approved vaccines are effective against severe COVID-19, but broader immunity is needed against new variants and transmission. Therefore, we developed genome-modified live-attenuated vaccines (LAV) by recoding the SARS-CoV-2 genome, including 'one-to-stop' (OTS) codons, disabling Nsp1 translational repression and removing ORF6, 7ab and 8 to boost host immune responses, as well as the spike polybasic cleavage site to optimize the safety profile. The resulting OTS-modified SARS-CoV-2 LAVs, designated as OTS-206 and OTS-228, are genetically stable and can be intranasally administered, while being adjustable and sustainable regarding the level of attenuation. OTS-228 exhibits an optimal safety profile in preclinical animal models, with no side effects or detectable transmission. A single-dose vaccination induces a sterilizing immunity in vivo against homologous WT SARS-CoV-2 challenge infection and a broad protection against Omicron BA.2, BA.5 and XBB.1.5, with reduced transmission. Finally, this promising LAV approach could be applicable to other emerging viruses.

11.
Viruses ; 15(12)2023 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-38140686

RESUMEN

Influenza D virus (IDV) can infect various livestock animals, such as cattle, swine, and small ruminants, and was shown to have zoonotic potential. Therefore, it is important to identify viral factors involved in the broad host tropism and identify potential antiviral compounds that can inhibit IDV infection. Recombinant reporter viruses provide powerful tools for studying viral infections and antiviral drug discovery. Here we present the generation of a fluorescent reporter IDV using our previously established reverse genetic system for IDV. The mNeonGreen (mNG) fluorescent reporter gene was incorporated into the IDV non-structural gene segment as a fusion protein with the viral NS1 or NS2 proteins, or as a separate protein flanked by two autoproteolytic cleavage sites. We demonstrate that only recombinant reporter viruses expressing mNG as an additional separate protein or as an N-terminal fusion protein with NS1 could be rescued, albeit attenuated, compared to the parental reverse genetic clone. Serial passaging experiments demonstrated that the mNG gene is stably integrated for up to three passages, after which internal deletions accumulate. We conducted a proof-of-principle antiviral screening with the established fluorescent reporter viruses and identified two compounds influencing IDV infection. These results demonstrate that the newly established recombinant IDV reporter virus can be applied for antiviral drug discovery and monitoring viral replication, adding a new molecular tool for investigating IDV.


Asunto(s)
Gripe Humana , Infecciones por Orthomyxoviridae , Orthomyxoviridae , Thogotovirus , Bovinos , Animales , Porcinos , Humanos , Gripe Humana/genética , Deltainfluenzavirus , Thogotovirus/genética , Orthomyxoviridae/genética , Proteínas Virales/genética , Genes Reporteros , Antivirales/farmacología
12.
Front Immunol ; 13: 978824, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36268025

RESUMEN

The respiratory epithelium constitutes the first line of defense against invading respiratory pathogens, such as the 2009 pandemic strain of influenza A virus (IAV, H1N1pdm09), and plays a crucial role in the host antiviral response to infection. Despite its importance, however, it remains unknown how individual cell types within the respiratory epithelium respond to IAV infection or how the latter may influence IAV disease progression and pathogenesis. Here, we used single cell RNA sequencing (scRNA-seq) to dissect the host response to IAV infection in its natural target cells. scRNA-seq was performed on human airway epithelial cell (hAEC) cultures infected with either wild-type pandemic IAV (WT) or with a mutant version of IAV (NS1R38A) that induced a robust innate immune response. We then characterized both the host and viral transcriptomes of more than 19,000 single cells across the 5 major cell types populating the human respiratory epithelium. For all cell types, we observed a wide spectrum of viral burden among single infected cells and a disparate host response between infected and bystander populations. Interestingly, we also identified multiple key differences in the host response to IAV among individual cell types, including high levels of pro-inflammatory cytokines and chemokines in secretory and basal cells and an important role for luminal cells in sensing and restricting incoming virus. Multiple infected cell types were shown to upregulate interferons (IFN), with type III IFNs clearly dominating the antiviral response. Transcriptional changes in genes related to cell differentiation, cell migration, and tissue repair were also identified. Strikingly, we also detected a shift in viral host cell tropism from non-ciliated cells to ciliated cells at later stages of infection and observed major changes in the cellular composition. Microscopic analysis of both WT and NS1R38A virus-infected hAECs at various stages of IAV infection revealed that the transcriptional changes we observed at 18 hpi were likely driving the downstream histopathological alterations in the airway epithelium. To our knowledge, this is the first study to provide a comprehensive analysis of the cell type-specific host antiviral response to influenza virus infection in its natural target cells - namely, the human respiratory epithelium.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Humanos , Análisis de la Célula Individual , Pandemias , Interferones/genética , Interferones/metabolismo , Citocinas , Antivirales , Progresión de la Enfermedad
13.
Front Immunol ; 13: 970325, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36059535

RESUMEN

Viral cross-species transmission is recognized to be a major threat to both human and animal health, however detailed information on determinants underlying virus host tropism and susceptibility is missing. Influenza C and D viruses (ICV, IDV) are two respiratory viruses that share up to 50% genetic similarity, and both employ 9-O-acetylated sialic acids to enter a host cell. While ICV infections are mainly restricted to humans, IDV possesses a much broader host tropism and has shown to have a zoonotic potential. This suggests that additional virus-host interactions play an important role in the distinct host spectrum of ICV and IDV. In this study, we aimed to characterize the innate immune response of the respiratory epithelium of biologically relevant host species during influenza virus infection to identify possible determinants involved in viral cross-species transmission. To this end, we performed a detailed characterization of ICV and IDV infection in primary airway epithelial cell (AEC) cultures from human, porcine, and bovine origin. We monitored virus replication kinetics, cellular and host tropism, as well as the host transcriptional response over time at distinct ambient temperatures. We observed that both ICV and IDV predominantly infect ciliated cells, independently from host and temperature. Interestingly, temperature had a profound influence on ICV replication in both porcine and bovine AEC cultures, while IDV replicated efficiently irrespective of temperature and host. Detailed time-resolved transcriptome analysis revealed both species-specific and species uniform host responses and highlighted 34 innate immune-related genes with clear virus-specific and temperature-dependent profiles. These data provide the first comprehensive insights into important common and species-specific virus-host dynamics underlying the distinct host tropism of ICV and IDV, as well as possible determinants involved in viral cross-species transmission.


Asunto(s)
Enfermedades Transmisibles , Gripe Humana , Infecciones por Orthomyxoviridae , Orthomyxoviridae , Thogotovirus , Animales , Bovinos , Humanos , Inmunidad Innata , Mucosa Respiratoria , Porcinos , Thogotovirus/genética
14.
Nat Rev Microbiol ; 19(3): 155-170, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33116300

RESUMEN

The SARS-CoV-2 pandemic and its unprecedented global societal and economic disruptive impact has marked the third zoonotic introduction of a highly pathogenic coronavirus into the human population. Although the previous coronavirus SARS-CoV and MERS-CoV epidemics raised awareness of the need for clinically available therapeutic or preventive interventions, to date, no treatments with proven efficacy are available. The development of effective intervention strategies relies on the knowledge of molecular and cellular mechanisms of coronavirus infections, which highlights the significance of studying virus-host interactions at the molecular level to identify targets for antiviral intervention and to elucidate critical viral and host determinants that are decisive for the development of severe disease. In this Review, we summarize the first discoveries that shape our current understanding of SARS-CoV-2 infection throughout the intracellular viral life cycle and relate that to our knowledge of coronavirus biology. The elucidation of similarities and differences between SARS-CoV-2 and other coronaviruses will support future preparedness and strategies to combat coronavirus infections.


Asunto(s)
COVID-19/virología , SARS-CoV-2/fisiología , Animales , Interacciones Huésped-Patógeno , Humanos , SARS-CoV-2/química , Proteínas Virales/genética , Proteínas Virales/metabolismo , Internalización del Virus , Replicación Viral , Tratamiento Farmacológico de COVID-19
15.
Front Cell Infect Microbiol ; 11: 644574, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33912475

RESUMEN

Vaccines are essential to control the spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and to protect the vulnerable population. However, one safety concern of vaccination is the possible development of antibody-dependent enhancement (ADE) of SARS-CoV-2 infection. The potential infection of Fc receptor bearing cells such as macrophages, would support continued virus replication and inflammatory responses, and thereby potentially worsen the clinical outcome of COVID-19. Here we demonstrate that SARS-CoV-2 and SARS-CoV neither infect human monocyte-derived macrophages (hMDM) nor induce inflammatory cytokines in these cells, in sharp contrast to Middle East respiratory syndrome (MERS) coronavirus and the common cold human coronavirus 229E. Furthermore, serum from convalescent COVID-19 patients neither induced enhancement of SARS-CoV-2 infection nor innate immune response in hMDM. Although, hMDM expressed angiotensin-converting enzyme 2, no or very low levels of transmembrane protease serine 2 were found. These results support the view that ADE may not be involved in the immunopathological processes associated with COVID-19, however, more studies are necessary to understand the potential contribution of antibodies-virus complexes with other cells expressing FcR receptors.


Asunto(s)
COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Anticuerpos Antivirales , Humanos , Macrófagos , SARS-CoV-2
16.
Vet Microbiol ; 257: 109067, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33862331

RESUMEN

Respiratory diseases negatively impact the global goat industry, but are understudied. There is a shortage of established and biological relevant in vitro or ex vivo assays to study caprine respiratory infections. Here, we describe the establishment of an in vitro system based on well-differentiated caprine airway epithelial cell (AEC) cultures grown under air liquid interface conditions as an experimental platform to study caprine respiratory pathogens. The functional differentiation of the AEC cultures was monitored and confirmed by light and immunofluorescence microscopy, scanning electron microscopy and examination of histological sections. We validated the functionality of the platform by studying Influenza D Virus (IDV) infection and Mycoplasma mycoides subsp. capri (Mmc) colonization over 5 days, including monitoring of infectious agents by titration and qPCR as well as colour changing units, respectively. The inoculation of caprine AEC cultures with IDV showed that efficient viral replication takes place, and revealed that IDV has a marked cell tropism for ciliated cells. Furthermore, AEC cultures were successfully infected with Mmc using a multiplicity of infection of 0.1 and colonization was monitored over several days. Altogether, these results demonstrate that our newly-established caprine AEC cultures can be used to investigate host-pathogen interactions of caprine respiratory pathogens.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Técnicas de Cultivo de Célula/veterinaria , Células Epiteliales/microbiología , Células Epiteliales/virología , Mucosa Respiratoria/microbiología , Mucosa Respiratoria/virología , Sistema Respiratorio/citología , Animales , Bronquios/citología , Diferenciación Celular , Células Cultivadas , Cabras , Interacciones Huésped-Patógeno , Microscopía Electrónica de Rastreo , Mycoplasma/fisiología , Thogotovirus/fisiología , Tropismo Viral , Replicación Viral/fisiología
17.
Nat Commun ; 12(1): 7276, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34907161

RESUMEN

Double membrane vesicles (DMVs) serve as replication organelles of plus-strand RNA viruses such as hepatitis C virus (HCV) and SARS-CoV-2. Viral DMVs are morphologically analogous to DMVs formed during autophagy, but lipids driving their biogenesis are largely unknown. Here we show that production of the lipid phosphatidic acid (PA) by acylglycerolphosphate acyltransferase (AGPAT) 1 and 2 in the ER is important for DMV biogenesis in viral replication and autophagy. Using DMVs in HCV-replicating cells as model, we found that AGPATs are recruited to and critically contribute to HCV and SARS-CoV-2 replication and proper DMV formation. An intracellular PA sensor accumulated at viral DMV formation sites, consistent with elevated levels of PA in fractions of purified DMVs analyzed by lipidomics. Apart from AGPATs, PA is generated by alternative pathways and their pharmacological inhibition also impaired HCV and SARS-CoV-2 replication as well as formation of autophagosome-like DMVs. These data identify PA as host cell lipid involved in proper replication organelle formation by HCV and SARS-CoV-2, two phylogenetically disparate viruses causing very different diseases, i.e. chronic liver disease and COVID-19, respectively. Host-targeting therapy aiming at PA synthesis pathways might be suitable to attenuate replication of these viruses.


Asunto(s)
Hepacivirus/genética , Ácidos Fosfatidicos/metabolismo , SARS-CoV-2/genética , Replicación Viral/fisiología , 1-Acilglicerol-3-Fosfato O-Aciltransferasa , Aciltransferasas , Autofagosomas/metabolismo , Autofagia , COVID-19/virología , Línea Celular , Supervivencia Celular , Virus del Dengue , Células HEK293 , Humanos , Proteínas de la Membrana , Glicoproteína de la Espiga del Coronavirus , Proteínas no Estructurales Virales , Proteínas Virales , Virus Zika
18.
Methods Mol Biol ; 2203: 187-204, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32833213

RESUMEN

Biotin-based proximity labeling circumvents major pitfalls of classical biochemical approaches to identify protein-protein interactions. It consists of enzyme-catalyzed biotin tags ubiquitously apposed on proteins located in close proximity of the labeling enzyme, followed by affinity purification and identification of biotinylated proteins by mass spectrometry. Here we outline the methods by which the molecular microenvironment of the coronavirus replicase/transcriptase complex (RTC), i.e., proteins located within a close perimeter of the RTC, can be determined by different proximity labeling approaches using BirAR118G (BioID), TurboID, and APEX2. These factors represent a molecular signature of coronavirus RTCs and likely contribute to the viral life cycle, thereby constituting attractive targets for the development of antiviral intervention strategies.


Asunto(s)
Coronavirus/patogenicidad , Enzimas/genética , Interacciones Huésped-Patógeno/fisiología , Proteómica/métodos , Proteínas Virales/metabolismo , Animales , Ascorbato Peroxidasas/genética , Biotinilación , Ligasas de Carbono-Nitrógeno/genética , Línea Celular , Coronavirus/genética , Enzimas/metabolismo , Proteínas de Escherichia coli/genética , Técnica del Anticuerpo Fluorescente , Microorganismos Modificados Genéticamente , Proteínas Represoras/genética , Proteínas Virales/química , Proteínas Virales/genética
19.
Microorganisms ; 8(12)2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33256227

RESUMEN

With over 50 million currently confirmed cases worldwide, including more than 1.3 million deaths, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has a major impact on the economy and health care system. Currently, limited prophylactic or therapeutic intervention options are available against SARS-CoV-2. In this study, 400 compounds from the antimicrobial "pandemic response box" library were screened for inhibiting properties against SARS-CoV-2. An initial screen on Vero E6 cells identified five compounds that inhibited SARS-CoV-2 replication. However, validation of the selected hits in a human lung cell line highlighted that only a single compound, namely Retro-2.1, efficiently inhibited SARS-CoV-2 replication. Additional analysis revealed that the antiviral activity of Retro-2.1 occurs at a post-entry stage of the viral replication cycle. Combined, these data demonstrate that stringent in vitro screening of preselected compounds in multiple cell lines refines the rapid identification of new potential antiviral candidate drugs targeting SARS-CoV-2.

20.
Microorganisms ; 8(12)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33265927

RESUMEN

Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) depends on angiotensin converting enzyme 2 (ACE2) for cellular entry, but it might also rely on attachment receptors such as heparan sulfates. Several groups have recently demonstrated an affinity of the SARS-CoV2 spike protein for heparan sulfates and a reduced binding to cells in the presence of heparin or heparinase treatment. Here, we investigated the inhibitory activity of several sulfated and sulfonated molecules, which prevent interaction with heparan sulfates, against vesicular stomatitis virus (VSV)-pseudotyped-SARS-CoV-2 and the authentic SARS-CoV-2. Sulfonated cyclodextrins and nanoparticles that have recently shown broad-spectrum non-toxic virucidal activity against many heparan sulfates binding viruses showed inhibitory activity in the micromolar and nanomolar ranges, respectively. In stark contrast with the mechanisms that these compounds present for these other viruses, the inhibition against SARS-CoV-2 was found to be simply reversible.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA