RESUMEN
BACKGROUND: The pathogenesis of renal disease in the context of overweight/obesity, metabolic syndrome, and insulin resistance is not completely understood. This may be due to the lack of a definitive animal model of disease, which limits our understanding of obesity-induced renal damage. We evaluated the changes in renal histology and lipid deposits induced by obesity in a model of insulin resistance: the Iberian swine fed with fat-enriched food. METHODS: Twenty-eight female sows were randomized to standard (SD) or high-fat diet (HFD: 6.8% of saturated fat) for 100 days. Weight, adiposity, analytics, oral glucose tolerance tests, and measured renal function were determined. Renal histology and lipid deposits in renal tissue were analyzed. RESULTS: Animals on HFD developed obesity, hypertension, high levels of LDL cholesterol, triglycerides, insulin resistance, and glomerular hyperfiltration. No animal developed overt diabetes. Animals on HFD showed "diabetoid changes", including mesangial expansion [21.40% ± 4 vs.13.20% ± 4.0, p < 0.0001], nodular glomerulosclerosis [7.40% ± 7, 0.75 vs. 2.40% ± 4.7, p = 0.02], and glomerulomegaly (18% vs. 10%, p = 0.010) than those on SD. Tubular atrophy, interstitial fibrosis, inflammation, arteriolar hyalinosis, or fibrointimal thickening were mild and similar between groups. Triglyceride content in renal tissue was higher in animals on HFD than in SD (15.4% ± 0.5 vs. 12.7% ± 0.7; p < 0.01). CONCLUSIONS: Iberian pigs fed with fat-enriched food showed diabetoid changes and glomerulomegaly as observed in obese humans making this model suitable to study obesity-induced renal disease.
Asunto(s)
Modelos Animales de Enfermedad , Enfermedades Renales , Síndrome Metabólico/complicaciones , Obesidad/complicaciones , Porcinos , Animales , LDL-Colesterol/sangre , Dieta Alta en Grasa , Femenino , Resistencia a la Insulina , Riñón/patología , Riñón/fisiopatología , Enfermedades Renales/etiología , Enfermedades Renales/patología , Enfermedades Renales/fisiopatología , Triglicéridos/sangreRESUMEN
The use of polyphenols is a promising strategy for preventing or alleviating intrauterine growth restriction (IUGR) because polyphenol supplementation increases plasma antioxidant capacity and improves oxidative stress at the feto-placental unit; which are recognized as main issues in IUGR. However, there is a scarcity of experimental data on both realistic benefits and potential hazards of polyphenol supplementation during gestation. Hence, we aimed to use a swine model of IUGR pregnancy to determine possible effects of maternal supplementation with polyphenols (hydroxytyrosol) on placental expression of genes involved in antioxidant homeostasis, vascularization and fetal growth and thus on antioxidant status, DNA-methylation and phenotypic traits (morphology and homeostasis) of the fetus. Hydroxytyrosol improves placental gene expression and fetal antioxidant status and glucose metabolism in a sex-dependent manner, in which males were favored in spite of developmental failures. Concomitantly, hydroxytyrosol prevented hypomethylation of DNA associated with oxidative stress. Finally, no major deleterious effects of hydroxytyrosol supplementation on constriction of the ductus arteriosus, a possible secondary effect of polyphenols during pregnancy, were found.
Asunto(s)
Antioxidantes/uso terapéutico , Metilación de ADN/efectos de los fármacos , Retardo del Crecimiento Fetal/tratamiento farmacológico , Expresión Génica/efectos de los fármacos , Alcohol Feniletílico/análogos & derivados , Placenta/efectos de los fármacos , Polifenoles/uso terapéutico , Animales , Femenino , Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/metabolismo , Feto/efectos de los fármacos , Feto/metabolismo , Masculino , Estrés Oxidativo/efectos de los fármacos , Fenotipo , Alcohol Feniletílico/uso terapéutico , Placenta/metabolismo , Embarazo , PorcinosRESUMEN
Sarcopenia and sarcopenic obesity are currently considered major global threats for health and well-being. However, there is a lack of adequate preclinical models for their study. The present trial evaluated the suitability of aged swine by determining changes in adiposity, fatty acids composition, antioxidant status and lipid peroxidation, development of metabolic disturbances and structural changes in tissues and organs. Iberian sows with clinical evidence of aging-related sarcopenia were fed a standard diet fulfilling their maintenance requirements or an obesogenic diet for 100 days. Aging and sarcopenia were related to increased lipid accumulation and cellular dysfunction at both adipose tissue and non-adipose ectopic tissues (liver and pancreas). Obesity concomitant to sarcopenia aggravates the condition by increasing visceral adiposity and causing dyslipidemia, insulin resistance and lipotoxicity in non-adipose tissues. These results support that the Iberian swine model represents certain features of sarcopenia and sarcopenic obesity in humans, paving the way for future research on physiopathology of these conditions and possible therapeutic targets.
Asunto(s)
Envejecimiento/patología , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Obesidad/patología , Sarcopenia/patología , Porcinos/fisiología , Adiposidad , Animales , Femenino , Resistencia a la Insulina , Metabolismo de los Lípidos , Obesidad/etiología , Sarcopenia/etiologíaRESUMEN
There is no simple method to measure glomerular filtration rate (GFR) in swine, an established model for studying renal disease. We developed a protocol to measure GFR in conscious swine by using the plasma clearance of iohexol. We used two groups, test and validation, with eight animals each. Ten milliliters of iohexol (6.47 g) was injected into the marginal auricular vein and blood samples (3 mL) were collected from the orbital sinus at different points after injection. GFR was determined using two models: two-compartment (CL2: all samples) and one-compartment (CL1: the last six samples). In the test group, CL1 overestimated CL2 by ~30%: CL2 = 245 ± 93 and CL1 = 308 ± 123 mL/min. This error was corrected by a first-order polynomial quadratic equation to CL1, which was considered the simplified method: SM = -47.909 + (1.176xCL1) - (0.00063968xCL1²). The SM showed narrow limits of agreement with CL2, a concordance correlation of 0.97, and a total deviation index of 14.73%. Similar results were obtained for the validation group. This protocol is reliable, reproducible, can be performed in conscious animals, uses a single dose of the marker, and requires a reduced number of samples, and avoids urine collection. Finally, it presents a significant improvement in animal welfare conditions and handling necessities in experimental trials.
Asunto(s)
Yohexol/análisis , Pruebas de Función Renal/métodos , Plasma/metabolismo , Animales , Calibración , Yohexol/farmacocinética , Pruebas de Función Renal/normas , Control de Calidad , Estándares de Referencia , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , PorcinosRESUMEN
The present study aimed to determine whether developmental patterns, adiposity level and fatty-acid composition of fetuses exposed to maternal malnutrition are driven by their sex or their genotype, or both, as these may modulate the adaptive response to the intrauterine environment independently of the maternal genotype. We used a single maternal genotype (purebred Iberian (IB) sows), which was inseminated with heterospermic semen (obtained by mixing semen from Iberian and Large White (LW) boars), to obtain four different subsets of fetuses (male and female, purebred (IB×IB) and crossbred (IB×LW)) in Iberian purebred sows. Analysis of fetal phenotypes indicated a better adaptive response of the female offspring, which was modulated by their genotype. When faced with prenatal undernutrition, females prioritised the growth of vital organs (brain, liver, lungs, kidneys and intestine) at the expense of bone and muscle. Moreover, the analysis of fat composition showed a higher availability of essential fatty acids in the female sex than in their male counterparts and also in the Iberian genotype than in crossbred fetuses. These results are of high translational value for understanding ethnic differences in prenatal programming of postnatal health and disease status, and show evidence that prenatal development and metabolic traits are primarily determined by fetal sex and strongly modulated by fetal genotype.
Asunto(s)
Ácidos Grasos Esenciales/metabolismo , Desarrollo Fetal , Retardo del Crecimiento Fetal/etiología , Desnutrición/fisiopatología , Fenómenos Fisiologicos Nutricionales Maternos , Organogénesis , Adiposidad , Alelos , Animales , Animales Endogámicos , Cruzamientos Genéticos , Femenino , Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/metabolismo , Retardo del Crecimiento Fetal/patología , Feto/metabolismo , Feto/patología , Heterocigoto , Homocigoto , Inseminación Artificial/veterinaria , Masculino , Embarazo , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Caracteres Sexuales , España , Sus scrofaRESUMEN
Sex-related differences in lipid availability and fatty acid composition during swine foetal development were investigated. Plasma cholesterol and triglyceride concentrations in the mother were strongly related to the adequacy or inadequacy of foetal development and concomitant activation of protective growth in some organs (brain, heart, liver and spleen). Cholesterol and triglyceride availability was similar in male and female offspring, but female foetuses showed evidence of higher placental transfer of essential fatty acids and synthesis of non-essential fatty acids in muscle and liver. These sex-related differences affected primarily the neutral lipid fraction (triglycerides), which may lead to sex-related postnatal differences in energy partitioning. These results illustrate the strong influence of the maternal lipid profile on foetal development and homeorhesis, and they confirm and extend previous reports that female offspring show better adaptive responses to maternal malnutrition than male offspring. These findings may help guide dietary interventions to ensure adequate fatty acid availability for postnatal development.
Asunto(s)
Ácidos Grasos/metabolismo , Desarrollo Fetal , Feto/metabolismo , Lípidos/biosíntesis , Animales , Colesterol/sangre , Femenino , Lípidos/sangre , Hígado/embriología , Hígado/metabolismo , Masculino , Intercambio Materno-Fetal , Músculos/embriología , Músculos/metabolismo , Placenta/metabolismo , Embarazo , Factores Sexuales , Porcinos , Triglicéridos/sangreRESUMEN
A high intramuscular fat content characterizes Wagyu (WY) cattle breed. Our objective was to compare beef from WY, WY-by-Angus, or Wangus (WN) steers with European, Angus-by-Charolais-Limousine crossbred steers (ACL), considering metabolic biomarkers pre-slaughtering and nutritional characteristics, including health-related indexes of the lipid fraction. The fattening system with olein-rich diets and no exercise restriction included 82 steers, 24 WY, 29 WN, and 29 ACL. The slaughter ages and weights were (median and interquartile range) 38.4 mo.-old (34.9-40.3 mo.) and 840 kg (785-895 kg) for WY; for WN, 30.6 mo. (26.9-36.5 mo.) and 832 kg (802-875 kg), and for ACL steers, 20.3 mo.-old (19.0-22.7 mo.) and 780 kg (715-852 kg). Blood lipid-related metabolites, except for non-esterified fatty acids (NEFA) and low-density level cholesterol (LDL), were higher in WY and WN than in ACL, while glucose was lower in WY and WN. Leptin was higher in WN than in ACL. Pre-slaughtering values of plasma HDL underscored as a possible metabolic biomarker directly related to beef quality. The amino-acid content in beef did not differ among experimental groups, except for more crude protein in ACL. Compared to ACL, WY steers showed higher intramuscular fat in sirloin (51.5 vs. 21.9%) and entrecote (59.6 vs. 27.6%), more unsaturated fatty acids in entrecote (55.8 vs. 53.0%), and more oleic acid in sirloin (46 vs. 41.3%) and entrecote (47.5 vs. 43.3%). Compared to ACL entrecote, WY and WN showed better atherogenic (0.6 and 0.55 vs. 0.69), thrombogenicity (0.82 and 0.92 vs. 1.1), and hypocholesterolemic/hypercholesterolemic index (1.9 and 2.1 vs. 1.7). Therefore, beef's nutritional characteristics depend on breed/crossbred, slaughtering age and cut, with WY and WN entrecote samples showing a healthier lipid fraction.
RESUMEN
Supplementation of a mother's diet with antioxidants such as hydroxytyrosol (HTX) has been proposed to ameliorate the adverse phenotypes of foetuses affected by intrauterine growth restriction (IUGR). Our previous studies showed, in a porcine model of IUGR, an effect of maternal HTX supplementation on the neurotransmitter profile of several brain areas and the morphology of the hippocampus in 100 days old foetuses. The present study analyzed the impact of maternal HTX supplementation on the hippocampus proteome at this foetal age by TMT10plex labelling. Eleven differentially abundant proteins were identified by comparing both conditions, and eight of them downregulated and three upregulated in the HTX-treated group. The downregulated proteins were mainly involved in protein synthesis and RNA metabolism and may explain the differences in neuron differentiation in the HTX-treated group. The upregulated proteins were related to cell detoxification and could represent a potential mechanism to explain the neuroprotective effect of HTX.
RESUMEN
The hypothalamus is implicated in controlling feeding and adiposity, besides many other physiological functions, and thus can be of great importance in explaining productive differences between lean and fatty pig breeds. The present study aimed to evaluate the hypothalamic transcriptome of pure Iberian (IBxIB) and Large White x Iberian crossbreds (IBxLW) at 60 days-old, produced in a single maternal environment. Results showed the implication of gender and genotype in the hypothalamic transcriptome, with 51 differentially expressed genes (DEGs) between genotypes and 10 DEGs between genders. Fourteen genotype by sex interactions were found, due to a higher genotype effect on transcriptome found in males. In fact, just 31 DEGs were identified when using only females but 158 using only males. A higher expression of genes related to mitochondrial activity in IBxIB male animals (ND3, ND4, ND5, UQCRC2 and ATP6) was found, which was related to a higher oxidative phosphorylation and greater reactive oxygen species and nitric oxide production. IBxLW male animals showed higher expression of SIRT3 regulator, also related to mitochondrial function. When females were analysed, such differences were not found, since only some differences in genes related to the tricarboxylic acid cycle. Thus, the results indicate a significant effect and interaction of the breed and the sex on the hypothalamic transcriptome at this early age.
Asunto(s)
Perfilación de la Expresión Génica , Fosforilación Oxidativa , Animales , Femenino , Genotipo , Hipotálamo , Masculino , Porcinos/genética , TranscriptomaRESUMEN
Intrauterine Growth Restriction (IUGR) is a major problem in pig production and different strategies, mainly maternal supplementation with different agents, are currently being studied. The combination of hydroxytyrosol and n3-PUFA seems to be a promising treatment to counteract IUGR, since the combination may help improve n3-PUFA composition and lower the inflammatory status of IUGR piglets. The aim of the present study is to determine the effects of a maternal supplementation, from day 35 to day 100 of pregnancy, with linseed oil and hydroxytyrosol on the fetal FA composition. The results showed higher n3 levels, including eicosapentaenoic and docosahexaenoic FA in the offspring from treated gilts, which showed lower n6-PUFA/n3-PUFA (n6/n3) ratios. Saturated and monounsaturated fatty acids were also affected by treatment, especially in the muscle and brain. Thus, a maternal supplementation with linseed oil and hydroxytyrosol affected the fetal FA tissue composition, which could have implications in pig production due to the improvement of the piglets' health status.
RESUMEN
Intrauterine growth restriction (IUGR) and later obesity and metabolic disorders have classically been associated with maternal malnutrition, but most cases of IUGR are related to placental insufficiency. The current study, using a swine model for IUGR and obesity, aimed to determine the interaction of birth weight (categorized as low birth weight [LBW] or normal birth-weight [NBW]) and postnatal diet (categorized as maintenance diet [MD] or fattening diet [FD]) on body weight, adiposity and metabolic traits. FD induced higher body weight and adiposity (both p < 0.0001), with higher fructosamine levels (p < 0.005) and a trend toward higher HOMA-ß index (p = 0.05). NBW pigs remained heavier than LBW pigs during the early juvenile period (p < 0.005), but there were no differences at later stages. There were no differences in metabolic traits during juvenile development, but there were differences in adulthood, when LBW pigs showed higher glucose and lower insulin levels than NBW pigs (both p < 0.05). These results suggest that (a) FD allows LBW offspring to achieve similar obesity in adulthood as NBW offspring, and (b) glucose metabolism is more compromised in obese LBW than obese NBW pigs. The comparison of our data with previous studies highlights significant differences between offspring with LBW induced by maternal malnutrition or placental insufficiency, which should be considered when studying the condition.
RESUMEN
Supplementation of a mother's diet with antioxidants, such as hydroxytyrosol (HTX), has been proposed to ameliorate the adverse phenotypes of fetuses at risk of intrauterine growth restriction. In the present study, sows were treated daily with or without 1.5 mg of HTX per kilogram of feed from day 35 of pregnancy (at 30% of total gestational period), and individuals were sampled at three different ages: 100-day-old fetuses and 1-month- and 6-month-old piglets. After euthanasia, the brain was removed and the hippocampus, amygdala, and prefrontal cortex were dissected. The profile of the catecholaminergic and serotoninergic neurotransmitters (NTs) was characterized and an immunohistochemical study of the hippocampus was performed. The results indicated that maternal supplementation with HTX during pregnancy affected the NT profile in a brain-area-dependant mode and it modified the process of neuron differentiation in the hippocampal CA1 and GD areas, indicating that cell differentiation occurred more rapidly in the HTX group. These effects were specific to the fetal period, concomitantly with HTX maternal supplementation, since no major differences remained between the control and treated groups in 1-month- and 6-month-old pigs.
RESUMEN
Intrauterine growth restriction (IUGR) refers to poor growth of a fetus during pregnancy due to deficient maternal nutrition or oxygen supply. Supplementation of a mother's diet with antioxidants, such as hydroxytyrosol (HTX), has been proposed to ameliorate the adverse phenotypes of IUGR. In the present study, sows were treated daily with or without 1.5 mg of HTX per kilogram of feed from day 35 of pregnancy (at 30% of the total gestational period), and fetuses were sampled at day 100 of gestation. Fetuses were classified as normal body weight (NBW) or low body weight (LBW) as a consequence of IUGR, constituting four groups: NBW-Control, NBW-HTX, LBW-Control, and LBW-HTX. The brain was removed, and the hippocampus, amygdala, and prefrontal cortex were rapidly dissected. Neuronal markers were studied by immunohistochemistry, and a decrease in the number of mature neurons in the hippocampal Cornu Ammonis subfield 1 (CA1) and the Dentate Gyrus (DG) regions was observed in LBW fetuses together with a higher number of immature neurons and other alterations in neuronal morphology. Furthermore, IUGR conditions altered the neurotransmitter (NT) profile, since an increase in the serotonin (5-HT) pathway was observed in LBW fetuses. Supplementation with HTX was able to reverse the morphological and neurochemical changes, leading both characteristics to values similar to those of NBW fetuses.
RESUMEN
Maternal supplementation with antioxidants and n-3 PUFAs may be a promising strategy to reduce the risk of intrauterine growth restriction and preterm delivery, which may diminish the appearance of low-birth-neonates. A previous studies showed beneficial outcomes of the combination of hydroxytyrosol and linoleic acid, but there is no data of its prenatal effects. The present study aimed to determine the possible prenatal implications of such maternal supplementation at prenatal stages in swine, a model of IUGR pregnancies. Results showed effects on litter size, with treated sows having larger litters and, therefore, smaller fetuses. However, the brain/head weight ratio showed a positive effect of the treatment in development, as well as in some other major organs like lungs, spleen, or kidneys. On the other hand, treated piglets showed better glycemic and lipidemic profiles, which could explain postnatal effects. However, further research on the implications of the treatment on litter size and prenatal and postnatal development must be done before practical recommendation can be given.
RESUMEN
The use of amino acids during pregnancy, such as glutamine (Gln), seems to be a promising strategy in selected swine breeds to improve the offspring prenatal development. The main goal of the current study was to assess the development of the offspring from parity 1-3 sows of a traditional breed, which were supplemented with 1% glutamine after Day 35 of gestation, under farm conditions. A total of 486 (288 treated) piglets from 78 (46 treated) Iberian sows were used. At birth and slaughterhouse, fatty acid composition, metabolism, and mTOR pathway gene expression were analyzed. At birth, treated newborns showed greater amounts of specific amino acids in plasma, such as glutamine, asparagine, or alanine, and Σn-3 fatty acids in cellular membranes than control newborns. The expression of genes belonging to mTOR Complex 1 was also higher in treated piglets with normal birth-weight. However, these findings did not improve productive traits at birth or following periods in litters from supplemented gilts (parity 1) or sows (parities 2-3). Thus, further research is needed to properly understand the effects of prenatal glutamine supplementation, particularly in traditional swine breeds.
RESUMEN
INGA FOOD S. A., as a Spanish company that produces and commercializes fattened pigs, has produced a hybrid Iberian sow called CASTÚA by crossing the Retinto and Entrepelado varieties. The selection of the parental populations is based on selection criteria calculated from purebred information, under the assumption that the genetic correlation between purebred and crossbred performance is high; however, these correlations can be less than one because of a GxE interaction or the presence of non-additive genetic effects. This study estimated the additive and dominance variances of the purebred and crossbred populations for litter size, and calculated the additive genetic correlations between the purebred and crossbred performances. The dataset consisted of 2030 litters from the Entrepelado population, 1977 litters from the Retinto population, and 1958 litters from the crossbred population. The individuals were genotyped with a GeneSeek® GGP Porcine70K HDchip. The model of analysis was a 'biological' multivariate mixed model that included additive and dominance SNP effects. The estimates of the additive genotypic variance for the total number born (TNB) were 0.248, 0.282 and 0.546 for the Entrepelado, Retinto and Crossbred populations, respectively. The estimates of the dominance genotypic variances were 0.177, 0.172 and 0.262 for the Entrepelado, Retinto and Crossbred populations. The results for the number born alive (NBA) were similar. The genetic correlations between the purebred and crossbred performance for TNB and NBA-between the brackets-were 0.663 in the Entrepelado and 0.881 in Retinto poplulations. After backsolving to obtain estimates of the SNP effects, the additive genetic variance associated with genomic regions containing 30 SNPs was estimated, and we identified four genomic regions that each explained > 2% of the additive genetic variance in chromosomes (SSC) 6, 8 and 12: one region in SSC6, two regions in SSC8, and one region in SSC12.
Asunto(s)
Genoma/genética , Tamaño de la Camada/genética , Polimorfismo de Nucleótido Simple/genética , Animales , Cruzamientos Genéticos , Genómica/métodos , Genotipo , Hibridación Genética/genética , Modelos Genéticos , Fenotipo , PorcinosRESUMEN
The present study aimed to assess the importance of offspring genotype on postnatal development, independently of confounding factors related to prenatal environment and postnatal lifestyle, using a translational model of obesity and metabolic syndrome (the Iberian pig). Hence, we compared two genotypes (purebred Iberian and crossbreds Iberian × Large White), produced in one single maternal environment (pure Iberian mothers) through artificial insemination of Iberian sows with Iberian and Large White heterospermic semen and maintained in the same conditions during postnatal development. The results indicate that, under same pre- and postnatal environments, the interaction genotype-by-sex has a determinant role on offspring phenotype (i.e., growth and development, metabolic and antioxidant status and fatty acid composition of different tissues). These results may set the basis for future preclinical and clinical research on the differences in the metabolic phenotype among genotypes.
RESUMEN
Metformin is currently used to improve pregnancy outcome in women affected by polycystic ovary syndrome (PCOS) or diabetes. However, metformin may also be useful in pregnancies at risk of intrauterine growth restriction (IUGR) since it improves placental efficiency and the fetuses' developmental competence. There is no data on the duration of the effect of this treatment from the prenatal up to the postnatal stages. Therefore, the present trial aimed at determining the impact of metformin treatment on the offspring neonatal traits and early postnatal development (i.e., during lactation) using an in vivo swine model. The results support that maternal metformin treatment during pregnancy induces protective changes in body shape and composition of the progeny (i.e., larger head size and body length at birth and higher total viscera weight at weaning). However, there were also major effects of the offspring sex (smaller corpulence in females and lower relative weight of main viscerae in males), which should be considered for further preclinical studies and when even the current clinical application in women affected by PCOS or diabetes is implemented.
RESUMEN
Menopause strongly increases incidence and consequences of obesity and non-communicable diseases in women, with recent research suggesting a very early onset of changes in lipid accumulation, dyslipidemia, and insulin resistance. However, there is a lack of adequate preclinical models for its study. The present trial evaluated the usefulness of an alternative method to surgical ovariectomy, the administration of two doses of a GnRH analogue-protein conjugate (Vacsincel®), for inducing ovarian inactivity in sows used as preclinical models of obesity and menopause. All the sows treated with the compound developed ovarian stoppage after the second dose and, when exposed to obesogenic diets during the following three months, showed changes in the patterns of fat deposition, in the fatty acids profiles at the different tissues and in the plasma concentrations of fructosamine, urea, ß-hydroxibutirate, and haptoglobin when compared to obese fed with the same diet but maintaining ovarian activity. Altogether, these results indicate that menopause early augments the deleterious effects induced by overfeeding and obesity on metabolic traits, paving the way for future research on physiopathology of these conditions and possible therapeutic targets using the swine model.
RESUMEN
Maternal supplementation with antioxidants and n3 PUFAs may be a promising strategy to reduce the risk of intrauterine growth restriction and preterm delivery, which may diminish the appearance of low-birth-weight neonates. The present study aimed to determine benefits and risks of a dietary supplementation combining hydroxytyrosol, a polyphenol from olive leaves and fruits, and n3 PUFAs, from linseed oil, on developmental patterns and metabolic traits of offspring in swine, a model of IUGR pregnancies. The results obtained indicate that maternal supplementation with hydroxytyrosol and n-3 fatty acids during pregnancy has no deleterious effects on the reproductive traits of the sows (prolificacy, homogeneity of the litter, and percentage of stillborns and low-birth-weight, LBW, piglets) and the postnatal features of the piglets (growth patterns, adiposity, and metabolic traits). Conversely, in spite of a lower mean weight and corpulence at birth, piglets from the supplemented sows showed higher average daily weight gain and fractional growth rate. Thus, at juvenile stages afterwards, the offspring from the treated group reached higher weight and corpulence, with increased muscle development and better lipidemic and fatty acid profiles, in spite of similar adiposity, than offspring in the control group. However, much caution and more research are still needed before practical recommendation and use in human pregnancies.