Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Planta ; 254(5): 100, 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34665350

RESUMEN

MAIN CONCLUSION: Silicon enhances photosynthetic efficiency, biomass, and lignification of root structures possibly limiting antimony translocation and mitigating phytotoxicity in giant reed plants. Antimony (Sb) is a non-essential metalloid causing toxic effects in plants. Silicon has been reported to impart tolerance against biotic and abiotic stress in plants. Fast-growing plant, giant reed (Arundo donax L.) is a promising energy crop, can be a suitable plant for phytoremediation. However, information regarding the tolerance capacity with respect to Sb toxicity and potential of Si to mitigate the Sb phytotoxicity in giant reed are very scarce. Rhizomes of giant reed were grown for ten weeks in hydroponics exposed to Sb, Si, and their combination wherein treatment without Sb/Si served as control. Effect of these treatments on rate of net photosynthesis and photosynthetic pigments, phytoextraction ability of Sb, Si and Sb uptake, plant biomass, and lignification and suberization of roots along with localization of Sb and Si were analysed. We found that Si considerably improved the growth and biomass of giant reed under Sb toxicity. Antimony reduced the photosynthesis and decreased the content of photosynthetic pigments, which was completely alleviated by Si. Silicon amendment to Sb treated plants enhanced root lignification. Silicon enhanced lignification of root structures probably restricted the Sb translocation. However, co-localization of Sb with Si has not been observed neither at the shoot nor at the root levels. Similarly, Sb was also not detected in leaf phytoliths. These findings suggest that Si treatment promotes overall plant growth by improving photosynthetic parameters and decreasing Sb translocation from root to shoot in giant reed by improving root lignification.


Asunto(s)
Antimonio , Silicio , Antimonio/toxicidad , Hojas de la Planta , Raíces de Plantas , Poaceae , Silicio/farmacología
2.
Crit Rev Biotechnol ; 41(5): 715-730, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33866893

RESUMEN

Aluminum (Al) precipitates in acidic soils having a pH < 5.5, in the form of conjugated organic and inorganic ions. Al-containing minerals solubilized in the soil solution cause several negative impacts in plants when taken up along with other nutrients. Moreover, a micromolar concentration of Al present in the soil is enough to induce several irreversible toxicity symptoms such as the rapid and transient over-generation of reactive oxygen species (ROS) such as superoxide anion (O2•-), hydrogen peroxide (H2O2), and hydroxyl radical (•OH), resulting in oxidative bursts. In addition, significant reductions in water and nutrient uptake occur which imposes severe stress in the plants. However, some plants have developed Al-tolerance by stimulating the secretion of organic acids like citrate, malate, and oxalate, from plant roots. Genes responsible for encoding such organic acids, play a critical role in Al tolerance. Several transporters involved in Al resistance mechanisms are members of the Aluminum-activated Malate Transporter (ALMT), Multidrug and Toxic compound Extrusion (MATE), ATP-Binding Cassette (ABC), Natural resistance-associated macrophage protein (Nramp), and aquaporin gene families. Therefore, in the present review, the discussion of the global extension and probable cause of Al in the environment and mechanisms of Al toxicity in plants are followed by detailed emphasis on tolerance mechanisms. We have also identified and categorized the important transporters that secrete organic acids and outlined their role in Al stress tolerance mechanisms in crop plants. The information provided here will be helpful for efficient exploration of the available knowledge to develop Al tolerant crop varieties.


Asunto(s)
Aluminio , Peróxido de Hidrógeno , Aluminio/metabolismo , Aluminio/toxicidad , Regulación de la Expresión Génica de las Plantas , Humanos , Raíces de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo , Suelo
3.
J Exp Bot ; 71(21): 6744-6757, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-32569367

RESUMEN

Silicon (Si), although not considered as an essential element for plants in general, can ameliorate the phytotoxicity induced by excess metal(loid)s whether non-essential (e.g. Cd, Pb, Cr, Al, As, and Sb) or essential (e.g. Cu, Ni, and Zn). The Si-enhanced resistance allowing plants to cope with this type of abiotic stress has been developed at multiple levels in plants. Restriction of root uptake and immobilization of metal(loid)s in the rhizosphere by Si is probably one of the first defence mechanism. Further, retention of elements in the root apoplasm might enhance the resistance and vigour of plants. At the cellular level, the formation of insoluble complexes between Si and metal(loid)s and their storage within cell walls help plants to decrease available element concentration and restrict symplasmic uptake. Moreover, Si influences the oxidative status of plants by modifying the activity of various antioxidants, improves membrane stability, and acts on gene expression, although its exact role in these processes is still not well understood. This review focuses on all currently known plant-based mechanisms related to Si supply and involved in amelioration of stress caused by excess metal(loid)s.


Asunto(s)
Silicio , Contaminantes del Suelo , Transporte Biológico , Metales , Plantas , Rizosfera
4.
Ann Bot ; 126(3): 423-434, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32296831

RESUMEN

BACKGROUND AND AIMS: Cell walls of the peri-endodermis, a layer adjacent to the endodermis in alpine pennycress (Noccaea caerulescens) roots, form C-shaped peri-endodermal thickenings (PETs). Despite its specific position close to the endodermis, the assumed similarity of PETs to phi thickenings in many other species, and the fact that N. caerulescens is a well-studied heavy-metal-hyperaccumulating plant, the PET as a root trait is still not understood. METHODS: Here, we characterized PET cell walls by histochemical techniques, Raman spectroscopy, immunolabelling and electron microscopy. Moreover, a role of PETs in solute transport was tested and compared with Arabidopsis thaliana plants, which do not form PETs in roots. KEY RESULTS: Cell walls with PETs have a structured relief mainly composed of cellulose and lignin. Suberin, typical of endodermal cells, is missing but pectins are present on the inner surface of the PET. Penetrating dyes are not able to cross PETs either by the apoplasmic or the symplasmic pathway, and a significantly higher content of metals is found in root tissues outside of PETs than in innermost tissues. CONCLUSIONS: Based on their development and chemical composition, PETs are different from the endodermis and closely resemble phi thickenings. Contrarily, the different structure and dye impermeability of PETs, not known in the case of phi thickenings, point to an additional barrier function which makes the peri-endodermis with PETs a unique and rare layer.


Asunto(s)
Arabidopsis , Brassicaceae , Pared Celular , Lignina , Raíces de Plantas
5.
Ann Bot ; 122(5): 823-831, 2018 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-29444204

RESUMEN

Background and Aims: Heavy metals induce changes in root metabolism and physiology, which can lead to a complex remodelling of the root system. The final morphological responses of radish (Raphanus sativus) roots exposed to toxic concentrations of the heavy metal (Cu) include root growth inhibition, differentiation of xylem vessels close to the root tip, enhanced suberin lamellae deposition and enhanced lateral root production. Recently, we have found that such changes in root morphology and anatomy are coupled to the formation of a subero-lignified apical deposit (SLAD) very close to the root tip. Methods: To clarify the details of the formation of a SLAD in the root tip, we conducted experiments with radish roots exposed to a high Cu concentration (60 µm). Histochemical analysis of lignin and suberin as well as analysis of spatial-temporal characteristics of SLAD formation were performed by bright-field, fluorescence and confocal microscopy. Key Results: This unique structure, not longer than 100 µm, consists of modified cell walls of the central cylinder that are encircled by a short cylinder of prematurely suberized endodermal cells. A SLAD starts to form, in both primary and lateral roots, after cessation of root elongation, and it is coupled with xylem differentiation and root branching close to the root apex. We noticed that deposition of phenolic substances into a SLAD, mainly suberin in the endodermis, is spatially separated from suberization or lignification in basally located endodermis. Conclusions: Although the main reason for formation of a SLAD is elusive, we suggest that it is a part of stress-induced responses which relate to decreased root growth or permeability in heavy metal stress.


Asunto(s)
Cobre/efectos adversos , Meristema/crecimiento & desarrollo , Raphanus/crecimiento & desarrollo , Contaminantes del Suelo/efectos adversos , Lignina/metabolismo , Lípidos , Raíces de Plantas/crecimiento & desarrollo
6.
Ann Bot ; 122(5): 903-914, 2018 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-29394308

RESUMEN

Background and Aims: Root hairs increase the contact area of roots with soil and thereby enhance the capacity for solute uptake. The strict hair/non-hair pattern of Arabidopsis thaliana can change with nutrient deficiency or exposure to toxic elements, which modify root hair density. The effects of root hair density on cadmium (Cd) accumulation in shoots of arabidopsis genotypes with altered root hair development and patterning were studied. Methods: Arabidopsis mutants that are unable to develop root hairs (rhd6-1 and cpc/try) or produce hairy roots (wer/myb23) were compared with the ecotype Columbia (Col-0). Plants were cultivated on nutrient agar for 2 weeks with or without Cd. Cadmium was applied as Cd(NO3)2 at two concentrations, 10 and 100 µm. Shoot biomass, root characteristics (primary root length, lateral root number, lateral root length and root hair density) and Cd concentrations in shoots were assessed. Anatomical features (suberization of the endodermis and development of the xylem) that might influence Cd uptake and translocation were also examined. Key Results: Cadmium inhibited plant growth and reduced root length and the number of lateral roots and root hairs per plant. Suberin lamellae in the root endodermis and xylem differentiation developed closer to the root apex in plants exposed to 100 µm Cd. The latter effect was genotype dependent. Shoot Cd accumulation was correlated with root hair abundance when plants were grown in the presence of 10 µm Cd, but not when grown in the presence of 100 µm Cd, in which treatment the development of suberin lamellae closer to the root tip appeared to restrict Cd accumulation in shoots. Conclusions: Root hair density can have a large effect on Cd accumulation in shoots, suggesting that the symplasmic pathway might play a significant role in the uptake and accumulation of this toxic element.


Asunto(s)
Arabidopsis/fisiología , Cadmio/metabolismo , Raíces de Plantas/fisiología , Brotes de la Planta/metabolismo , Contaminantes del Suelo/metabolismo , Arabidopsis/genética , Transporte Biológico , Raíces de Plantas/genética
8.
Ecotoxicol Environ Saf ; 120: 66-73, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26036417

RESUMEN

Silicon was shown to alleviate the negative effects of various biotic and abiotic stresses on plant growth. Although the positive role of Si on toxic and heavy metal Cd has been already described, the mechanisms have been explained only partially and still remain unclear. In the present study we investigated the effect of Si on photosynthetic-related processes in maize exposed to two different levels of Cd via measurements of net photosynthetic rate (AN), chlorophyll a fluorescence and pigment analysis, as well as studies of leaf tissue anatomy and cell ultrastructure using bright-field and transmission electron microscopy. We found that Si actively alleviated the toxic syndromes of Cd by increasing AN, effective photochemical quantum yield of photosystem II (ϕPSII) and content of assimilation pigments, although did not decrease the concentration of Cd in leaf tissues. Cadmium did not affect the leaf anatomy and ultrastructure of leaf mesophyll's cell chloroplasts; however, Cd negatively affected thylakoid formation in chloroplasts of bundle sheath cells, and this was alleviated by Si. Improved thylakoid formation in bundle sheath's cell chloroplasts may contribute to Si-induced enhancement of photosynthesis and related increase in biomass production in C4 plant maize.


Asunto(s)
Cadmio/toxicidad , Cloroplastos/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Silicio/farmacología , Zea mays/efectos de los fármacos , Clorofila/análogos & derivados , Clorofila/metabolismo , Clorofila A , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Fluorescencia , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/efectos de los fármacos , Zea mays/metabolismo , Zea mays/ultraestructura
9.
Ecotoxicol Environ Saf ; 92: 215-21, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23474069

RESUMEN

Biochar addition to agricultural soils might increase the sorption of herbicides, and therefore, affect other sorption-related processes such as leaching, dissipation and toxicity for plants. In this study, the impact of wheat straw biochar on the sorption, leaching and dissipation in a soil, and toxicity for sunflower of (4-chloro-2-methylphenoxy)acetic acid (MCPA), a commonly used ionizable herbicide, was investigated. The results showed that MCPA sorption by biochar and biochar-amended soil (1.0wt% biochar) was 82 and 2.53 times higher than that by the non-amended soil, respectively. However, desorption of MCPA from biochar-amended soil was only 1.17 times lower than its desorption in non-amended soil. Biochar addition to soil reduced both MCPA leaching and dissipation. About 35% of the applied MCPA was transported through biochar-amended soil, while up to 56% was recovered in the leachates transported through non-amended soil. The half-life value of MCPA increased from 5.2d in non-amended soil to 21.5 d in biochar-amended soil. Pot experiments with sunflower (Helianthus annuus L.) grown in MCPA-free, but biochar-amended soil showed no positive effect of biochar on the growth of sunflower in comparison to the non-amended soil. However, biochar itself significantly reduced the content of photosynthetic pigments (chlorophyll a, b) in sunflower. There was no significant difference in the phytotoxic effects of MCPA on sunflowers between the biochar-amended soil and the non-amended soil. Furthermore, MCPA had no effect on the photosynthetic pigment contents in sunflower.


Asunto(s)
Ácido 2-Metil-4-clorofenoxiacético/análisis , Carbón Orgánico/química , Restauración y Remediación Ambiental/métodos , Helianthus/crecimiento & desarrollo , Herbicidas/análisis , Contaminantes del Suelo/análisis , Suelo/química , Ácido 2-Metil-4-clorofenoxiacético/química , Agricultura , Clorofila/metabolismo , Semivida , Helianthus/metabolismo , Herbicidas/química , Contaminantes del Suelo/química , Triticum
10.
Bull Environ Contam Toxicol ; 91(2): 235-9, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23775315

RESUMEN

The growth of maize (Zea mays L.), hybrid Valentina, was compared in two types of contaminated soil substrates (Ochre and Heap) with different arsenic (As) concentration originating from an old mining area in Slovakia. Although the total As concentration in Heap soil was 2.6 times lower than in Ochre soil (90 and 237 mg kg⁻¹, respectively), plants grown in Heap soil accumulated more As in their tissues (shoot and root As concentration being 4 and 5.5 times higher, respectively) and were markedly smaller, which produced significantly less biomass and flowered later in comparison with Ochre soil grown plants.


Asunto(s)
Arsénico/farmacocinética , Contaminantes del Suelo/farmacocinética , Zea mays/crecimiento & desarrollo , Arsénico/análisis , Arsénico/toxicidad , Disponibilidad Biológica , Concentración de Iones de Hidrógeno , Minería , Raíces de Plantas/química , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/química , Brotes de la Planta/crecimiento & desarrollo , Eslovaquia , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Zea mays/química
11.
Plants (Basel) ; 12(12)2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37375993

RESUMEN

A study was conducted to further develop our understanding of antimony (Sb) uptake in plants. Unlike other metal(loid)s, such as silicon (Si), the mechanisms of Sb uptake are not well understood. However, SbIII is thought to enter the cell via aquaglyceroporins. We investigated if the channel protein Lsi1, which aids in Si uptake, also plays a role in Sb uptake. Seedlings of WT sorghum, with normal silicon accumulation, and its mutant (sblsi1), with low silicon accumulation, were grown in Hoagland solution for 22 days in the growth chamber under controlled conditions. Control, Sb (10 mg Sb L-1), Si (1mM) and Sb + Si (10 mg Sb L-1 + 1 mM Si) were the treatments. After 22 days, root and shoot biomass, the concentration of elements in root and shoot tissues, lipid peroxidation and ascorbate levels, and relative expression of Lsi1 were determined. When mutant plants were exposed to Sb, they showed almost no toxicity symptoms compared to WT plants, indicating that Sb was not toxic to mutant plants. On the other hand, WT plants had decreased root and shoot biomass, increased MDA content and increased Sb uptake compared to mutant plants. In the presence of Sb, we also found that SbLsi1 was downregulated in the roots of WT plants. The results of this experiment support the role of Lsi1 in Sb uptake in sorghum plants.

12.
Plants (Basel) ; 12(3)2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36771578

RESUMEN

Improving the extent of adaptation and the choice of the most tolerant cultivar is the first step to mitigating the adverse effects of limited water, especially in susceptible plants such as strawberries. To address this issue, two commercial strawberry cultivars (Camarosa and Gaviota) were compared when irrigated to match 100, 75, 50, and 25% field capacity (FC) to simulate the control, slight, moderate, and severe drought stress conditions, respectively. Drought stress induced the reduction of total chlorophyll, carotenoid, relative water content, and phenolic content significantly, whereas the activity of antioxidant enzymes, electrolyte leakage, osmolyte accumulation, and oxidative markers upsurged progressively in drought severity-dependent behavior. Gaviota produced more proline, hydrogen peroxide as a marker of membrane lipid peroxidation and disposed of by higher electrolyte leakage, significantly. On the other hand, Camarosa having higher soluble carbohydrates as well as enzymatic and non-enzymatic antioxidants could be considered a drought-tolerant cultivar. Genotypic variation between these cultivars could be used in breeding projects to promote drought-tolerant strawberries in the future.

13.
Ann Bot ; 110(2): 433-43, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22455991

RESUMEN

BACKGROUND AND AIMS: Silicon (Si) has been shown to ameliorate the negative influence of cadmium (Cd) on plant growth and development. However, the mechanism of this phenomenon is not fully understood. Here we describe the effect of Si on growth, and uptake and subcellular distribution of Cd in maize plants in relation to the development of root tissues. METHODS: Young maize plants (Zea mays) were cultivated for 10 d hydroponically with 5 or 50 µm Cd and/or 5 mm Si. Growth parameters and the concentrations of Cd and Si were determined in root and shoot by atomic absorption spectrometry or inductively coupled plasma mass spectroscopy. The development of apoplasmic barriers (Casparian bands and suberin lamellae) and vascular tissues in roots were analysed, and the influence of Si on apoplasmic and symplasmic distribution of (109)Cd applied at 34 nm was investigated between root and shoot. KEY RESULTS: Si stimulated the growth of young maize plants exposed to Cd and influenced the development of Casparian bands and suberin lamellae as well as vascular tissues in root. Si did not affect the distribution of apoplasmic and symplasmic Cd in maize roots, but considerably decreased symplasmic and increased apoplasmic concentration of Cd in maize shoots. CONCLUSIONS: Differences in Cd uptake of roots and shoots are probably related to the development of apoplasmic barriers and maturation of vascular tissues in roots. Alleviation of Cd toxicity by Si might be attributed to enhanced binding of Cd to the apoplasmic fraction in maize shoots.


Asunto(s)
Cadmio/farmacocinética , Cadmio/toxicidad , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Silicio/farmacología , Zea mays/anatomía & histología , Zea mays/metabolismo , Transporte Biológico , Raíces de Plantas/anatomía & histología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/efectos de los fármacos , Distribución Tisular , Zea mays/efectos de los fármacos , Zea mays/crecimiento & desarrollo
14.
J Exp Bot ; 62(1): 21-37, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20855455

RESUMEN

This article reviews the responses of plant roots to elevated rhizosphere cadmium (Cd) concentrations. Cadmium enters plants from the soil solution. It traverses the root through symplasmic or apoplasmic pathways before entering the xylem and being translocated to the shoot. Leaf Cd concentrations in excess of 5-10 µg g(-1) dry matter are toxic to most plants, and plants have evolved mechanisms to limit Cd translocation to the shoot. Cadmium movement through the root symplasm is thought to be restricted by the production of phytochelatins and the sequestration of Cd-chelates in vacuoles. Apoplasmic movement of Cd to the xylem can be restricted by the development of the exodermis, endodermis, and other extracellular barriers. Increasing rhizosphere Cd concentrations increase Cd accumulation in the plant, especially in the root. The presence of Cd in the rhizosphere inhibits root elongation and influences root anatomy. Cadmium concentrations are greater in the root apoplasm than in the root symplasm, and tissue Cd concentrations decrease from peripheral to inner root tissues. This article reviews current knowledge of the proteins involved in the transport of Cd across root cell membranes and its detoxification through sequestration in root vacuoles. It describes the development of apoplastic barriers to Cd movement to the xylem and highlights recent experiments indicating that their maturation is accelerated by high Cd concentrations in their immediate locality. It concludes that accelerated maturation of the endodermis in response to local Cd availability is of functional significance in protecting the shoot from excessive Cd loads.


Asunto(s)
Cadmio/metabolismo , Raíces de Plantas/metabolismo , Rizosfera , Transporte Biológico , Desarrollo de la Planta , Raíces de Plantas/crecimiento & desarrollo , Plantas/metabolismo
15.
Ann Bot ; 107(2): 285-92, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21118841

RESUMEN

BACKGROUND AND AIMS: Merwilla plumbea is an important African medicinal plant. As the plants grow in soils contaminated with metals from mining activities, the danger of human intoxication exists. An experiment with plants exposed to cadmium (Cd) was performed to investigate the response of M. plumbea to this heavy metal, its uptake and translocation to plant organs and reaction of root tissues. METHODS: Plants grown from seeds were cultivated in controlled conditions. Hydroponic cultivation is not suitable for this species as roots do not tolerate aquatic conditions, and additional stress by Cd treatment results in total root growth inhibition and death. After cultivation in perlite the plants exposed to 1 and 5 mg Cd L(-1) in half-strength Hoagland's solution were compared with control plants. Growth parameters were evaluated, Cd content was determined by inductively coupled plasma mass spectroscopy (ICP-MS) and root structure was investigated using various staining procedures, including the fluorescent stain Fluorol yellow 088 to detect suberin deposition in cell walls. KEY RESULTS: The plants exposed to Cd were significantly reduced in growth. Most of the Cd taken up by plants after 4 weeks cultivation was retained in roots, and only a small amount was translocated to bulbs and leaves. In reaction to higher Cd concentrations, roots developed a hypodermal periderm close to the root tip. Cells produced by cork cambium impregnate their cell walls by suberin. CONCLUSIONS: It is suggested that the hypodermal periderm is developed in young root parts in reaction to Cd toxicity to protect the root from radial uptake of Cd ions. Secondary meristems are usually not present in monocotyledonous species. Another interpretation explaining formation of protective suberized layers as a result of periclinal divisions of the hypodermis is discussed. This process may represent an as yet unknown defence reaction of roots when exposed to elemental stress.


Asunto(s)
Cadmio/toxicidad , Liliaceae/anatomía & histología , Liliaceae/crecimiento & desarrollo , Raíces de Plantas/anatomía & histología , Cadmio/análisis , Liliaceae/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Plantas Medicinales/anatomía & histología , Plantas Medicinales/efectos de los fármacos , Plantas Medicinales/crecimiento & desarrollo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
16.
Environ Sci Pollut Res Int ; 28(39): 55476-55485, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34138437

RESUMEN

Fast-growing plant, giant reed (Arundo donax L.) has been gaining a lot of popularity in the phytoremediation of metal-polluted soils. However, information regarding the physiological background of tolerance and accumulation capacity of A. donax with respect to antimony (Sb), arsenic (As), and their co-contamination are very limited. Rooted stem cuttings were grown for 5 months in hydroponics exposed to Sb (10 mg L-1), As (10 mg L-1), and their combined toxicity (Sb 5 mg L-1 + As 5 mg L-1) wherein treatment without As/Sb served as control. Effect of these treatments on key photosynthetic parameters (rate of net photosynthesis, effective quantum yield of photosystem II, chlorophyll fluorescence, and photosynthetic pigments), phytoextraction ability of metalloids, nutrient uptake, root growth, and lignification were analyzed. Arsenic-containing treatments severely affected root morphology of A. donax compared to Sb/control and plants exposed to As showed intensive lignification already in young apical part of the root in the present study. Shoot concentration was found to be 11.35±0.75 Sb mg kg-1 and 8.97±0.52 As mg kg-1 compared to root concentration of 1028.3±19.1 Sb mg kg-1 and 705.3±69.9 As mg kg-1 in the treatments of Sb and As. Even though Sb and As were translocated to the shoots in relatively small amount, both metalloids significantly decreased the shoot and root growth of A. donax and negatively affected the photosynthetic parameters. Moreover, co-contamination of Sb and As proved to be severely toxic to growth and physiology of A. donax even though the magnitudes of the metalloids used were lower than those of Sb/As alone treatments. In conclusion, Sb and As caused a marked reduction in growth and physiological characteristics of A. donax, opposing its use in phytoremediation of highly contaminated soils. Tolerance capacity of plants to simultaneous presence of As and Sb in the environment is crucial for the successful implementation of phytoremediation since the co-contamination by As and Sb might reduce the efficiency of phytoremediation when using this fast-growing and high biomass-producing plant species.


Asunto(s)
Antimonio , Arsénico , Poaceae
17.
Plant Physiol Biochem ; 166: 645-656, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34214775

RESUMEN

Nickel (Ni) is involved in several physiological processes in plants but its excess in environment has many phytotoxic effects. Silicon (Si), an element required for optimal plant performance, has been shown to have beneficial effects for plants coping with various types of stresses. Here we studied the alleviative potential of Si (2.5 mM) added to hydroponically grown maize (Zea mays L.) plants under Ni (100 µM) stress. Ni decreased most of the growth parameters, total chlorophyll (Chl) and leaf relative water content (RWC), and catalase (CAT; EC 1.11.1.6) activity, while leaf water loss (LWL), contents of proline (Pro), hydrogen peroxide (H2O2) and ascorbate (AsA), membrane lipid peroxidation and activities of peroxidase (POX; EC 1.11.1.7) and superoxide dismutase (SOD; EC 1.15.1.1) were increased. Supplementation of Si to Ni-treated plants enhanced the leaf area, Chl content, RWC, CAT and POX (only in younger leaf) activities and decreased LWL, the contents of Pro (in younger leaf), H2O2 (roots) and AsA, lipid peroxidation and POX and SOD activities. We may conclude that Si mitigated the Ni-induced stress in maize by amelioration of the leaf water deficient status (Pro, RWC, LWL), enhancing membrane stability (MDA) and influencing enzymatic (SOD, POX, CAT) and non-enzymatic (Pro, AsA) defence systems. The increased Chl content and leaf area improve overall plant performance.


Asunto(s)
Silicio , Zea mays , Antioxidantes , Catalasa/metabolismo , Peróxido de Hidrógeno , Malondialdehído , Níquel/farmacología , Estrés Oxidativo , Silicio/farmacología , Superóxido Dismutasa/metabolismo , Zea mays/metabolismo
18.
Plant Physiol Biochem ; 168: 155-166, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34628176

RESUMEN

Nowadays, one of the biggest challenges of plant physiology is to find out the ways how to mitigate negative impacts of abiotic stress on plants. It is the pollution of groundwater or soil by various metals and metalloids that significantly affects the quality of life. Both arsenic (As) and silicon (Si) are metalloids - while the first one is toxic in general, the latter one is considered as beneficial for plants suffering from various kinds of stresses. The aim of our work was to elucidate the growth and development of young maize (Zea mays L.) plants exposed to both of these metalloids simultaneously. Experiments were focused on the comparison of root growth and biomass allocation, changes in uptake of macro- and micronutrients, visualisation of free radicals along with monitoring of the dynamics of main antioxidant enzymes activity in roots. The results showed that increasing concentration of As (75 and 150 µM As) severely inhibited root length and the amount of biomass, and addition of Si (2.5 mM) to the medium containing As did not have a significant effect on root growth. Similarly, the application of Si did not influence the uptake of macro- and microelements into the roots (mainly Ca, P, K, Mo, Cu, Zn and Ni) which was mostly decreased due to As. On the other hand, Si significantly decreased the presence of both superoxide and hydrogen peroxide in roots that suffered from As toxicity. Although the overall growth of maize plants was not improved by Si amendment, we assume that Si might affect the functionality of key antioxidant enzymes in time, and in this way at least partially help to overcome negative effects of As on maize roots.


Asunto(s)
Antioxidantes , Zea mays , Raíces de Plantas , Calidad de Vida , Silicio/farmacología
19.
J Hazard Mater ; 417: 126049, 2021 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-34000701

RESUMEN

To evaluate the multiplicity of reactions to toxic metalloid arsenic (As) with specific emphasis on the role of plant peroxidases, a model plant Nicotiana benthamiana was cultivated in in vitro conditions at various doses of As (applied as As5+ up to 80 µM). After 28-day cultivation, several physiological characteristics such as plant growth, photosynthetic pigment concentration, As concentration, peroxidase (POX) expression levels, and POX activity were evaluated. A newly sequenced gene for POX has been identified, that belongs to the Class III plant extracellular peroxidases, and its relationship to the genus Solanum as the most relative species has been confirmed. In the control and selected As treatments (20As, 50As, and 80As), newly identified POX expression and POX activity were continuously detected during the whole cultivation period. The plant reactions to As stress were distinguished into three groups: low As, moderate As, and high As. A tight relationship was found between the photosynthetic pigments and POX expression. Accumulation of As in roots and shoots showed correlations with POX activities. The results showed that the diversity of reactions depends on As dose and time exposure and indicate an interface of peroxidase functional role with other physiological processes in plants suffering from As toxicity.


Asunto(s)
Arsénico , Peroxidasa , Arsénico/toxicidad , Catalasa/metabolismo , Estrés Oxidativo , Peroxidasa/genética , Peroxidasa/metabolismo , Peroxidasas/genética , Peroxidasas/metabolismo , Raíces de Plantas/metabolismo , Nicotiana/metabolismo
20.
Plant Physiol Biochem ; 168: 177-187, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34634643

RESUMEN

Arsenic (As) and cadmium (Cd) belong to the group of major pollutants extremely toxic to plants. Metal hyperaccumulating plants play an important role in phytoextraction of heavy metals. Silicon (Si) plays an important role in the amelioration of heavy metal stress through physio-biochemical mechanisms, which remain poorly understood in hyperaccumulators. The main purpose of this study was to determine the impact of Si on growth and performance of As hyperaccumulator Isatis cappadocica Desv., exposed to As and Cd. Results showed that Si (especially at 1 mM level) alleviated the harmful impact of As/Cd and significantly increased the root and shoot biomass, root and shoot length and chlorophyll contents of I. cappadocica by enhancing the plant defense mechanisms. Between the two investigated harmful elements, As was accumulated in plant parts significantly more than Cd, however with considerably lower toxic growth effects. The As/Cd concentration, bioaccumulation and translocation factor and total As content both in roots and shoots of Si-supplied plant were significantly reduced as a protective mechanism, especially in Cd exposed plant. In comparison with single As/Cd treatment, Si supply reduced H2O2 content, increased total soluble protein content and enhanced glutathione S-transferase activity in shoots. The results of this study clearly showed that Si minimized As/Cd uptake and root to shoot translocation, and therefore Si cannot enhance the phytoextraction potential of this plant species. Additionally, Si-improved growth and reduced oxidative damages caused by excess of As and Cd suggested that the similar mechanisms of metal(loid) alleviation are adopted in hyperaccumulators as well as non-hyperaccumulating plants.


Asunto(s)
Arsénico , Isatis , Contaminantes del Suelo , Antioxidantes , Arsénico/toxicidad , Cadmio/toxicidad , Peróxido de Hidrógeno , Raíces de Plantas , Silicio/farmacología , Contaminantes del Suelo/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA