Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 144(3): 364-75, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21277013

RESUMEN

The centriole, and the related basal body, is an ancient organelle characterized by a universal 9-fold radial symmetry and is critical for generating cilia, flagella, and centrosomes. The mechanisms directing centriole formation are incompletely understood and represent a fundamental open question in biology. Here, we demonstrate that the centriolar protein SAS-6 forms rod-shaped homodimers that interact through their N-terminal domains to form oligomers. We establish that such oligomerization is essential for centriole formation in C. elegans and human cells. We further generate a structural model of the related protein Bld12p from C. reinhardtii, in which nine homodimers assemble into a ring from which nine coiled-coil rods radiate outward. Moreover, we demonstrate that recombinant Bld12p self-assembles into structures akin to the central hub of the cartwheel, which serves as a scaffold for centriole formation. Overall, our findings establish a structural basis for the universal 9-fold symmetry of centrioles.


Asunto(s)
Caenorhabditis elegans/citología , Centriolos/química , Centriolos/metabolismo , Secuencia de Aminoácidos , Animales , Caenorhabditis/química , Caenorhabditis/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Multimerización de Proteína , Proteínas Recombinantes/metabolismo , Alineación de Secuencia
2.
PLoS Biol ; 19(12): e3001483, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34879056

RESUMEN

Cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) signalling is essential for the proliferation of Plasmodium falciparum malaria blood stage parasites. The mechanisms regulating the activity of the catalytic subunit PfPKAc, however, are only partially understood, and PfPKAc function has not been investigated in gametocytes, the sexual blood stage forms that are essential for malaria transmission. By studying a conditional PfPKAc knockdown (cKD) mutant, we confirm the essential role for PfPKAc in erythrocyte invasion by merozoites and show that PfPKAc is involved in regulating gametocyte deformability. We furthermore demonstrate that overexpression of PfPKAc is lethal and kills parasites at the early phase of schizogony. Strikingly, whole genome sequencing (WGS) of parasite mutants selected to tolerate increased PfPKAc expression levels identified missense mutations exclusively in the gene encoding the parasite orthologue of 3-phosphoinositide-dependent protein kinase-1 (PfPDK1). Using targeted mutagenesis, we demonstrate that PfPDK1 is required to activate PfPKAc and that T189 in the PfPKAc activation loop is the crucial target residue in this process. In summary, our results corroborate the importance of tight regulation of PfPKA signalling for parasite survival and imply that PfPDK1 acts as a crucial upstream regulator in this pathway and potential new drug target.


Asunto(s)
Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/genética , Animales , Dominio Catalítico , Línea Celular , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Eritrocitos/parasitología , Humanos , Malaria , Malaria Falciparum/parasitología , Merozoítos , Parásitos/metabolismo , Proteínas Protozoarias/metabolismo
3.
Brain ; 145(11): 3787-3802, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-35022694

RESUMEN

Humans carrying the CORD7 (cone-rod dystrophy 7) mutation possess increased verbal IQ and working memory. This autosomal dominant syndrome is caused by the single-amino acid R844H exchange (human numbering) located in the 310 helix of the C2A domain of RIMS1/RIM1 (Rab3-interacting molecule 1). RIM is an evolutionarily conserved multi-domain protein and essential component of presynaptic active zones, which is centrally involved in fast, Ca2+-triggered neurotransmitter release. How the CORD7 mutation affects synaptic function has remained unclear thus far. Here, we established Drosophila melanogaster as a disease model for clarifying the effects of the CORD7 mutation on RIM function and synaptic vesicle release. To this end, using protein expression and X-ray crystallography, we solved the molecular structure of the Drosophila C2A domain at 1.92 Šresolution and by comparison to its mammalian homologue ascertained that the location of the CORD7 mutation is structurally conserved in fly RIM. Further, CRISPR/Cas9-assisted genomic engineering was employed for the generation of rim alleles encoding the R915H CORD7 exchange or R915E, R916E substitutions (fly numbering) to effect local charge reversal at the 310 helix. Through electrophysiological characterization by two-electrode voltage clamp and focal recordings we determined that the CORD7 mutation exerts a semi-dominant rather than a dominant effect on synaptic transmission resulting in faster, more efficient synaptic release and increased size of the readily releasable pool but decreased sensitivity for the fast calcium chelator BAPTA. In addition, the rim CORD7 allele increased the number of presynaptic active zones but left their nanoscopic organization unperturbed as revealed by super-resolution microscopy of the presynaptic scaffold protein Bruchpilot/ELKS/CAST. We conclude that the CORD7 mutation leads to tighter release coupling, an increased readily releasable pool size and more release sites thereby promoting more efficient synaptic transmitter release. These results strongly suggest that similar mechanisms may underlie the CORD7 disease phenotype in patients and that enhanced synaptic transmission may contribute to their increased cognitive abilities.


Asunto(s)
Drosophila melanogaster , Retinitis Pigmentosa , Animales , Humanos , Cognición , Mutación , Terminales Presinápticos , Retinitis Pigmentosa/genética , Transmisión Sináptica , Proteínas de Drosophila/genética
4.
J Biol Chem ; 295(52): 17922-17934, 2020 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-32873708

RESUMEN

Centrioles are key eukaryotic organelles that are responsible for the formation of cilia and flagella, and for organizing the microtubule network and the mitotic spindle in animals. Centriole assembly requires oligomerization of the essential protein spindle assembly abnormal 6 (SAS-6), which forms a structural scaffold templating the organization of further organelle components. A dimerization interaction between SAS-6 N-terminal "head" domains was previously shown to be essential for protein oligomerization in vitro and for function in centriole assembly. Here, we developed a pharmacophore model allowing us to assemble a library of low-molecular-weight ligands predicted to bind the SAS-6 head domain and inhibit protein oligomerization. We demonstrate using NMR spectroscopy that a ligand from this family binds at the head domain dimerization site of algae, nematode, and human SAS-6 variants, but also that another ligand specifically recognizes human SAS-6. Atomistic molecular dynamics simulations starting from SAS-6 head domain crystallographic structures, including that of the human head domain which we now resolve, suggest that ligand specificity derives from favorable Van der Waals interactions with a hydrophobic cavity at the dimerization site.


Asunto(s)
Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Centriolos/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Multimerización de Proteína , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/crecimiento & desarrollo , Centriolos/efectos de los fármacos , Simulación de Dinámica Molecular , Conformación Proteica
5.
J Biomol NMR ; 75(4-5): 167-178, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33856612

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological cause of the coronavirus disease 2019, for which no effective antiviral therapeutics are available. The SARS-CoV-2 main protease (Mpro) is essential for viral replication and constitutes a promising therapeutic target. Many efforts aimed at deriving effective Mpro inhibitors are currently underway, including an international open-science discovery project, codenamed COVID Moonshot. As part of COVID Moonshot, we used saturation transfer difference nuclear magnetic resonance (STD-NMR) spectroscopy to assess the binding of putative Mpro ligands to the viral protease, including molecules identified by crystallographic fragment screening and novel compounds designed as Mpro inhibitors. In this manner, we aimed to complement enzymatic activity assays of Mpro performed by other groups with information on ligand affinity. We have made the Mpro STD-NMR data publicly available. Here, we provide detailed information on the NMR protocols used and challenges faced, thereby placing these data into context. Our goal is to assist the interpretation of Mpro STD-NMR data, thereby accelerating ongoing drug design efforts.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus , Inhibidores de Proteasas/química , SARS-CoV-2/enzimología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/química , Humanos , Inhibidores de Proteasas/uso terapéutico
6.
FASEB J ; 33(12): 14611-14624, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31690116

RESUMEN

Plasmodium falciparum is the most lethal of human-infective malaria parasites. A hallmark of P. falciparum malaria is extensive remodeling of host erythrocytes by the parasite, which facilitates the development of virulence properties such as host cell adhesion to the endothelial lining of the microvasculature. Host remodeling is mediated by a large complement of parasite proteins exported to the erythrocyte; among them is a single heat shock protein (Hsp)70-class protein chaperone, P. falciparum Hsp70-x (PfHsp70-x). PfHsp70-x was previously shown to assist the development of virulent cytoadherence characteristics. Here, we show that PfHsp70-x also supports parasite growth under elevated temperature conditions that simulate febrile episodes, especially at the beginning of the parasite life cycle when most of host cell remodeling takes place. Biochemical and biophysical analyses of PfHsp70-x, including crystallographic structures of its catalytic domain and the J-domain of its stimulatory Hsp40 cochaperone, suggest that PfHsp70-x is highly similar to human Hsp70 chaperones endogenous to the erythrocyte. Nevertheless, our results indicate that selective inhibition of PfHsp70-x function using small molecules may be possible and highlight specific sites of its catalytic domain as potentially of high interest. We discuss the likely roles of PfHsp70-x and human chaperones in P. falciparum biology and how specific inhibitors may assist us in disentangling their relative contributions.-Day, J., Passecker, A., Beck, H.-P., Vakonakis, I. The Plasmodium falciparum Hsp70-x chaperone assists the heat stress response of the malaria parasite.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas HSP70 de Choque Térmico/química , Dominios Proteicos , Proteínas Protozoarias/química
7.
Angew Chem Int Ed Engl ; 59(52): 23544-23548, 2020 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-32841477

RESUMEN

The SARS-CoV-2 main protease (Mpro ) cleaves along the two viral polypeptides to release non-structural proteins required for viral replication. MPro is an attractive target for antiviral therapies to combat the coronavirus-2019 disease. Here, we used native mass spectrometry to characterize the functional unit of Mpro . Analysis of the monomer/dimer equilibria reveals a dissociation constant of Kd =0.14±0.03 µM, indicating MPro has a strong preference to dimerize in solution. We characterized substrate turnover rates by following temporal changes in the enzyme-substrate complexes, and screened small molecules, that bind distant from the active site, for their ability to modulate activity. These compounds, including one proposed to disrupt the dimer, slow the rate of substrate processing by ≈35 %. This information, together with analysis of the x-ray crystal structures, provides a starting point for the development of more potent molecules that allosterically regulate MPro activity.


Asunto(s)
Proteasas 3C de Coronavirus/química , Inhibidores de Proteasa de Coronavirus/química , Modelos Moleculares , SARS-CoV-2/enzimología , Bibliotecas de Moléculas Pequeñas/química , Regulación Alostérica , Sitios de Unión , Bioensayo , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Proteasa de Coronavirus/farmacología , Cristalografía por Rayos X , Espectrometría de Masas , Unión Proteica , Conformación Proteica , Multimerización de Proteína , SARS-CoV-2/fisiología , Bibliotecas de Moléculas Pequeñas/farmacología , Especificidad por Sustrato , Replicación Viral
8.
PLoS Pathog ; 13(8): e1006552, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28806784

RESUMEN

Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) and Knob-associated Histidine-rich Protein (KAHRP) are directly linked to malaria pathology. PfEMP1 and KAHRP cluster on protrusions (knobs) on the P. falciparum-infected erythrocyte surface and enable pathogenic cytoadherence of infected erythrocytes to the host microvasculature, leading to restricted blood flow, oxygen deprivation and damage of tissues. Here we characterize the interactions of PfEMP1 and KAHRP with host erythrocyte spectrin using biophysical, structural and computational approaches. These interactions assist knob formation and, thus, promote cytoadherence. We show that the folded core of the PfEMP1 cytosolic domain interacts broadly with erythrocyte spectrin but shows weak, residue-specific preference for domain 17 of α spectrin, which is proximal to the erythrocyte cytoskeletal junction. In contrast, a protein sequence repeat region in KAHRP preferentially associates with domains 10-14 of ß spectrin, proximal to the spectrin-ankyrin complex. Structural models of PfEMP1 and KAHRP with spectrin combined with previous microscopy and protein interaction data suggest a model for knob architecture.


Asunto(s)
Eritrocitos/parasitología , Interacciones Huésped-Parásitos/fisiología , Malaria Falciparum/metabolismo , Péptidos/metabolismo , Proteínas Protozoarias/metabolismo , Espectrina/metabolismo , Cristalografía por Rayos X , Humanos , Simulación del Acoplamiento Molecular , Resonancia Magnética Nuclear Biomolecular , Péptidos/química , Plasmodium falciparum , Proteínas Protozoarias/química , Espectrina/química
9.
Malar J ; 18(1): 388, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31791339

RESUMEN

BACKGROUND: Malaria kills over 400,000 people each year and nearly half the world's population live in at-risk areas. Progress against malaria has recently stalled, highlighting the need for developing novel therapeutics. The parasite haemoglobin degradation pathway, active in the blood stage of the disease where malaria symptoms and lethality manifest, is a well-established drug target. A key enzyme in this pathway is the papain-type protease falcipain-2. METHODS: The crystallographic structure of falcipain-2 at 3.45 Å resolution was resolved in complex with an (E)-chalcone small-molecule inhibitor. The falcipain-2-(E)-chalcone complex was analysed with reference to previous falcipain complexes and their similarity to human cathepsin proteases. RESULTS: The (E)-chalcone inhibitor binds falcipain-2 to the rear of the substrate-binding cleft. This is the first structure of a falcipain protease where the rear of the substrate cleft is bound by a small molecule. In this manner, the (E)-chalcone inhibitor mimics interactions observed in protein-based falcipain inhibitors, which can achieve high interaction specificity. CONCLUSIONS: This work informs the search for novel anti-malaria therapeutics that target falcipain-2 by showing the binding site and interactions of the medically privileged (E)-chalcone molecule. Furthermore, this study highlights the possibility of chemically combining the (E)-chalcone molecule with an existing active-site inhibitor of falcipain, which may yield a potent and selective compound for blocking haemoglobin degradation by the malaria parasite.


Asunto(s)
Chalconas/metabolismo , Cisteína Endopeptidasas/metabolismo , Plasmodium falciparum/metabolismo , Cisteína Endopeptidasas/genética
10.
Blood ; 127(3): 343-51, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26637786

RESUMEN

Much of the virulence of Plasmodium falciparum malaria is caused by cytoadherence of infected erythrocytes, which promotes parasite survival by preventing clearance in the spleen. Adherence is mediated by membrane protrusions known as knobs, whose formation depends on the parasite-derived, knob-associated histidine-rich protein (KAHRP). Knobs are required for cytoadherence under flow conditions, and they contain both KAHRP and the parasite-derived erythrocyte membrane protein PfEMP1. Using electron tomography, we have examined the 3-dimensional structure of knobs in detergent-insoluble skeletons of P falciparum 3D7 schizonts. We describe a highly organized knob skeleton composed of a spiral structure coated by an electron-dense layer underlying the knob membrane. This knob skeleton is connected by multiple links to the erythrocyte cytoskeleton. We used immuno-electron microscopy (EM) to locate KAHRP in these structures. The arrangement of membrane proteins in the knobs, visualized by high-resolution freeze-fracture scanning EM, is distinct from that in the surrounding erythrocyte membrane, with a structure at the apex that likely represents the adhesion site. Thus, erythrocyte knobs in P falciparum infection contain a highly organized skeleton structure underlying a specialized region of membrane. We propose that the spiral and dense coat organize the cytoadherence structures in the knob, and anchor them into the erythrocyte cytoskeleton. The high density of knobs and their extensive mechanical linkage suggest an explanation for the rigidification of the cytoskeleton in infected cells, and for the transmission to the cytoskeleton of shear forces experienced by adhering cells.


Asunto(s)
Eritrocitos/parasitología , Eritrocitos/ultraestructura , Malaria Falciparum/patología , Malaria Falciparum/parasitología , Plasmodium falciparum/fisiología , Citoesqueleto/metabolismo , Membrana Eritrocítica/metabolismo , Membrana Eritrocítica/ultraestructura , Eritrocitos/metabolismo , Humanos , Proteínas de la Membrana/metabolismo
11.
Cell Microbiol ; 18(10): 1415-28, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26916885

RESUMEN

Adherence of Plasmodium falciparum-infected erythrocytes to host endothelium is conferred through the parasite-derived virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1), the major contributor to malaria severity. PfEMP1 located at knob structures on the erythrocyte surface is anchored to the cytoskeleton, and the Plasmodium helical interspersed subtelomeric (PHIST) gene family plays a role in many host cell modifications including binding the intracellular domain of PfEMP1. Here, we show that conditional reduction of the PHIST protein PFE1605w strongly reduces adhesion of infected erythrocytes to the endothelial receptor CD36. Adhesion to other endothelial receptors was less affected or even unaltered by PFE1605w depletion, suggesting that PHIST proteins might be optimized for subsets of PfEMP1 variants. PFE1605w does not play a role in PfEMP1 transport, but it directly interacts with both the intracellular segment of PfEMP1 and with cytoskeletal components. This is the first report of a PHIST protein interacting with key molecules of the cytoadherence complex and the host cytoskeleton, and this functional role seems to play an essential role in the pathology of P. falciparum.


Asunto(s)
Citoesqueleto/metabolismo , Eritrocitos/parasitología , Plasmodium falciparum/fisiología , Proteínas Protozoarias/fisiología , Adhesión Celular , Células Cultivadas , Eritrocitos/metabolismo , Interacciones Huésped-Parásitos , Humanos , Malaria Falciparum , Unión Proteica , Mapas de Interacción de Proteínas , Transporte de Proteínas
12.
Proc Natl Acad Sci U S A ; 110(28): 11373-8, 2013 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-23798409

RESUMEN

Centrioles are evolutionary conserved organelles that give rise to cilia and flagella as well as centrosomes. Centrioles display a characteristic ninefold symmetry imposed by the spindle assembly abnormal protein 6 (SAS-6) family. SAS-6 from Chlamydomonas reinhardtii and Danio rerio was shown to form ninefold symmetric, ring-shaped oligomers in vitro that were similar to the cartwheels observed in vivo during early steps of centriole assembly in most species. Here, we report crystallographic and EM analyses showing that, instead, Caenorhabotis elegans SAS-6 self-assembles into a spiral arrangement. Remarkably, we find that this spiral arrangement is also consistent with ninefold symmetry, suggesting that two distinct SAS-6 oligomerization architectures can direct the same output symmetry. Sequence analysis suggests that SAS-6 spirals are restricted to specific nematodes. This oligomeric arrangement may provide a structural basis for the presence of a central tube instead of a cartwheel during centriole assembly in these species.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Animales , Proteínas de Caenorhabditis elegans/química , Proteínas de Ciclo Celular/química , Cristalografía por Rayos X , Microscopía Electrónica , Modelos Moleculares , Conformación Proteica
13.
Biochem Soc Trans ; 43(5): 838-43, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26517891

RESUMEN

Centrioles are evolutionarily conserved cylindrical cell organelles with characteristic radial symmetry. Despite their considerable size (400 nm × 200 nm, in humans), genetic studies suggest that relatively few protein components are involved in their assembly. We recently characterized the molecular architecture of the centrosomal P4.1-associated protein (CPAP), which is crucial for controlling the centriolar cylinder length. Here, we review the remarkable architecture of the C-terminal domain of CPAP, termed the G-box, which comprises a single, entirely solvent exposed, antiparallel ß-sheet. Molecular dynamics simulations support the stability of the G-box domain even in the face of truncations or amino acid substitutions. The similarity of the G-box domain to amyloids (or amyloid precursors) is strengthened by its oligomeric arrangement to form continuous fibrils. G-box fibrils were observed in crystals as well as in solution and are also supported by simulations. We conclude that the G-box domain may well represent the best analogue currently available for studies of exposed ß-sheets, unencumbered by additional structural elements or severe aggregations problems.


Asunto(s)
Centriolos/química , Proteínas de Drosophila/química , Proteínas Asociadas a Microtúbulos/química , Modelos Moleculares , Agregación Patológica de Proteínas/patología , Proteínas de Pez Cebra/química , Amiloide/química , Amiloide/metabolismo , Animales , Centriolos/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación , Agregación Patológica de Proteínas/metabolismo , Conformación Proteica , Pliegue de Proteína , Estabilidad Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología Estructural de Proteína , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
14.
FASEB J ; 28(10): 4420-33, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24983468

RESUMEN

Uniquely among malaria parasites, Plasmodium falciparum-infected erythrocytes (iRBCs) develop membrane protrusions, known as knobs, where the parasite adhesion receptor P. falciparum erythrocyte membrane protein 1 (PfEMP1) clusters. Knob formation and the associated iRBC adherence to host endothelium are directly linked to the severity of malaria and are functional manifestations of protein export from the parasite to the iRBC. A family of exported proteins featuring Plasmodium helical interspersed subtelomeric (PHIST) domains has attracted attention, with members being implicated in host-parasite protein interactions and differentially regulated in severe disease and among parasite isolates. Here, we show that PHIST member PFE1605w binds the PfEMP1 intracellular segment directly with Kd = 5 ± 0.6 µM, comigrates with PfEMP1 during export, and locates in knobs. PHIST variants that do not locate in knobs (MAL8P1.4) or bind PfEMP1 30 times more weakly (PFI1780w) used as controls did not display the same pattern. We resolved the first crystallographic structure of a PHIST protein and derived a partial model of the PHIST-PfEMP1 interaction from nuclear magnetic resonance. We propose that PFE1605w reinforces the PfEMP1-cytoskeletal connection in knobs and discuss the possible role of PHIST proteins as interaction hubs in the parasite exportome.


Asunto(s)
Proteínas Portadoras/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Secuencia de Aminoácidos , Proteínas Portadoras/química , Membrana Celular/metabolismo , Eritrocitos/metabolismo , Eritrocitos/parasitología , Humanos , Datos de Secuencia Molecular , Plasmodium falciparum/química , Plasmodium falciparum/patogenicidad , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Protozoarias/química
15.
J Biol Chem ; 288(24): 17441-50, 2013 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-23653354

RESUMEN

Despite its biological importance, the interaction between fibronectin (FN) and collagen, two abundant and crucial tissue components, has not been well characterized on a structural level. Here, we analyzed the four interactions formed between epitopes of collagen type I and the collagen-binding fragment (gelatin-binding domain (GBD)) of human FN using solution NMR, fluorescence, and small angle x-ray scattering methods. Collagen association with FN modules (8-9)FnI occurs through a conserved structural mechanism but exhibits a 400-fold disparity in affinity between collagen sites. This disparity is reduced in the full-length GBD, as (6)FnI(1-2)FnII(7)FnI binds a specific collagen epitope next to the weakest (8-9)FnI-binding site. The cooperative engagement of all GBD modules with collagen results in four broadly equipotent FN-collagen interaction sites. Collagen association stabilizes a distinct monomeric GBD conformation in solution, giving further evidence to the view that FN fragments form well defined functional and structural units.


Asunto(s)
Colágeno Tipo I/química , Fibronectinas/química , Secuencia de Aminoácidos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Soluciones , Tomografía Computarizada por Rayos X
16.
Curr Opin Cell Biol ; 19(5): 578-83, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17942296

RESUMEN

The extracellular matrix (ECM) is a highly organized multimolecular structure, essential for life in higher organisms. Although substantial high-resolution structural information is available for relatively small fragments of ECM components, the inherent difficulty in preparing and analyzing samples of large, fibrous polymers impedes structural efforts. Here, we review recent advances in understanding the structure of three important ECM components: collagen, fibrillin and fibronectin. Emphasis is placed on the key role of intermolecular interactions in assembling larger, microm scale, structures.


Asunto(s)
Matriz Extracelular/química , Matriz Extracelular/ultraestructura , Conformación Proteica , Animales , Conformación de Carbohidratos , Colágeno/metabolismo , Colágeno/ultraestructura , Matriz Extracelular/metabolismo , Fibrilinas , Fibronectinas/metabolismo , Fibronectinas/ultraestructura , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/ultraestructura , Modelos Moleculares , Datos de Secuencia Molecular
17.
J Biol Chem ; 287(10): 7182-9, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22249178

RESUMEN

Plasmodium falciparum-infected red blood cells adhere to endothelial cells, thereby obstructing the microvasculature. Erythrocyte adherence is directly associated with severe malaria and increased disease lethality, and it is mediated by the PfEMP1 family. PfEMP1 clustering in knob-like protrusions on the erythrocyte membrane is critical for cytoadherence, however the molecular mechanisms behind this system remain elusive. Here, we show that the intracellular domains of the PfEMP1 family (ATS) share a unique molecular architecture, which comprises a minimal folded core and extensive flexible elements. A conserved flexible segment at the ATS center is minimally restrained by the folded core. Yeast-two-hybrid data and a novel sequence analysis method suggest that this central segment contains a conserved protein interaction epitope. Interestingly, ATS in solution fails to bind the parasite knob-associated histidine-rich protein (KAHRP), an essential cytoadherence component. Instead, we demonstrate that ATS associates with PFI1780w, a member of the Plasmodium helical interspersed sub-telomeric (PHIST) family. PHIST domains are widespread in exported parasite proteins, however this is the first specific molecular function assigned to any variant of this family. We propose that PHIST domains facilitate protein interactions, and that the conserved ATS epitope may be targeted to disrupt the parasite cytoadherence system.


Asunto(s)
Epítopos/química , Plasmodium falciparum/química , Pliegue de Proteína , Proteínas Protozoarias/química , Epítopos/genética , Epítopos/metabolismo , Humanos , Malaria Falciparum/genética , Malaria Falciparum/metabolismo , Péptidos/química , Péptidos/genética , Péptidos/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Saccharomyces cerevisiae/genética , Técnicas del Sistema de Dos Híbridos
18.
EMBO J ; 28(22): 3623-32, 2009 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-19798053

RESUMEN

Fundamental to cell adhesion and migration, integrins are large heterodimeric membrane proteins that uniquely mediate inside-out signal transduction, whereby adhesion to the extracellular matrix is activated from within the cell by direct binding of talin to the cytoplasmic tail of the beta integrin subunit. Here, we report the first structure of talin bound to an authentic full-length beta integrin tail. Using biophysical and whole cell measurements, we show that a specific ionic interaction between the talin F3 domain and the membrane-proximal helix of the beta tail disrupts an integrin alpha/beta salt bridge that helps maintain the integrin inactive state. Second, we identify a positively charged surface on the talin F2 domain that precisely orients talin to disrupt the heterodimeric integrin transmembrane (TM) complex. These results show key structural features that explain the ability of talin to mediate inside-out TM signalling.


Asunto(s)
Integrinas/química , Sustancias Macromoleculares/química , Transducción de Señal/fisiología , Talina/química , Secuencia de Aminoácidos , Animales , Células CHO , Membrana Celular/metabolismo , Polaridad Celular/fisiología , Cricetinae , Cricetulus , Integrinas/metabolismo , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Talina/metabolismo
19.
Proc Natl Acad Sci U S A ; 106(11): 4195-200, 2009 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-19251642

RESUMEN

Collagen and fibronectin are major components of vertebrate extracellular matrices. Their association and distribution control the development and properties of diverse tissues, but thus far no structural information has been available for the complex formed. Here, we report binding of a peptide, derived from the alpha(1) chain of type I collagen, to the gelatin-binding domain of human fibronectin and present the crystal structure of this peptide in complex with the (8-9)FnI domain pair. Both gelatin-binding domain subfragments, (6)FnI(1-2)FnII(7)FnI and (8-9)FnI, bind the same specific sequence on D-period 4 of collagen I alpha(1), adjacent to the MMP-1 cleavage site. (8-9)FnI also binds the equivalent sequence of the alpha(2) chain. The collagen peptide adopts an antiparallel beta-strand conformation, similar to structures of proteins from pathogenic bacteria bound to FnI domains. Analysis of the type I collagen sequence suggests multiple putative fibronectin-binding sites compatible with our structural model. We demonstrate, by kinetic unfolding experiments, that the triple-helical collagen state is destabilized by (8-9)FnI. This finding suggests a role for fibronectin in collagen proteolysis and tissue remodeling.


Asunto(s)
Colágeno Tipo I/química , Fibronectinas/química , Desnaturalización Proteica , Sitios de Unión , Colágeno Tipo I/metabolismo , Cristalografía por Rayos X , Fibronectinas/metabolismo , Humanos , Fragmentos de Péptidos , Unión Proteica , Conformación Proteica
20.
Structure ; 30(5): 671-684.e5, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35240058

RESUMEN

Centrioles are eukaryotic organelles that template the formation of cilia and flagella, as well as organize the microtubule network and the mitotic spindle in animal cells. Centrioles have proximal-distal polarity and a 9-fold radial symmetry imparted by a likewise symmetrical central scaffold, the cartwheel. The spindle assembly abnormal protein 6 (SAS-6) self-assembles into 9-fold radially symmetric ring-shaped oligomers that stack via an unknown mechanism to form the cartwheel. Here, we uncover a homo-oligomerization interaction mediated by the coiled-coil domain of SAS-6. Crystallographic structures of Chlamydomonas reinhardtii SAS-6 coiled-coil complexes suggest this interaction is asymmetric, thereby imparting polarity to the cartwheel. Using a cryoelectron microscopy (cryo-EM) reconstitution assay, we demonstrate that amino acid substitutions disrupting this asymmetric association also impair SAS-6 ring stacking. Our work raises the possibility that the asymmetric interaction inherent to SAS-6 coiled-coil provides a polar element for cartwheel assembly, which may assist the establishment of the centriolar proximal-distal axis.


Asunto(s)
Proteínas de Ciclo Celular , Centriolos , Animales , Proteínas de Ciclo Celular/metabolismo , Centriolos/química , Centriolos/metabolismo , Microscopía por Crioelectrón , Orgánulos/metabolismo , Huso Acromático/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA