RESUMEN
The PI3K signaling pathway regulates cell growth and movement and is heavily mutated in cancer. Class I PI3Ks synthesize the lipid messenger PI(3,4,5)P3. PI(3,4,5)P3 can be dephosphorylated by 3- or 5-phosphatases, the latter producing PI(3,4)P2. The PTEN tumor suppressor is thought to function primarily as a PI(3,4,5)P3 3-phosphatase, limiting activation of this pathway. Here we show that PTEN also functions as a PI(3,4)P2 3-phosphatase, both in vitro and in vivo. PTEN is a major PI(3,4)P2 phosphatase in Mcf10a cytosol, and loss of PTEN and INPP4B, a known PI(3,4)P2 4-phosphatase, leads to synergistic accumulation of PI(3,4)P2, which correlated with increased invadopodia in epidermal growth factor (EGF)-stimulated cells. PTEN deletion increased PI(3,4)P2 levels in a mouse model of prostate cancer, and it inversely correlated with PI(3,4)P2 levels across several EGF-stimulated prostate and breast cancer lines. These results point to a role for PI(3,4)P2 in the phenotype caused by loss-of-function mutations or deletions in PTEN.
Asunto(s)
Neoplasias de la Mama/enzimología , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositoles/metabolismo , Neoplasias de la Próstata/enzimología , Sistemas de Mensajero Secundario , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Factor de Crecimiento Epidérmico/farmacología , Femenino , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Fosfohidrolasa PTEN/deficiencia , Fosfohidrolasa PTEN/genética , Fenotipo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Sistemas de Mensajero Secundario/efectos de los fármacos , Factores de TiempoRESUMEN
The neonatal Fc receptor (FcRn) is responsible for the recycling and transcytosis of IgG and albumin. FcRn level was found altered in cancer tissues and implicated in tumor immunosurveillance and neoplastic cell growth. However, the consequences of FcRn down-regulation in the anti-tumor immune response are not fully elucidated. By using the B16F10 experimental lung metastasis model in an FcRn-deficient microenvironment (FcRn-/- mice), we found lung metastasis associated with an abnormal natural killer (NK) cell phenotype. In FcRn-/- mice, NK cells were immature, as shown by their surface marker profile and their decreased ability to degranulate and synthesize interferon γ after chemical and IL-2 or IL-12, IL-15 and IL-18 activation. These new findings support the critical role of FcRn downregulation in the tumor microenvironment in anti-tumor immunity, via NK cell maturation and activation.
Asunto(s)
Antígenos de Histocompatibilidad Clase I/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Neoplasias Pulmonares/patología , Metástasis de la Neoplasia/patología , Receptores Fc/metabolismo , Microambiente Tumoral , Animales , Degranulación de la Célula , Diferenciación Celular , Línea Celular Tumoral , Modelos Animales de Enfermedad , Regulación hacia Abajo , Interferón gamma/biosíntesis , Proteínas de Membrana de los Lisosomas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Estadísticas no Paramétricas , TranscitosisRESUMEN
Polymorphonuclear neutrophils (PMNs) can contribute to the regulation of the host immune response by crosstalk with innate and adaptive leukocytes, including NK cells. Mechanisms by which this immunoregulation process occurs remain incompletely understood. Here, we focused on the effect of human neutrophil-derived serine proteases on NKp46, a crucial activating receptor expressed on NK cells. We used flow cytometry, Western blotting, and mass spectrometry (MS) analysis to reveal that cathepsin G [CG; and not elastase or proteinase 3 (PR3)] induces a time- and concentration-dependent, down-regulatory effect on NKp46 expression through a restricted proteolytic mechanism. We also used a functional assay to demonstrate that NKp46 cleavage by CG severely impairs NKp46-mediated responses of NK cells, including IFN-γ production and cell degranulation. Importantly, sputa of cystic fibrosis (CF) patients, which have high concentrations of CG, also alter NKp46 on NK cells. Hence, we have identified a new immunoregulatory mechanism of neutrophils that proteolytically disarms NK cell responses.
Asunto(s)
Células Asesinas Naturales/metabolismo , Receptor 1 Gatillante de la Citotoxidad Natural/metabolismo , Neutrófilos/metabolismo , Catepsina G/metabolismo , Membrana Celular/metabolismo , Regulación hacia Abajo , Humanos , Células K562 , Receptor 1 Gatillante de la Citotoxidad Natural/química , Activación NeutrófilaRESUMEN
Recent in silico studies suggested that the transcription cofactor LIM-only protein FHL2 is a major transcriptional regulator of mouse natural killer (NK) cells. However, the expression and role of FHL2 in NK cell biology are unknown. Here, we confirm that FHL2 is expressed in both mouse and human NK cells. Using FHL2-/- mice, we found that FHL2 controls NK cell development in the bone marrow and maturation in peripheral organs. To evaluate the importance of FHL2 in NK cell activation, FHL2-/- mice were infected with Streptococcus pneumoniae. FHL2-/- mice are highly susceptible to this infection. The activation of lung NK cells is altered in FHL2-/- mice, leading to decreased IFNγ production and a loss of control of bacterial burden. Collectively, our data reveal that FHL2 is a new transcription cofactor implicated in NK cell development and activation during pulmonary bacterial infection.
RESUMEN
M-CSF and G-CSF are instructive cytokines that specifically induce differentiation of bipotent myeloid progenitors into macrophages and granulocytes, respectively. Through morphology and colony assay studies, flow cytometry analysis of specific markers, and expression of myeloid transcription factors, we show here that the Eger/Fms cell line is composed of cells whose differentiation fate is instructed by M-CSF and G-CSF, thus representing a good in vitro model of myeloid bipotent progenitors. Consistent with the essential role of ERK1/2 during macrophage differentiation and defects of macrophagic differentiation in native ERK1(-/-) progenitors, ERK signaling is strongly activated in Eger/Fms cells upon M-CSF-induced macrophagic differentiation but only to a very small extent during G-CSF-induced granulocytic differentiation. Previous in vivo studies indicated a key role of Fli-1 in myeloid differentiation and demonstrated its weak expression during macrophagic differentiation with a strong expression during granulocytic differentiation. Here, we demonstrated that this effect could be mediated by a differential regulation of protein kinase Cδ (PKCd) on Fli-1 expression in response to M-CSF and G-CSF. With the use of knockdown of PKCd by small interfering RNA, we demonstrated that M-CSF activates PKCd, which in turn, inhibits Fli-1 expression and granulocytic differentiation. Finally, we studied the connection between ERK and PKCd and showed that in the presence of the MEK inhibitor U0126, PKCd expression is decreased, and Fli-1 expression is increased in response to M-CSF. Altogether, we demonstrated that in bipotent myeloid cells, M-CSF promotes macrophagic over granulocytic differentiation by inducing ERK activation but also PKCd expression, which in turn, down-regulates Fli-1 expression and prevents granulocytic differentiation.