Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 21(21)2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33114187

RESUMEN

Paradoxical psoriasis (PP) may occur during treatment with anti-tumor necrosis factor-alpha (TNF-α) drugs in various chronic immune-mediated diseases, mainly inflammatory bowel diseases (IBD) and psoriasis. In this study, clinical and genetic characteristics of PP arising in IBD and psoriatic patients were investigated to identify disease-specific markers of the paradoxical effect. A total of 161 IBD and psoriatic patients treated with anti-TNF-α drugs were included in the study. Of these patients, 39 developed PP. All patients were characterized for the main clinical-pathologic characteristics and genotyped for six candidate single nucleotide polymorphisms (SNPs) selected for their possible role in PP susceptibility. In IBD patients, the onset of PP was associated with female sex, presence of comorbidities, and use of adalimumab. IBD patients with PP had a higher frequency of the TNF-α rs1799964 rare allele (p = 0.006) compared with cases without the paradoxical effect, and a lower frequency of the human leucocyte antigen (HLA)-Cw06 rs10484554 rare allele (p = 0.03) compared with psoriatic patients with PP. Overall, these findings point to specific clinical and genetic characteristics of IBD patients with PP and provide data showing that genetic variability may be related to the paradoxical effect of anti-TNF-α drugs with possible implications into clinical practice.


Asunto(s)
Adalimumab/administración & dosificación , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Polimorfismo de Nucleótido Simple , Psoriasis/tratamiento farmacológico , Factor de Necrosis Tumoral alfa/genética , Adalimumab/efectos adversos , Niño , Femenino , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Antígenos HLA-C , Humanos , Enfermedades Inflamatorias del Intestino/genética , Masculino , Psoriasis/inducido químicamente , Psoriasis/genética , Caracteres Sexuales
2.
Int J Cancer ; 145(2): 390-400, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-30613976

RESUMEN

Breast cancer (BC) in men is rare and genetic predisposition is likely to play a relevant role in its etiology. Inherited mutations in BRCA1/2 account for about 13% of all cases and additional genes that may contribute to the missing heritability need to be investigated. In our study, a well-characterized series of 523 male BC (MBC) patients from the Italian multicenter study on MBC, enriched for non-BRCA1/2 MBC cases, was screened by a multigene custom panel of 50 cancer-associated genes. The main clinical-pathologic characteristics of MBC in pathogenic variant carriers and non-carriers were also compared. BRCA1/2 pathogenic variants were detected in twenty patients, thus, a total of 503 non-BRCA1/2 MBC patients were examined in our study. Twenty-seven of the non-BRCA1/2 MBC patients were carriers of germline pathogenic variants in other genes, including two APC p.Ile1307Lys variant carriers and one MUTYH biallelic variant carrier. PALB2 was the most frequently altered gene (1.2%) and PALB2 pathogenic variants were significantly associated with high risk of MBC. Non-BRCA1/2 pathogenic variant carriers were more likely to have personal (p = 0.0005) and family (p = 0.007) history of cancer. Results of our study support a central role of PALB2 in MBC susceptibility and show a low impact of CHEK2 on MBC predisposition in the Italian population. Overall, our data indicate that a multigene testing approach may benefit from appropriately selected patients with implications for clinical management and counseling of MBC patients and their family members.


Asunto(s)
Neoplasias de la Mama Masculina/genética , Quinasa de Punto de Control 2/genética , Proteína del Grupo de Complementación N de la Anemia de Fanconi/genética , Mutación , Análisis de Secuencia de ADN/métodos , Proteína de la Poliposis Adenomatosa del Colon/genética , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , ADN Glicosilasas/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Italia , Masculino , Persona de Mediana Edad , Adulto Joven
3.
FASEB J ; : fj201800245R, 2018 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-29757674

RESUMEN

In cancer cells, global genomic hypomethylation is found together with localized hypermethylation of CpG islands within the promoters and regulatory regions of silenced tumor suppressor genes. Demethylating agents may reverse hypermethylation, thus promoting gene re-expression. Unfortunately, demethylating strategies are not efficient in solid tumor cells. DNA demethylation is mediated by ten-eleven translocation enzymes (TETs). They sequentially convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), which is associated with active transcription; 5-formylcytosine; and finally, 5-carboxylcytosine. Although α-linolenic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid, the major n-3 polyunsaturated fatty acids, have anti-cancer effects, their action, as DNA-demethylating agents, has never been investigated in solid tumor cells. Here, we report that EPA demethylates DNA in hepatocarcinoma cells. EPA rapidly increases 5hmC on DNA, inducing p21Waf1/Cip1 gene expression, which slows cancer cell-cycle progression. We show that the underlying molecular mechanism involves TET1. EPA simultaneously binds peroxisome proliferator-activated receptor γ (PPARγ) and retinoid X receptor α (RXRα), thus promoting their heterodimer and inducing a PPARγ-TET1 interaction. They generate a TET1-PPARγ-RXRα protein complex, which binds to a hypermethylated CpG island on the p21 gene, where TET1 converts 5mC to 5hmC. In an apparent shuttling motion, PPARγ and RXRα leave the DNA, whereas TET1 associates stably. Overall, EPA directly regulates DNA methylation levels, permitting TET1 to exert its anti-tumoral function.-Ceccarelli, V., Valentini, V., Ronchetti, S., Cannarile, L., Billi, M., Riccardi, C., Ottini, L., Talesa, V. N., Grignani, F., Vecchini, A., Eicosapentaenoic acid induces DNA demethylation in carcinoma cells through a TET1-dependent mechanism.

4.
Neurol Sci ; 40(6): 1315-1322, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30471018

RESUMEN

The Pathology Museum of the University of Florence houses a rich collection of anatomical specimens and over a hundred waxworks portraying pathological conditions occurring in the nineteenth century, when the museum was established. Clinical and autopsy findings of these cases can still be retrieved from the original museum catalogue, offering a rare opportunity for retrospective palaeo-pathological diagnostics. We present a historical case of severe hydrocephalus backed by modern-day anthropological, radiological and molecular analyses conducted on the skeleton of an 18-month-old male infant deceased in 1831. Luigi Calamai (1796-1851), a wax craftsman of La Specola workshop in Florence, was commissioned to create a life-sized wax model of the child's head, neck and upper thorax. This artwork allows us to appreciate the cranial and facial alterations determined by 30 lb of cerebrospinal fluid (CSF) accumulated within the cerebral ventricular system. Based on the autopsy report, gross malformations of the neural tube, tumours and haemorrhage could be excluded. A molecular approach proved helpful in confirming sex. We present this case as the so-far most compelling case of hydrocephalus in palaeo-pathological research.


Asunto(s)
Hidrocefalia/genética , Hidrocefalia/patología , Modelos Anatómicos , ADN Antiguo , Historia del Siglo XIX , Humanos , Hidrocefalia/diagnóstico por imagen , Hidrocefalia/historia , Lactante , Italia , Masculino , Museos , Escultura , Ceras
5.
Cancer ; 123(2): 210-218, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27648926

RESUMEN

BACKGROUND: Male breast cancer (MBC) is a rare disease whose etiology appears to be largely associated with genetic factors. BRCA1 and BRCA2 mutations account for about 10% of all MBC cases. Thus, a fraction of MBC cases are expected to be due to genetic factors not yet identified. To further explain the genetic susceptibility for MBC, whole-exome sequencing (WES) and targeted gene sequencing were applied to high-risk, BRCA1/2 mutation-negative MBC cases. METHODS: Germ-line DNA of 1 male and 2 female BRCA1/2 mutation-negative breast cancer (BC) cases from a pedigree showing a first-degree family history of MBC was analyzed with WES. Targeted gene sequencing for the validation of WES results was performed for 48 high-risk, BRCA1/2 mutation-negative MBC cases from an Italian multicenter study of MBC. A case-control series of 433 BRCA1/2 mutation-negative MBC and female breast cancer (FBC) cases and 849 male and female controls was included in the study. RESULTS: WES in the family identified the partner and localizer of BRCA2 (PALB2) c.419delA truncating mutation carried by the proband, her father, and her paternal uncle (all affected with BC) and the N-acetyltransferase 1 (NAT1) c.97C>T nonsense mutation carried by the proband's maternal aunt. Targeted PALB2 sequencing detected the c.1984A>T nonsense mutation in 1 of the 48 BRCA1/2 mutation-negative MBC cases. NAT1 c.97C>T was not found in the case-control series. CONCLUSIONS: These results add strength to the evidence showing that PALB2 is involved in BC risk for both sexes and indicate that consideration should be given to clinical testing of PALB2 for BRCA1/2 mutation-negative families with multiple MBC and FBC cases. Cancer 2017;123:210-218. © 2016 American Cancer Society.


Asunto(s)
Neoplasias de la Mama Masculina/genética , Exoma/genética , Predisposición Genética a la Enfermedad/genética , Proteínas Nucleares/genética , Proteínas Supresoras de Tumor/genética , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/genética , Estudios de Casos y Controles , Análisis Mutacional de ADN/métodos , Proteína del Grupo de Complementación N de la Anemia de Fanconi , Femenino , Humanos , Italia , Masculino , Mutación/genética , Linaje
6.
Breast Cancer Res Treat ; 160(1): 181-186, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27628328

RESUMEN

PURPOSE: Male breast cancer (MBC) is a rare disease that shares some similarities with female breast cancer (FBC). Like FBC, genetic susceptibility to MBC can be referred to mutations in BRCA1 and, particularly, BRCA2 genes. However, only about 10 % of MBCs are caused by BRCA1/2 germ-line mutations, while the largest part are sporadic cancers and may derive from somatic alterations. EMSY, a BRCA2 inactivating gene, emerged as a candidate gene involved in the pathogenesis of sporadic FBC, and its amplification was suggested to be the somatic counterpart of BRCA2 mutations. Considering the relevant role of BRCA2 in MBC, we aimed at investigating the role of EMSY gene copy number variations in male breast tumors. METHODS: EMSY copy number variations were analyzed by quantitative real-time PCR with TaqMan probes in a selected series of 75 MBCs, characterized for BRCA1/2 mutations. RESULTS: We reported EMSY amplification in 34.7 % of MBCs. A significant association emerged between EMSY amplification and BRCA1/2 mutations (p = 0.03). We identified two amplification subgroups characterized by low and high amplification levels, with BRCA2-related tumors mostly showing low EMSY amplification. CONCLUSIONS: Our results show a high frequency of EMSY amplification in MBC, thus pointing to a role of EMSY in the pathogenesis of this disease. EMSY amplification may be a new feature that might uncover underlying molecular pathways of MBCs and may allow for the identification of MBC subgroups with potential clinical implication for targeted therapeutic approaches.


Asunto(s)
Neoplasias de la Mama Masculina/genética , Variaciones en el Número de Copia de ADN , Genes BRCA1 , Genes BRCA2 , Mutación , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Proteínas Represoras/genética , Biomarcadores de Tumor , Neoplasias de la Mama Masculina/diagnóstico , Amplificación de Genes , Predisposición Genética a la Enfermedad , Pruebas Genéticas/métodos , Mutación de Línea Germinal , Humanos , Masculino , Clasificación del Tumor , Estadificación de Neoplasias
7.
Cancers (Basel) ; 16(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38339330

RESUMEN

Among neoplastic diseases, breast cancer (BC) is one of the most influenced by gender. Despite common misconceptions associating BC as a women-only disease, BC can also occur in men. Additionally, transgender individuals may also experience BC. Genetic risk factors play a relevant role in BC predisposition, with important implications in precision prevention and treatment. The genetic architecture of BC susceptibility is similar in women and men, with high-, moderate-, and low-penetrance risk variants; however, some sex-specific features have emerged. Inherited high-penetrance pathogenic variants (PVs) in BRCA1 and BRCA2 genes are the strongest BC genetic risk factor. BRCA1 and BRCA2 PVs are more commonly associated with increased risk of female and male BC, respectively. Notably, BRCA-associated BCs are characterized by sex-specific pathologic features. Recently, next-generation sequencing technologies have helped to provide more insights on the role of moderate-penetrance BC risk variants, particularly in PALB2, CHEK2, and ATM genes, while international collaborative genome-wide association studies have contributed evidence on common low-penetrance BC risk variants, on their combined effect in polygenic models, and on their role as risk modulators in BRCA1/2 PV carriers. Overall, all these studies suggested that the genetic basis of male BC, although similar, may differ from female BC. Evaluating the genetic component of male BC as a distinct entity from female BC is the first step to improve both personalized risk assessment and therapeutic choices of patients of both sexes in order to reach gender equality in BC care. In this review, we summarize the latest research in the field of BC genetic predisposition with a particular focus on similarities and differences in male and female BC, and we also discuss the implications, challenges, and open issues that surround the establishment of a gender-oriented clinical management for BC.

8.
Cancers (Basel) ; 16(3)2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38339299

RESUMEN

In the field of breast cancer care, a significant breakthrough has occurred with the recognition of HER2-low expression as a target for novel anti-HER2 antibody-drug conjugates (ADC). This discovery is reshaping the treatment landscape, challenging previous perceptions that considered HER2-low as clinically insignificant. The ability to target HER2-low expression is expected to have substantial clinical implications, irrespective of gender, including in cases of male breast cancer (MBC). However, an estimate of the prevalence of the HER2-low subtype in MBC is missing. This retrospective, observational, multicenter study was aimed at characterizing the HER2-low subtype in MBC. For the purpose of this study, the three-tiered categorization of HER2 (HER2-0, HER2-low, and HER2-positive) was used to reclassify the HER2-negative group into HER-0 or HER2-low subtypes. In the whole series of 144 invasive MBCs, 79 (54.9%) were HER2-0 (IHC scores of 0), 39 (27.1%) HER2-low (IHC scores of 1+/2+ with negative ISH), and 26 (18.0%) HER2-positive (IHC scores of 3+/2+ with positive ISH). Specifically, among hormone receptor-positive (HR+) HER2-negative invasive MBCs, 34.8% were HER2-low and 65.2% HER2-0. Compared with HER2-0, HER2-low subtype was associated with a positive lymph node involvement (p = 0.01). Other pathologic characteristics including histology, staging, and grading did not show notable variations between the two subtypes. The presence of germline BRCA1/2 pathogenic variants (PVs) did not significantly differ between HER2-0 and HER2-low MBCs. However, about 13% of HER2-low MBCs had germline PVs in BRCA1/2 genes, mainly BRCA2, a clinically relevant observation in the context of combined target therapy. Overall, our data, which focused on the largest gender-specific breast cancer series, to our knowledge, confirm that the emerging three-tiered categorization of HER2 (HER2-0, HER2-low, and HER2-positive) can also be considered in MBC, to mitigate both the gender gap and the underrepresentation of males in clinical trials.

9.
Eur J Cancer ; 188: 183-191, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37262986

RESUMEN

BACKGROUND: Germline pathogenic variants (PVs) in BRCA1/2 genes are associated with breast cancer (BC) risk in both women and men. Multigene panel testing is being increasingly used for BC risk assessment, allowing the identification of PVs in genes other than BRCA1/2. While data on actionable PVs in other cancer susceptibility genes are now available in female BC, reliable data are still lacking in male BC (MBC). This study aimed to provide the patterns, prevalence and risk estimates associated with PVs in non-BRCA1/2 genes for MBC in order to improve BC prevention for male patients. METHODS: We performed a large case-control study in the Italian population, including 767 BRCA1/2-negative MBCs and 1349 male controls, all screened using a custom 50 cancer gene panel. RESULTS: PVs in genes other than BRCA1/2 were significantly more frequent in MBCs compared with controls (4.8% vs 1.8%, respectively) and associated with a threefold increased MBC risk (OR: 3.48, 95% CI: 1.88-6.44; p < 0.0001). PV carriers were more likely to have personal (p = 0.03) and family (p = 0.02) history of cancers, not limited to BC. PALB2 PVs were associated with a sevenfold increased MBC risk (OR: 7.28, 95% CI: 1.17-45.52; p = 0.034), and ATM PVs with a fivefold increased MBC risk (OR: 4.79, 95% CI: 1.12-20.56; p = 0.035). CONCLUSIONS: This study highlights the role of PALB2 and ATM PVs in MBC susceptibility and provides risk estimates at population level. These data may help in the implementation of multigene panel testing in MBC patients and inform gender-specific BC risk management and decision making for patients and their families.


Asunto(s)
Neoplasias de la Mama Masculina , Neoplasias de la Mama , Humanos , Femenino , Masculino , Neoplasias de la Mama Masculina/genética , Predisposición Genética a la Enfermedad , Estudios de Casos y Controles , Neoplasias de la Mama/genética , Neoplasias de la Mama/epidemiología , Genes BRCA1 , Medición de Riesgo
10.
J Pers Med ; 12(7)2022 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-35887615

RESUMEN

Cardiovascular disease (CVD) is one of the most common comorbidities that may affect psoriatic patients. Several exogenous and endogenous factors are involved in the etiology and progression of both psoriasis and CVD. A potential genetic link between the two diseases has emerged; however, some gaps remain in the understanding of the CVD prevalence in psoriatic patients. Recently, the role of the gut microbiome dysbiosis was documented in the development and maintenance of both diseases. To investigate whether gut microbiome dysbiosis might influence the occurrence of CVD in psoriatic patients, 16S rRNA gene sequencing was performed to characterize the gut microbiome of 28 psoriatic patients, including 17 patients with and 11 without CVD. The comparison of the gut microbiome composition between patients with and without CVD showed a higher prevalence of Barnesiellaceae and Phascolarctobacterium in patients with CVD. Among patients with CVD, those undergoing biologic therapy had lower abundance levels of Barnesiellaceae, comparable to those found in patients without CVD. Overall, these findings suggest that the co-occurrence of psoriasis and CVD might be linked to gut microbiome dysbiosis and that therapeutic strategies could help to restore the intestinal symbiosis, potentially improving the clinical management of psoriasis and its associated comorbidities.

11.
Front Oncol ; 12: 1092201, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36686738

RESUMEN

Introduction: Compared with breast cancer (BC) in women, BC in men is a rare disease with genetic and molecular peculiarities. Therapeutic approaches for male BC (MBC) are currently extrapolated from the clinical management of female BC, although the disease does not exactly overlap in males and females. Data on specific molecular biomarkers in MBC are lacking, cutting out male patients from more appropriate therapeutic strategies. Growing evidence indicates that Next Generation Sequencing (NGS) multigene panel testing can be used for the detection of predictive molecular biomarkers, including Tumor Mutational Burden (TMB) and Microsatellite Instability (MSI). Methods: In this study, NGS multigene gene panel sequencing, targeting 1.94 Mb of the genome at 523 cancer-relevant genes (TruSight Oncology 500, Illumina), was used to identify and characterize somatic variants, Copy Number Variations (CNVs), TMB and MSI, in 15 Formalin-Fixed Paraffin-Embedded (FFPE) male breast cancer samples. Results and discussion: A total of 40 pathogenic variants were detected in 24 genes. All MBC cases harbored at least one pathogenic variant. PIK3CA was the most frequently mutated gene, with six (40.0%) MBCs harboring targetable PIK3CA alterations. CNVs analysis showed copy number gains in 22 genes. No copy number losses were found. Specifically, 13 (86.7%) MBCs showed gene copy number gains. MYC was the most frequently amplified gene with eight (53.3%) MBCs showing a median fold-changes value of 1.9 (range 1.8-3.8). A median TMB value of 4.3 (range 0.8-12.3) mut/Mb was observed, with two (13%) MBCs showing high-TMB. The median percentage of MSI was 2.4% (range 0-17.6%), with two (13%) MBCs showing high-MSI. Overall, these results indicate that NGS multigene panel sequencing can provide a comprehensive molecular tumor profiling in MBC. The identification of targetable molecular alterations in more than 70% of MBCs suggests that the NGS approach may allow for the selection of MBC patients eligible for precision/targeted therapy.

12.
J Dermatol ; 48(6): 786-793, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33511673

RESUMEN

There are increasing data about the role of the gut microbiome in various autoimmune diseases, including psoriasis, a chronic inflammatory and immune-mediated disease. Current treatment strategies in psoriasis include immunomodulating biologic agents. A variable response to this type of therapy has been reported in psoriatic patients. A possible effect of biologic therapy on the gut microbiome composition has been suggested, but data are still limited. The aim of this study was to compare the gut microbiome composition between psoriatic patients treated and untreated with biologic drugs in order to identify differences which may highlight the potential impact of the treatment on the gut microbiome. 16S rRNA sequencing and bioinformatic analyses were performed on the fecal samples of 30 psoriatic patients with similar clinicopathological features, 10 of whom were undergoing biologic therapy and 20 not receiving systemic therapy. Alpha and beta diversity significantly differed between the two groups of patients. A reduced bacterial biodiversity in the group of treated patients compared with the group of untreated patients was observed. Differential relative abundances of key gut microbial communities, including Akkermansia muciniphila and Bacteroides plebeius, were identified between the two groups of patients. This study showed that biologic therapy may have an impact on the composition of the gut microbiome of psoriatic patients. Gut microbiome composition could be used as an indicator of response to therapy and the modulation of the microbial composition could help to restore the intestinal symbiosis in psoriatic patients.


Asunto(s)
Microbioma Gastrointestinal , Bacteroides , Terapia Biológica , Humanos , ARN Ribosómico 16S/genética
13.
Cancers (Basel) ; 13(18)2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34572741

RESUMEN

Male breast cancer (MBC) is a rare and understudied disease compared with female BC. About 15% of MBCs are associated with germline mutation in BC susceptibility genes, mainly BRCA1/2 and PALB2. Hereditary MBCs are likely to represent a subgroup of tumors with a peculiar phenotype. Here, we performed a whole transcriptome analysis of MBCs characterized for germline mutations in the most relevant BC susceptibility genes in order to identify molecular subtypes with clinical relevance. A series of 63 MBCs, including 16 BRCA2, 6 BRCA1, 2 PALB2, 1 RAD50, and 1 RAD51D germline-mutated cases, was analyzed by RNA-sequencing. Differential expression and hierarchical clustering analyses were performed. Module signatures associated with central biological processes involved in breast cancer pathogenesis were also examined. Different transcriptome profiles for genes mainly involved in the cell cycle, DNA damage, and DNA repair pathways emerged between MBCs with and without germline mutations. Unsupervised clustering analysis revealed two distinct subgroups, one of which was characterized by a higher expression of immune response genes, high scores of gene-expression signatures suggestive of aggressive behavior, and worse overall survival. Our results suggest that transcriptome matched with germline profiling may be a valuable approach for the identification and characterization of MBC subtypes with possible relevance in the clinical setting.

14.
Aging Cell ; 20(10): e13439, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34535961

RESUMEN

Several biomarkers of healthy aging have been proposed in recent years, including the epigenetic clocks, based on DNA methylation (DNAm) measures, which are getting increasingly accurate in predicting the individual biological age. The recently developed "next-generation clock" DNAmGrimAge outperforms "first-generation clocks" in predicting longevity and the onset of many age-related pathological conditions and diseases. Additionally, the total number of stochastic epigenetic mutations (SEMs), also known as the epigenetic mutation load (EML), has been proposed as a complementary DNAm-based biomarker of healthy aging. A fundamental biological property of epigenetic, and in particular DNAm modifications, is the potential reversibility of the effect, raising questions about the possible slowdown of epigenetic aging by modifying one's lifestyle. Here, we investigated whether improved dietary habits and increased physical activity have favorable effects on aging biomarkers in healthy postmenopausal women. The study sample consists of 219 women from the "Diet, Physical Activity, and Mammography" (DAMA) study: a 24-month randomized factorial intervention trial with DNAm measured twice, at baseline and the end of the trial. Women who participated in the dietary intervention had a significant slowing of the DNAmGrimAge clock, whereas increasing physical activity led to a significant reduction of SEMs in crucial cancer-related pathways. Our study provides strong evidence of a causal association between lifestyle modification and slowing down of DNAm aging biomarkers. This randomized trial elucidates the causal relationship between lifestyle and healthy aging-related epigenetic mechanisms.


Asunto(s)
Envejecimiento/fisiología , Metilación de ADN/genética , Dietoterapia/métodos , Ejercicio Físico/fisiología , Femenino , Humanos , Masculino , Factores de Tiempo
15.
iScience ; 23(10): 101604, 2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33205017

RESUMEN

SMYD3 is frequently overexpressed in a wide variety of cancers. Indeed, its inactivation reduces tumor growth in preclinical in vivo animal models. However, extensive characterization in vitro failed to clarify SMYD3 function in cancer cells, although confirming its importance in carcinogenesis. Taking advantage of a SMYD3 mutant variant identified in a high-risk breast cancer family, here we show that SMYD3 phosphorylation by ATM enables the formation of a multiprotein complex including ATM, SMYD3, CHK2, and BRCA2, which is required for the final loading of RAD51 at DNA double-strand break sites and completion of homologous recombination (HR). Remarkably, SMYD3 pharmacological inhibition sensitizes HR-proficient cancer cells to PARP inhibitors, thereby extending the potential of the synthetic lethality approach in human tumors.

16.
Anticancer Res ; 39(8): 4085-4093, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31366492

RESUMEN

BACKGROUND/AIM: The identification of novel prognostic biomarkers for melanoma metastasis is essential to improve patient outcomes. To this aim, we characterized miRNA expression profiles in relation to metastasis in melanoma and correlated miRNAs expression with clinical-pathological factors. MATERIALS AND METHODS: MiR-145-5p, miR-150-5p, miR-182-5p, miR-203-3p, miR-205-5p and miR-211-5p expression levels were analyzed in primary cutaneous melanomas, including thin and thick melanomas, and in melanoma metastases by quantitative Real-Time PCR. RESULTS: A significantly lower miR-205-5p expression was found in metastases compared to primary melanomas. Furthermore, a progressive down-regulation of miR-205-5p expression was observed from loco-regional to distant metastasis. Significantly lower miR-145-5p and miR-203-3p expression levels were found in cases with Breslow thickness >1 mm, high Clark level, ulceration and mitotic rate ≥1/mm2 Conclusion: Our findings point to miR-205-5p as potential biomarker of distant metastases and to miR-145-5p and miR-203-3p as markers of aggressiveness in melanoma.


Asunto(s)
Melanoma/genética , MicroARNs/genética , Neoplasias Cutáneas/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Masculino , Melanoma/patología , Persona de Mediana Edad , Metástasis de la Neoplasia , Pronóstico , Neoplasias Cutáneas/patología , Melanoma Cutáneo Maligno
17.
PeerJ ; 7: e6661, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31065452

RESUMEN

BACKGROUND: Conventional methods used to identify BRCA1 and BRCA2 germline mutations in hereditary cancers, such as Sanger sequencing/multiplex ligation-dependent probe amplification (MLPA), are time-consuming and expensive, due to the large size of the genes. The recent introduction of next-generation sequencing (NGS) benchtop platforms offered a powerful alternative for mutation detection, dramatically improving the speed and the efficiency of DNA testing. Here we tested the performance of the Ion Torrent PGM platform with the Ion AmpliSeq BRCA1 and BRCA2 Panel in our clinical routine of breast/ovarian hereditary cancer syndrome assessment. METHODS: We first tested the NGS approach in a cohort of 11 patients (training set) who had previously undergone genetic diagnosis in our laboratory by conventional methods. Then, we applied the optimized pipeline to the consecutive cohort of 136 uncharacterized probands (validation set). RESULTS: By minimal adjustments in the analytical pipeline of Torrent Suite Software we obtained a 100% concordance with Sanger results regarding the identification of single nucleotide alterations, insertions, and deletions with the exception of three large genomic rearrangements (LGRs) contained in the training set. The optimized pipeline applied to the validation set (VS), identified pathogenic and polymorphic variants, including a novel BRCA2 pathogenic variant at exon 3, 100% of which were confirmed by Sanger in their correct zygosity status. To identify LGRs, all negative samples of the VS were subjected to MLPA analysis. DISCUSSION: Our experience strongly supports that the Ion Torrent PGM technology in BRCA1 and BRCA2 germline variant identification, combined with MLPA analysis, is highly sensitive, easy to use, faster, and cheaper than traditional (Sanger sequencing/MLPA) approaches.

18.
PeerJ ; 7: e7972, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31741787

RESUMEN

BACKGROUND: Genetic testing for BRCA1/2 germline mutations in hereditary breast/ovarian cancer patients requires screening for single nucleotide variants, small insertions/deletions and large genomic rearrangements (LGRs). These studies have long been run by Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA). The recent introduction of next-generation sequencing (NGS) platforms dramatically improved the speed and the efficiency of DNA testing for nucleotide variants, while the possibility to correctly detect LGRs by this mean is still debated. The purpose of this study was to establish whether and to which extent the development of an analytical algorithm could help us translating NGS sequencing via an Ion Torrent PGM platform into a tool suitable to identify LGRs in hereditary breast-ovarian cancer patients. METHODS: We first used NGS data of a group of three patients (training set), previously screened in our laboratory by conventional methods, to develop an algorithm for the calculation of the dosage quotient (DQ) to be compared with the Ion Reporter (IR) analysis. Then, we tested the optimized pipeline with a consecutive cohort of 85 uncharacterized probands (validation set) also subjected to MLPA analysis. Characterization of the breakpoints of three novel BRCA1 LGRs was obtained via long-range PCR and direct sequencing of the DNA products. RESULTS: In our cohort, the newly defined DQ-based algorithm detected 3/3 BRCA1 LGRs, demonstrating 100% sensitivity and 100% negative predictive value (NPV) (95% CI [87.6-99.9]) compared to 2/3 cases detected by IR (66.7% sensitivity and 98.2% NPV (95% CI [85.6-99.9])). Interestingly, DQ and IR shared 12 positive results, but exons deletion calls matched only in five cases, two of which confirmed by MLPA. The breakpoints of the 3 novel BRCA1 deletions, involving exons 16-17, 21-22 and 20, have been characterized. CONCLUSIONS: Our study defined a DQ-based algorithm to identify BRCA1 LGRs using NGS data. Whether confirmed on larger data sets, this tool could guide the selection of samples to be subjected to MLPA analysis, leading to significant savings in time and money.

19.
Endocr Connect ; 8(8): 1224-1229, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31336362

RESUMEN

Breast cancer in men is a rare and still poorly characterized disease. Inherited mutations in BRCA1, BRCA2 and PALB2 genes, as well as common polymorphisms, play a role in male breast cancer genetic predisposition. Male breast cancer is considered a hormone-dependent tumor specifically related to hyperestrogenism. Polymorphisms in genes involved in estrogen biosynthesis and metabolism pathways, such as CYP17A1 and CYP1B1, have been associated with breast cancer risk. Here, we aimed to investigate the role of CYP17A1 and CYP1B1 polymorphisms in male breast cancer risk. A series of 597 male breast cancer cases and 1022 male controls, recruited within the Italian Multicenter Study on male breast cancer, was genotyped for CYP17A1 rs743572, CYP1B1 rs1056836 and rs1800440 polymorphisms by allelic discrimination real-time PCR with TaqMan probes. Associations with male breast cancer risk were estimated using logistic regression. No statistically significant associations between male breast cancer risk and the three analyzed polymorphisms emerged. Similar results were obtained also when BRCA1/2 mutational status was considered. No significant differences in the distribution of the genotypes according to estrogen receptor status emerged. In conclusion, our study, based on a large series of male breast cancer cases, is likely to exclude a relevant role of CYP17A1 and CYP1B1 polymorphisms in male breast cancer predisposition. Overall, these results add new data to the increasing evidence that polymorphisms in these genes may not be associated with breast cancer risk.

20.
Cancers (Basel) ; 11(2)2019 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-30691222

RESUMEN

The response of metastatic colorectal cancer (mCRC) to the first-line conventional combination therapy is highly variable, reflecting the elevated heterogeneity of the disease. The genetic alterations underlying this heterogeneity have been thoroughly characterized through omic approaches requiring elevated efforts and costs. In order to translate the knowledge of CRC molecular heterogeneity into a practical clinical approach, we utilized a simplified Next Generation Sequencing (NGS) based platform to screen a cohort of 77 patients treated with first-line conventional therapy. Samples were sequenced using a panel of hotspots and targeted regions of 22 genes commonly involved in CRC. This revealed 51 patients carrying actionable gene mutations, 22 of which carried druggable alterations. These mutations were frequently associated with additional genetic alterations. To take into account this molecular complexity and assisted by an unbiased bioinformatic analysis, we defined three subgroups of patients carrying distinct molecular patterns. We demonstrated these three molecular subgroups are associated with a different response to first-line conventional combination therapies. The best outcome was achieved in patients exclusively carrying mutations on TP53 and/or RAS genes. By contrast, in patients carrying mutations in any of the other genes, alone or associated with mutations of TP53/RAS, the expected response is much worse compared to patients with exclusive TP53/RAS mutations. Additionally, our data indicate that the standard approach has limited efficacy in patients without any mutations in the genes included in the panel. In conclusion, we identified a reliable and easy-to-use approach for a simplified molecular-based stratification of mCRC patients that predicts the efficacy of the first-line conventional combination therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA