Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Small ; 16(24): e2000020, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32419389

RESUMEN

Transparent flexible energy storage devices are considered as important chains in the next-generation, which are able to store and supply energy for electronic devices. Here, aluminum-doped zinc oxide (AZO) nanorods (NRs) and nickel oxide (NiO)-coated AZO NRs on muscovites are fabricated by a radio frequency (RF) magnetron sputtering deposition method. Interestingly, AZO NRs and AZO/NiO NRs are excellent electrodes for energy storage application with high optical transparency, high conductivity, large surface area, stability under compressive and tensile strain down to a bending radius of 5 mm with 1000 bending cycles. The obtained symmetric solid-state supercapacitors based on these electrodes exhibit good performance with a large areal specific capacitance of 3.4 mF cm-2 , long cycle life 1000 times, robust mechanical properties, and high chemical stability. Furthermore, an AZO/NiO//Zn battery based on these electrodes is demonstrated, yielding a discharge capacity of 195 mAh g-1 at a current rate of 8 A g-1 and a discharge capacity of over 1000 cycles with coulombic efficiency to 92%. These results deliver a concept of opening a new opportunity for future applications in transparent flexible energy storage.

2.
PLoS Genet ; 9(12): e1003960, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24339785

RESUMEN

The second messengers cAMP and cGMP activate their target proteins by binding to a conserved cyclic nucleotide-binding domain (CNBD). Here, we identify and characterize an entirely novel CNBD-containing protein called CRIS (cyclic nucleotide receptor involved in sperm function) that is unrelated to any of the other members of this protein family. CRIS is exclusively expressed in sperm precursor cells. Cris-deficient male mice are either infertile due to a lack of sperm resulting from spermatogenic arrest, or subfertile due to impaired sperm motility. The motility defect is caused by altered Ca(2+) regulation of flagellar beat asymmetry, leading to a beating pattern that is reminiscent of sperm hyperactivation. Our results suggest that CRIS interacts during spermiogenesis with Ca(2+)-regulated proteins that--in mature sperm--are involved in flagellar bending.


Asunto(s)
Proteínas Portadoras/genética , AMP Cíclico/genética , Flagelos/genética , Unión Proteica/genética , Espermatogénesis/genética , Animales , Calcio/metabolismo , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Flagelos/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Ratones , Fosforilación , Transducción de Señal/genética , Motilidad Espermática/genética , Espermatozoides/metabolismo
3.
Biophys J ; 109(2): 277-86, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26200863

RESUMEN

The nuclear pore complex mediates nucleocytoplasmic transport of macromolecules in eukaryotic cells. Transport through the pore is restricted by a hydrophobic selectivity filter comprising disordered phenylalanine-glycine-rich repeats of nuclear pore proteins. Exchange through the pore requires specialized transport receptors, called exportins and importins, that interact with cargo proteins in a RanGTP-dependent manner. These receptors are highly flexible superhelical structures composed of HEAT-repeat motifs that adopt various degrees of extension in crystal structures. Here, we performed molecular-dynamics simulations using crystal structures of Importin-ß in its free form or in complex with nuclear localization signal peptides as the starting conformation. Our simulations predicted that initially compact structures would adopt extended conformations in hydrophilic buffers, while contracted conformations would dominate in more hydrophobic solutions, mimicking the environment of the nuclear pore. We confirmed this experimentally by Förster resonance energy transfer experiments using dual-fluorophore-labeled Importin-ß. These observations explain seemingly contradictory crystal structures and suggest a possible mechanism for cargo protection during passage of the nuclear pore. Such hydrophobic switching may be a general principle for environmental control of protein function.


Asunto(s)
beta Carioferinas/química , Transferencia Resonante de Energía de Fluorescencia , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular , Docilidad , Conformación Proteica , Soluciones , Solventes/química , Agua/química
4.
Biophys J ; 105(2): 455-62, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23870266

RESUMEN

Protein diffusion in lipid membranes is a key aspect of many cellular signaling processes. To quantitatively describe protein diffusion in membranes, several competing theoretical models have been proposed. Among these, the Saffman-Delbrück model is the most famous. This model predicts a logarithmic dependence of a protein's diffusion coefficient on its inverse hydrodynamic radius (D ∝ ln 1/R) for small radius values. For large radius values, it converges toward a D ∝ 1/R scaling. Recently, however, experimental data indicate a Stokes-Einstein-like behavior (D ∝ 1/R) of membrane protein diffusion at small protein radii. In this study, we investigate protein diffusion in black lipid membranes using dual-focus fluorescence correlation spectroscopy. This technique yields highly accurate diffusion coefficients for lipid and protein diffusion in membranes. We find that despite its simplicity, the Saffman-Delbrück model is able to describe protein diffusion extremely well and a Stokes-Einstein-like behavior can be ruled out.


Asunto(s)
Proteínas Bacterianas/metabolismo , Difusión , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/metabolismo , Péptidos/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Datos de Secuencia Molecular , Péptidos/química , Espectrometría de Fluorescencia
5.
Nat Cell Biol ; 8(10): 1149-54, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16964244

RESUMEN

Eggs attract sperm by chemical factors, a process called chemotaxis. Sperm from marine invertebrates use cGMP signalling to transduce incident chemoattractants into changes in the Ca2+ concentration in the flagellum, which control the swimming behaviour during chemotaxis. The signalling pathway downstream of the synthesis of cGMP by a guanylyl cyclase is ill-defined. In particular, the ion channels that are involved in Ca2+ influx and their mechanisms of gating are not known. Using rapid voltage-sensitive dyes and kinetic techniques, we record the voltage response that is evoked by the chemoattractant in sperm from the sea urchin Arbacia punctulata. We show that the chemoattractant evokes a brief hyperpolarization followed by a sustained depolarization. The hyperpolarization is caused by the opening of K+-selective cyclic-nucleotide-gated (CNG) channels in the flagellum. Ca2+ influx commences at the onset of recovery from hyperpolarization. The voltage threshold of Ca2+ entry indicates the involvement of low-voltage-activated Ca(v) channels. These results establish a model of chemosensory transduction in sperm whereby a cGMP-induced hyperpolarization opens Ca(v) channels by a 'recovery-from-inactivation' mechanism and unveil an evolutionary kinship between transduction mechanisms in sperm and photoreceptors.


Asunto(s)
Señalización del Calcio/fisiología , GMP Cíclico/metabolismo , Activación del Canal Iónico , Canales Iónicos , Potasio/metabolismo , Transducción de Señal , Espermatozoides/metabolismo , Animales , Arbacia/química , Calcio/metabolismo , Quimiotaxis , Guanilato Ciclasa/metabolismo , Masculino
6.
Heliyon ; 9(10): e20902, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37867872

RESUMEN

The design of fully braced excavation of underground works, whether in rural or urban areas, is important to ensure that the design of fully braced support is safe, particularly in determining the depth of excavation and inserting the length into the clay of the wall, as well as a proportional excavation width. This study investigates the undrained basal stability of fully braced excavation in anisotropic clays with linearly increasing shear strength with depth employing upper and lower bound finite element limit analysis under symmetry plane conditions based on the AUS failure criterion. The dimensionless variables were used to examine the stability number (N) and the failure mechanisms selected for this problem's practical analysis. There is an anisotropic strength ratio (re), depth-wide ratio (B/H), embedded wall depth ratio (D/H), and strength gradient factor (ρH/Suc0). This study proposes design charts and failure mechanisms for fully braced excavations based on finite element limit analysis. Moreover, the artificial neural network model (ANN) was used to establish the relationship between the investigated and output variables and to conduct sensitivity analysis. Therefore, the developed ANN formula is a pragmatic approach for geotechnical engineers to calculate the basal stability of the excavations.

7.
Front Pharmacol ; 13: 948283, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36003505

RESUMEN

Identifying the right accessories for installing the dental implant is a vital element that impacts the sustainability and the reliability of the dental prosthesis when the medical case of a patient is not comprehensive. Dentists need to identify the implant manufacturer from the x-ray image to determine further treatment procedures. Identifying the manufacturer is a high-pressure task under the scaling volume of patients pending in the queue for treatment. To reduce the burden on the doctors, a dental implant identification system is built based on a new proposed thinner VGG model with an on-demand client-server structure. We propose a thinner version of VGG16 called TVGG by reducing the number of neurons in the dense layers to improve the system's performance and gain advantages from the limited texture and patterns in the dental radiography images. The outcome of the proposed system is compared with the original pre-trained VGG16 to verify the usability of the proposed system.

8.
ACS Omega ; 7(12): 10115-10126, 2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35382300

RESUMEN

The aim of this study is to prepare a two-dimensional (2D) WO3·H2O nanostructure assembly into a flower shape with good chemical stability for electrochemical studies of catalyst and energy storage applications. The 2D-WO3·H2O nanoflowers structure is created by a fast and simple process at room condition. This cost-effective and scalable technique to obtain 2D-WO3·H2O nanoflowers illustrates two attractive applications of electrochemical capacitor with an excellent energy density value of 25.33 W h kg-1 for high power density value of 1600 W kg-1 and good hydrogen evolution reaction results (low overpotential of 290 mV at a current density of 10 mA cm-2 with a low Tafel slope of 131 mV dec-1). A hydrogen evolution reaction (HER) study of WO3 in acidic media of 0.5 M H2SO4 and electrochemical capacitor (supercapacitors) in 1 M Na2SO4 aqueous electrolyte (three electrode system measurements) demonstrates highly desirable characteristics for practical applications. Our design for highly uniform 2D-WO3·H2O as catalyst material for HER and active material for electrochemical capacitor studies offers an excellent foundation for design and improvement of electrochemical catalyst based on 2D-transition metal oxide materials.

9.
RSC Adv ; 12(3): 1515-1526, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35425167

RESUMEN

Kitchen sea salt or table salt is used every day by cooks as a food seasoning. Here, it is introduced into a gel polymer (poly(vinyl) alcohol (PVA)-table salt) for use as an electrolyte, and an electrode was constructed from graphene nanosheets for use as symmetrical solid-state supercapacitors. The graphene sheets are prepared by a pulse control plasma method and used as an electrode material, and were studied by X-ray diffraction (XRD), Raman spectroscopy, as well as scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). A specific capacitance of 117.6 F g-1 at 5 mV s-1 was obtained in a three electrode system with table sea salt as an aqueous electrolyte. For a symmetrical solid-state supercapacitor: graphene/PVA-table sea salt/graphene gave a good specific capacitance of 31.67 F g-1 at 0.25 A g-1 with an energy density of 6.33 W h kg-1 at a power density of 600 W kg-1, with good charge-discharge stability, which was 87% after 8000 cycles. Thus, the development of table sea salt as an environmentally friendly electrolyte has a good potential for use in energy storage applications.

10.
RSC Adv ; 12(17): 10608-10618, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35425023

RESUMEN

In this study, we provide a simple and green approach to recycle waste zinc carbon batteries for making carbon dots and porous carbon material. The carbon dots are easily synthesized by one green step, the hydrothermal treatment of a carbon rod in a mixture of DI water and pure ethanol to obtain a blue fluorescence under UV light, which can be used directly as a fluorescence ink. The as-prepared carbon dot process give typical dots with a uniform diameter from 3 to 8 nm with a strong slight blue fluorescent. The porous carbon material is also recycled from carbon powder in a waste battery via one green step annealing process without any chemical activation and with a hierarchically porous structure. This porous carbon material is demonstrated as an electrode for symmetrical solid state supercapacitors (SSCs) in a sandwich structure: porous carbon/PVA-KOH/porous carbon. The SSCs using recycled porous carbon electrodes exhibit a good energy density of 4.58 W h kg-1 at a power density of 375 W kg-1 and 97.6% retention after 2000 cycles. The facile one green step of hydrothermal and also that of calcination provide a promising strategy to recycle waste zinc carbon batteries, which transfers the excellent applications.

11.
ACS Omega ; 7(29): 25433-25442, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35910106

RESUMEN

Herein, for the first time, we present two-dimensional (2D) NH4V3O8 nanoflakes as an excellent material for both energy conversion of the hydrogen evolution reaction and storage of supercapacitors by a simple and fast two-step synthesis, which exhibit a completely sheet-like morphology, high crystallinity, good specific surface area, and also stability, as determined by thermogravimetric analysis. The 2D-NH4V3O8 flakes show an acceptable hydrogen evolution performance in 0.5 M H2SO4 on a glassy carbon electrode (GCE) coated with 2D-NH4V3O8, which results in a low overpotential of 314 mV at -10 mA cm-2 with an excellent Tafel slope as low as 90 mV dec-1. So far, with the main focus on energy storage, 2D-NH4V3O8 nanoflakes were found to be ideal for supercapacitor electrodes. The NH4V3O8 working electrode in 1 M Na2SO4 shows an excellent electrochemical capability of 274 F g-1 at 0.5 A g-1 for a maximum energy density of 38 W h kg-1 at a power density as high as 250 W kg-1. Moreover, the crystal structure of 2D-NH4V3O8 is demonstrated by density functional theory (DFT) computational simulation using three functionals, GGA, GGA + U, and HSE06. The simple preparation, low cost, and abundance of the NH4V3O8 material provide a promising candidate for not only energy conversion but also energy-storage applications.

12.
PLoS One ; 17(2): e0262402, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35139095

RESUMEN

In many parts of the world, conditions for small scale agriculture are worsening, creating challenges in achieving consistent yields. The use of automated decision support tools, such as Bayesian Belief Networks (BBNs), can assist producers to respond to these factors. This paper describes a decision support system developed to assist farmers on the Mekong Delta, Vietnam, who grow both rice and shrimp crops in the same pond, based on an existing BBN. The BBN was previously developed in collaboration with local farmers and extension officers to represent their collective perceptions and understanding of their farming system and the risks to production that they face. This BBN can be used to provide insight into the probable consequences of farming decisions, given prevailing environmental conditions, however, it does not provide direct guidance on the optimal decision given those decisions. In this paper, the BBN is analysed using a novel, temporally-inspired data mining approach to systematically determine the agricultural decisions that farmers perceive as optimal at distinct periods in the growing and harvesting cycle, given the prevailing agricultural conditions. Using a novel form of data mining that combines with visual analytics, the results of this analysis allow the farmer to input the environmental conditions in a given growing period. They then receive recommendations that represent the collective view of the expert knowledge encoded in the BBN allowing them to maximise the probability of successful crops. Encoding the results of the data mining/inspection approach into the mobile Decision Support System helps farmers access explicit recommendations from the collective local farming community as to the optimal farming decisions, given the prevailing environmental conditions.


Asunto(s)
Teorema de Bayes
13.
J Gen Physiol ; 124(2): 115-24, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15277573

RESUMEN

Chemotaxis of sperm is an important step toward fertilization. During chemotaxis, sperm change their swimming behavior in a gradient of the chemoattractant that is released by the eggs, and finally sperm accumulate near the eggs. A well established model to study chemotaxis is the sea urchin Arbacia punctulata. Resact, the chemoattractant of Arbacia, is a peptide that binds to a receptor guanylyl cyclase. The signaling pathway underlying chemotaxis is still poorly understood. Stimulation of sperm with resact induces a variety of cellular events, including a rise in intracellular pH (pHi) and an influx of Ca2+; the Ca2+ entry is essential for the chemotactic behavior. Previous studies proposed that the influx of Ca2+ is initiated by the rise in pHi. According to this proposal, a cGMP-induced hyperpolarization activates a voltage-dependent Na+/H+ exchanger that expels H+ from the cell. Because some aspects of the proposed signaling pathway are inconsistent with recent results (Kaupp, U.B., J. Solzin, J.E. Brown, A. Helbig, V. Hagen, M. Beyermann, E. Hildebrand, and I. Weyand. 2003. Nat. Cell Biol. 5:109-117), we reexamined the role of protons in chemotaxis of sperm using kinetic measurements of the changes in pHi and intracellular Ca2+ concentration. We show that for physiological concentrations of resact (<25 pM), the influx of Ca2+ precedes the rise in pHi. Moreover, buffering of pHi completely abolishes the resact-induced pHi signal, but leaves the Ca2+ signal and the chemotactic motor response unaffected. We conclude that an elevation of pHi is required neither to open Ca(2+)-permeable channels nor to control the chemotactic behavior. Intracellular release of cGMP from a caged compound does not cause an increase in pHi, indicating that the rise in pHi is induced by cellular events unrelated to cGMP itself, but probably triggered by the consumption and subsequent replenishment of GTP. These results show that the resact-induced rise in pHi is not an obligatory step in sperm chemotactic signaling. A rise in pHi is also not required for peptide-induced Ca2+ entry into sperm of the sea urchin Strongylocentrotus purpuratus. Speract, a peptide of S. purpuratus may act as a chemoattractant as well or may serve functions other than chemotaxis.


Asunto(s)
Señalización del Calcio/fisiología , Quimiotaxis/fisiología , Protones , Espermatozoides/fisiología , Animales , Arbacia , Concentración de Iones de Hidrógeno , Masculino , Erizos de Mar , Strongylocentrotus purpuratus
14.
J Cell Biol ; 206(4): 541-57, 2014 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-25135936

RESUMEN

Guanylyl cyclases (GCs), which synthesize the messenger cyclic guanosine 3',5'-monophosphate, control several sensory functions, such as phototransduction, chemosensation, and thermosensation, in many species from worms to mammals. The GC chemoreceptor in sea urchin sperm can decode chemoattractant concentrations with single-molecule sensitivity. The molecular and cellular underpinnings of such ultrasensitivity are not known for any eukaryotic chemoreceptor. In this paper, we show that an exquisitely high density of 3 × 10(5) GC chemoreceptors and subnanomolar ligand affinity provide a high ligand-capture efficacy and render sperm perfect absorbers. The GC activity is terminated within 150 ms by dephosphorylation steps of the receptor, which provides a means for precise control of the GC lifetime and which reduces "molecule noise." Compared with other ultrasensitive sensory systems, the 10-fold signal amplification by the GC receptor is surprisingly low. The hallmarks of this signaling mechanism provide a blueprint for chemical sensing in small compartments, such as olfactory cilia, insect antennae, or even synaptic boutons.


Asunto(s)
Arbacia/metabolismo , GMP Cíclico/biosíntesis , Guanilato Ciclasa/metabolismo , Receptores Acoplados a la Guanilato-Ciclasa/metabolismo , Espermatozoides/metabolismo , Animales , Células Quimiorreceptoras/metabolismo , Factores Quimiotácticos/fisiología , Células HEK293 , Humanos , Masculino , Fosforilación , Unión Proteica , Transducción de Señal
15.
EMBO J ; 24(15): 2741-52, 2005 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-16001082

RESUMEN

The events that occur during chemotaxis of sperm are only partly known. As an essential step toward determining the underlying mechanism, we have recorded Ca2+ dynamics in swimming sperm of marine invertebrates. Stimulation of the sea urchin Arbacia punctulata by the chemoattractant or by intracellular cGMP evokes Ca2+ spikes in the flagellum. A Ca2+ spike elicits a turn in the trajectory followed by a period of straight swimming ('turn-and-run'). The train of Ca2+ spikes gives rise to repetitive loop-like movements. When sperm swim in a concentration gradient of the attractant, the Ca2+ spikes and the stimulus function are synchronized, suggesting that precise timing of Ca2+ spikes controls navigation. We identified the peptide asterosap as a chemotactic factor of the starfish Asterias amurensis. The Ca2+ spikes and swimming behavior of sperm from starfish and sea urchin are similar, implying that the signaling pathway of chemotaxis has been conserved for almost 500 million years.


Asunto(s)
Calcio/fisiología , Quimiotaxis/fisiología , Flagelos/fisiología , Espermatozoides/citología , Espermatozoides/fisiología , Animales , Arbacia/citología , Arbacia/fisiología , Asterias/citología , Asterias/fisiología , GMP Cíclico/metabolismo , Masculino , Péptidos/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA