Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nature ; 630(8017): 728-735, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38778101

RESUMEN

Haematopoietic stem cell (HSC) transplantation (HSCT) is the only curative treatment for a broad range of haematological malignancies, but the standard of care relies on untargeted chemotherapies and limited possibilities to treat malignant cells after HSCT without affecting the transplanted healthy cells1. Antigen-specific cell-depleting therapies hold the promise of much more targeted elimination of diseased cells, as witnessed in the past decade by the revolution of clinical practice for B cell malignancies2. However, target selection is complex and limited to antigens expressed on subsets of haematopoietic cells, resulting in a fragmented therapy landscape with high development costs2-5. Here we demonstrate that an antibody-drug conjugate (ADC) targeting the pan-haematopoietic marker CD45 enables the antigen-specific depletion of the entire haematopoietic system, including HSCs. Pairing this ADC with the transplantation of human HSCs engineered to be shielded from the CD45-targeting ADC enables the selective eradication of leukaemic cells with preserved haematopoiesis. The combination of CD45-targeting ADCs and engineered HSCs creates an almost universal strategy to replace a diseased haematopoietic system, irrespective of disease aetiology or originating cell type. We propose that this approach could have broad implications beyond haematological malignancies.


Asunto(s)
Neoplasias Hematológicas , Hematopoyesis , Inmunoconjugados , Antígenos Comunes de Leucocito , Animales , Femenino , Humanos , Masculino , Ratones , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/inmunología , Hematopoyesis/efectos de los fármacos , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Antígenos Comunes de Leucocito/inmunología , Antígenos Comunes de Leucocito/metabolismo , Línea Celular Tumoral , Especificidad de Anticuerpos
2.
Mol Ther ; 32(6): 1672-1686, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38549377

RESUMEN

Stem cell gene therapy and hematopoietic stem cell transplantation (SCT) require conditioning to ablate the recipient's hematopoietic stem cells (HSCs) and create a niche for gene-corrected/donor HSCs. Conventional conditioning agents are non-specific, leading to off-target toxicities and resulting in significant morbidity and mortality. We developed tissue-specific anti-human CD45 antibody-drug conjugates (ADCs), using rat IgG2b anti-human CD45 antibody clones YTH24.5 and YTH54.12, conjugated to cytotoxic pyrrolobenzodiazepine (PBD) dimer payloads with cleavable (SG3249) or non-cleavable (SG3376) linkers. In vitro, these ADCs internalized to lysosomes for drug release, resulting in potent and specific killing of human CD45+ cells. In humanized NSG mice, the ADCs completely ablated human HSCs without toxicity to non-hematopoietic tissues, enabling successful engraftment of gene-modified autologous and allogeneic human HSCs. The ADCs also delayed leukemia onset and improved survival in CD45+ tumor models. These data provide proof of concept that conditioning with anti-human CD45-PBD ADCs allows engraftment of donor/gene-corrected HSCs with minimal toxicity to non-hematopoietic tissues. Our anti-CD45-PBDs or similar agents could potentially shift the paradigm in transplantation medicine that intensive chemo/radiotherapy is required for HSC engraftment after gene therapy and allogeneic SCT. Targeted conditioning both improve the safety and minimize late effects of these procedures, which would greatly increase their applicability.


Asunto(s)
Benzodiazepinas , Terapia Genética , Trasplante de Células Madre Hematopoyéticas , Inmunoconjugados , Antígenos Comunes de Leucocito , Animales , Humanos , Ratones , Inmunoconjugados/farmacología , Antígenos Comunes de Leucocito/metabolismo , Terapia Genética/métodos , Trasplante de Células Madre Hematopoyéticas/métodos , Benzodiazepinas/farmacología , Benzodiazepinas/química , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/efectos de los fármacos , Ratas , Acondicionamiento Pretrasplante/métodos , Modelos Animales de Enfermedad , Anticuerpos Monoclonales/farmacología , Pirroles
3.
Haematologica ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38721745

RESUMEN

Antibody-drug conjugates (ADCs) represent one of the most successful therapeutic approaches introduced in clinical practice in the last few years. Loncastuximab tesirine (ADCT-402) is a CD19 targeting ADC, in which the antibody is conjugated through a protease cleavable dipeptide linker to a pyrrolobenzodiazepine (PBD) dimer warhead (SG3199). Based on the results of a phase 2 study, loncastuximab tesirine was recently approved for adult patients with relapsed/refractory large B-cell lymphoma. We assessed the activity of loncastuximab tesirine using in vitro and in vivo models of lymphomas, correlated its activity with CD19 expression levels, and identified combination partners providing synergy with loncastuximab tesirine. Loncastuximab tesirine was tested across 60 lymphoma cell lines. Loncastuximab tesirine had strong cytotoxic activity in B-cell lymphoma cell lines. The in vitro activity was correlated with CD19 expression level and intrinsic sensitivity of cell lines to the ADC's warhead. Loncastuximab tesirine was more potent than other anti-CD19 ADCs (coltuximab ravtansine, huB4-DGN462), albeit the pattern of activity across cell lines was correlated. Loncastuximab tesirine activity was also largely correlated with cell line sensitivity to R-CHOP. Combinatorial in vitro and in vivo experiments identified the benefit of adding loncastuximab tesirine to other agents, especially BCL2 and PI3K inhibitors. Our data support the further development of loncastuximab tesirine as a single agent and in combination for patients affected by mature B-cell neoplasms. The results also highlight the importance of CD19 expression and the existence of lymphoma populations characterized by resistance to multiple therapies.

4.
Pancreatology ; 24(3): 445-455, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38519394

RESUMEN

Previously we reported that a novel αvß6-specific peptide-drug conjugate (SG3299) could eliminate established human pancreatic ductal adenocarcinoma (PDAC) xenografts. However the development of effective therapies for PDAC, which is an essential need, must show efficacy in relevant immunocompetent animals. Previously we reported that the KPC mouse transgenic PDAC model that closely recapitulates most stages of development of human PDAC, unlike in humans, failed to express αvß6 on their tumours or metastases. In this study we have taken the KPC-derived PDAC line TB32043 and engineered a variant line (TB32043mb6S2) that expresses mouse integrin αvß6. We report that orthotopic implantation of the αvß6 over-expressing TB32043mb6S2 cells promotes shorter overall survival and increase in metastases. Moreover, systemic treatment of mice with established TB32043mb6S2 tumours in the pancreas with SG2399 lived significantly longer (p < 0.001; mean OS 48d) compared with PBS or control SG3511 (mean OS 25.5d and 26d, respectively). Thus SG3299 is confirmed as a promising candidate therapeutic for the therapy of PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Ratones , Animales , Línea Celular Tumoral , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Integrinas/uso terapéutico , Péptidos/uso terapéutico , Antígenos de Neoplasias
5.
Blood ; 131(10): 1094-1105, 2018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29298756

RESUMEN

Human CD19 antigen is a 95-kDa type I membrane glycoprotein in the immunoglobulin superfamily whose expression is limited to the various stages of B-cell development and differentiation and is maintained in the majority of B-cell malignancies, including leukemias and non-Hodgkin lymphomas of B-cell origin. Coupled with its differential and favorable expression profile, CD19 has rapid internalization kinetics and is not shed into the circulation, making it an ideal target for the development of antibody-drug conjugates (ADCs) to treat B-cell malignancies. ADCT-402 (loncastuximab tesirine) is a novel CD19-targeted ADC delivering SG3199, a highly cytotoxic DNA minor groove interstrand crosslinking pyrrolobenzodiazepine (PDB) dimer warhead. It showed potent and highly targeted in vitro cytotoxicity in CD19-expressing human cell lines. ADCT-402 was specifically bound, internalized, and trafficked to lysosomes in CD19-expressing cells and, following release of the PBD warhead, resulted in formation of DNA crosslinks that persisted for 36 hours. Bystander killing of CD19- cells by ADCT-402 was also observed. In vivo, single doses of ADCT-402 resulted in highly potent, dose-dependent antitumor activity in several subcutaneous and disseminated human tumor models with marked superiority to comparator ADCs delivering tubulin inhibitors. Dose-dependent DNA crosslinks and γ-H2AX DNA damage response were measured in tumors by 24 hours after single dose administration, whereas matched peripheral blood mononuclear cells showed no evidence of DNA damage. Pharmacokinetic analysis in rat and cynomolgus monkey showed excellent stability and tolerability of ADCT-402 in vivo. Together, these impressive data were used to support the clinical testing of this novel ADC in patients with CD19-expressing B-cell malignancies.


Asunto(s)
Antígenos CD19/biosíntesis , Antineoplásicos , Regulación Leucémica de la Expresión Génica , Inmunoconjugados , Leucemia de Células B , Linfoma no Hodgkin , Proteínas de Neoplasias/biosíntesis , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Humanos , Inmunoconjugados/farmacocinética , Inmunoconjugados/farmacología , Leucemia de Células B/tratamiento farmacológico , Leucemia de Células B/metabolismo , Leucemia de Células B/patología , Linfoma no Hodgkin/tratamiento farmacológico , Linfoma no Hodgkin/metabolismo , Linfoma no Hodgkin/patología , Lisosomas/metabolismo , Lisosomas/patología
6.
Proc Natl Acad Sci U S A ; 110(13): 5145-50, 2013 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-23479652

RESUMEN

The promise of bispecific antibodies (bsAbs) to yield more effective therapeutics is well recognized; however, the generation of bsAbs in a practical and cost-effective manner has been a formidable challenge. Here we present a technology for the efficient generation of bsAbs with normal IgG structures that is amenable to both antibody drug discovery and development. The process involves separate expression of two parental antibodies, each containing single matched point mutations in the CH3 domains. The parental antibodies are mixed and subjected to controlled reducing conditions in vitro that separate the antibodies into HL half-molecules and allow reassembly and reoxidation to form highly pure bsAbs. The technology is compatible with standard large-scale antibody manufacturing and ensures bsAbs with Fc-mediated effector functions and in vivo stability typical of IgG1 antibodies. Proof-of-concept studies with HER2×CD3 (T-cell recruitment) and HER2×HER2 (dual epitope targeting) bsAbs demonstrate superior in vivo activity compared with parental antibody pairs.


Asunto(s)
Anticuerpos Biespecíficos/biosíntesis , Fragmentos Fab de Inmunoglobulinas/biosíntesis , Fragmentos Fc de Inmunoglobulinas/biosíntesis , Inmunoglobulina G/biosíntesis , Animales , Anticuerpos Biespecíficos/química , Anticuerpos Biespecíficos/genética , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/genética , Fragmentos Fc de Inmunoglobulinas/química , Fragmentos Fc de Inmunoglobulinas/genética , Inmunoglobulina G/química , Inmunoglobulina G/genética , Células Jurkat , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
7.
bioRxiv ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39005383

RESUMEN

Background: Neuroblastoma is a heterogeneous disease with adrenergic (ADRN)- and therapy resistant mesenchymal (MES)-like cells driven by distinct transcription factor networks. Here, we investigate the expression of immunotherapeutic targets in each neuroblastoma subtype and propose pan-neuroblastoma and cell state specific targetable cell-surface proteins. Methods: We characterized cell lines, patient-derived xenografts, and patient samples as ADRN-dominant or MES- dominant to define subtype-specific and pan-neuroblastoma gene sets. Targets were validated with ChIP- sequencing, immunoblotting, and flow cytometry in neuroblastoma cell lines and isogenic ADRN-to-MES transition cell line models. Finally, we evaluated the activity of MES-specific agents in vivo and in vitro . Results: Most immunotherapeutic targets being developed for neuroblastoma showed significantly higher expression in the ADRN subtype with limited expression in MES-like tumor cells. In contrast, CD276 (B7-H3) and L1CAM maintained expression across both ADRN and MES states. We identified several receptor tyrosine kinases (RTKs) enriched in MES-dominant samples and showed that AXL targeting with ADCT-601 was potently cytotoxic in MES-dominant cell lines and showed specific anti-tumor activity in a MES cell line-derived xenograft. Conclusions: Immunotherapeutic strategies for neuroblastoma must address the potential of epigenetic downregulation of antigen density as a mechanism for immune evasion. We identified several RTKs as candidate MES-specific immunotherapeutic target proteins for the elimination of therapy-resistant cells. We hypothesize that the phenomena of immune escape will be less likely when targeting pan-neuroblastoma cell surface proteins such as B7-H3 and L1CAM, and/or dual targeting strategies that consider both the ADRN- and MES-cell states. Key Points: Cellular plasticity influences the abundance of immunotherapeutic targets.Subtype-specific targets may be susceptible to epigenetically-mediated downregulation.Immunotherapeutic targets in development, B7-H3 and L1CAM, show "pan-subtype" expression. Importance of Study: Neuroblastoma is a lethal childhood malignancy that shows cellular plasticity in response to anti-cancer therapies. Several plasma membrane proteins are being developed as immunotherapeutic targets in this disease. Here we define which cell surface proteins are susceptible to epigenetically regulated downregulation during an adrenergic to mesenchymal cell state switch and propose immunotherapeutic strategies to anticipate and circumvent acquired immunotherapeutic resistance.

8.
Mol Cancer Ther ; 23(4): 520-531, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38324336

RESUMEN

Relapsed or refractory B-cell acute lymphoblastic leukemia (R/R B-ALL) and lymphomas have poor patient outcomes; novel therapies are needed. CD22 is an attractive target for antibody-drug conjugates (ADCs), being highly expressed in R/R B-ALL with rapid internalization kinetics. ADCT-602 is a novel CD22-targeting ADC, consisting of humanized mAb hLL2-C220, site specifically conjugated to the pyrrolobenzodiazepine dimer-based payload tesirine. In preclinical studies, ADCT-602 demonstrated potent, specific cytotoxicity in CD22-positive lymphomas and leukemias. ADCT-602 was specifically bound, internalized, and trafficked to lysosomes in CD22-positive tumor cells; after cytotoxin release, DNA interstrand crosslink formation persisted for 48 hours. In the presence of CD22-positive tumor cells, ADCT-602 caused bystander killing of CD22-negative tumor cells. A single ADCT-602 dose led to potent, dose-dependent, in vivo antitumor activity in subcutaneous and disseminated human lymphoma/leukemia models. Pharmacokinetic analyses (rat and cynomolgus monkey) showed excellent stability and tolerability of ADCT-602. Cynomolgus monkey B cells were efficiently depleted from circulation after one dose. Gene signature association analysis revealed IRAK1 as a potential marker for ADCT-602 resistance. Combining ADCT-602 + pacritinib was beneficial in ADCT-602-resistant cells. Chidamide increased CD22 expression on B-cell tumor surfaces, increasing ADCT-602 activity. These data support clinical testing of ADCT-602 in R/R B-ALL (NCT03698552) and CD22-positive hematologic cancers.


Asunto(s)
Antineoplásicos , Neoplasias Hematológicas , Inmunoconjugados , Linfoma de Células B , Humanos , Ratas , Animales , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Macaca fascicularis , Antineoplásicos/uso terapéutico , Linfoma de Células B/tratamiento farmacológico , Neoplasias Hematológicas/tratamiento farmacológico , Lectina 2 Similar a Ig de Unión al Ácido Siálico
9.
bioRxiv ; 2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38106022

RESUMEN

Cancer immunotherapies have produced remarkable results in B-cell malignancies; however, optimal cell surface targets for many solid cancers remain elusive. Here, we present an integrative proteomic, transcriptomic, and epigenomic analysis of tumor specimens along with normal tissues to identify biologically relevant cell surface proteins that can serve as immunotherapeutic targets for neuroblastoma, an often-fatal childhood cancer of the developing nervous system. We apply this approach to human-derived cell lines (N=9) and cell/patient-derived xenograft (N=12) models of neuroblastoma. Plasma membrane-enriched mass spectrometry identified 1,461 cell surface proteins in cell lines and 1,401 in xenograft models, respectively. Additional proteogenomic analyses revealed 60 high-confidence candidate immunotherapeutic targets and we prioritized Delta-like canonical notch ligand 1 (DLK1) for further study. High expression of DLK1 directly correlated with the presence of a super-enhancer spanning the DLK1 locus. Robust cell surface expression of DLK1 was validated by immunofluorescence, flow cytometry, and immunohistochemistry. Short hairpin RNA mediated silencing of DLK1 in neuroblastoma cells resulted in increased cellular differentiation. ADCT-701, a DLK1-targeting antibody-drug conjugate (ADC), showed potent and specific cytotoxicity in DLK1-expressing neuroblastoma xenograft models. Moreover, DLK1 is highly expressed in several adult cancer types, including adrenocortical carcinoma (ACC), pheochromocytoma/paraganglioma (PCPG), hepatoblastoma, and small cell lung cancer (SCLC), suggesting potential clinical benefit beyond neuroblastoma. Taken together, our study demonstrates the utility of comprehensive cancer surfaceome characterization and credentials DLK1 as an immunotherapeutic target. Highlights: Plasma membrane enriched proteomics defines surfaceome of neuroblastomaMulti-omic data integration prioritizes DLK1 as a candidate immunotherapeutic target in neuroblastoma and other cancersDLK1 expression is driven by a super-enhancer DLK1 silencing in neuroblastoma cells results in cellular differentiation ADCT-701, a DLK1-targeting antibody-drug conjugate, shows potent and specific cytotoxicity in DLK1-expressing neuroblastoma preclinical models.

10.
Anal Biochem ; 423(1): 153-62, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22330744

RESUMEN

The characterization of the repertoire of glycans at the quantitative and qualitative levels on cells and glycoproteins is a necessary step to the understanding of glycan functions in biology. In addition, there is an increasing demand in the field of biotechnology for the monitoring of glycosylation of recombinant glycoproteins, an important issue with regard to their safety and biological activity. The enzymatic release followed by fluorescent derivatization of glycans and separation by normal phase high-performance liquid chromatography (HPLC) has proven for many years to be a powerful approach to the quantification of glycans. Characterization of glycans has classically been performed by mass spectrometry (MS) with external standardization. Here, we report a new method for the simultaneous quantification and characterization of the N-glycans on glycoproteins without the need for external standardization. This method, which we call glycan nanoprofiling, uses nanoLC-coupled electrospray ionization (ESI)-MS with an intercalated nanofluorescence reader and provides effective single glycan separation with subpicomolar sensitivity. The method relies on the isolation and coumaric derivatization of enzymatically released glycans collected by solid phase extraction with porous graphitized carbon and their separation over polyamide-based nanoHPLC prior to serial nanofluorescence and nanoelectrospray mass spectrometric analysis. Glycan nanoprofiling is a broadly applicable and powerful approach that is sufficient to identify and quantify many glycan oligomers in a single run. Glycan nanoprofiling was successfully applied to resolve the glycans of monoclonal antibodies, showing that this method is a fast and sensitive alternative to available methods.


Asunto(s)
Técnicas de Química Analítica/métodos , Cromatografía Líquida de Alta Presión , Colorantes Fluorescentes/química , Polisacáridos/análisis , Espectrometría de Masa por Ionización de Electrospray , Anticuerpos Monoclonales/inmunología , Cumarinas/química , Glicoproteínas/metabolismo , Glicosilación , Nanotecnología , Polisacáridos/inmunología , Polisacáridos/aislamiento & purificación , Extracción en Fase Sólida
11.
J Immunol ; 184(1): 512-20, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19949082

RESUMEN

Ab-dependent cellular cytotoxicity (ADCC) is usually considered an important mechanism of action for immunotherapy with human IgG1 but not IgG2 Abs. The epidermal growth factor receptor (EGF-R) Ab panitumumab represents the only human IgG2 Ab approved for immunotherapy and inhibition of EGF-R signaling has been described as its principal mechanism of action. In this study, we investigated effector mechanisms of panitumumab compared with zalutumumab, an EGF-R Ab of the human IgG1 isotype. Notably, panitumumab was as effective as zalutumumab in recruiting ADCC by myeloid effector cells (i.e., neutrophils and monocytes) in contrast to NK cell-mediated ADCC, which was only induced by the IgG1 Ab. Neutrophil-mediated tumor cell killing could be stimulated by myeloid growth factors and was triggered via FcgammaRIIa. Panitumumab-mediated ADCC was significantly affected by the functional FcgammaRIIa-R131H polymorphism and was induced more effectively by neutrophils from FcgammaRIIa-131H homozygous donors than from -131R individuals. This polymorphism did not affect neutrophil ADCC induced by the IgG1 Ab zalutumumab. The in vivo activity of both Abs was assessed in two animal models: a high-dose model, in which signaling inhibition is a dominant mechanism of action, and a low-dose model, in which effector cell recruitment plays a prominent role. Zalutumumab was more effective than panitumumab in the high-dose model, reflecting its stronger ability to induce EGF-R downmodulation and growth inhibition. In the low-dose model, zalutumumab and panitumumab similarly prevented tumor growth. Thus, our results identify myeloid cell-mediated ADCC as a potent and additional mechanism of action for EGF-R-directed immunotherapy.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Receptores ErbB/inmunología , Inmunoglobulina G/inmunología , Animales , Anticuerpos Monoclonales Humanizados , Linaje de la Célula , Citometría de Flujo , Humanos , Inmunoterapia Adoptiva , Células Asesinas Naturales/inmunología , Ratones , Monocitos/inmunología , Neutrófilos/inmunología , Panitumumab
12.
Mol Cancer Ther ; 21(4): 582-593, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35086955

RESUMEN

AXL, a tyrosine kinase receptor that is overexpressed in many solid and hematologic malignancies, facilitates cancer progression and is associated with poor clinical outcomes. Importantly, drug-induced expression of AXL results in resistance to conventional chemotherapy and targeted therapies. Together with its presence on multiple cell types in the tumor immune microenvironment, these features make it an attractive therapeutic target for AXL-expressing malignancies. ADCT-601 (mipasetamab uzoptirine) is an AXL-targeted antibody-drug conjugate (ADC) comprising a humanized anti-AXL antibody site specifically conjugated using GlycoConnect technology to PL1601, which contains HydraSpace, a Val-Ala cleavable linker and the potent pyrrolobenzodiazepine (PBD) dimer cytotoxin SG3199. This study aimed to validate the ADCT-601 mode of action and evaluate its efficacy in vitro and in vivo, as well as its tolerability and pharmacokinetics. ADCT-601 bound to both soluble and membranous AXL, and was rapidly internalized by AXL-expressing tumor cells, allowing release of PBD dimer, DNA interstrand cross-linking, and subsequent cell killing. In vivo, ADCT-601 had potent and durable antitumor activity in a wide variety of human cancer xenograft mouse models, including patient-derived xenograft models with heterogeneous AXL expression where ADCT-601 antitumor activity was markedly superior to an auristatin-based comparator ADC. Notably, ADCT-601 had antitumor activity in a monomethyl auristatin E-resistant lung-cancer model and synergized with the PARP inhibitor olaparib in a BRCA1-mutated ovarian cancer model. ADCT-601 was well tolerated at doses of up to 6 mg/kg and showed excellent stability in vivo. These preclinical results warrant further evaluation of ADCT-601 in the clinic.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Neoplasias , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Benzodiazepinas/farmacología , Línea Celular Tumoral , Humanos , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Pirroles , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Biotechnol Bioeng ; 108(7): 1591-602, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21328321

RESUMEN

Through process transfer and optimization for increased antibody production to 3 g/L for a GS-CHO cell line, an undesirable drop in antibody Fc galactosylation was observed. Uridine (U), manganese chloride (M), and galactose (G), constituents involved in the intracellular galactosylation process, were evaluated in 2-L bioreactors for their potential to specifically increase antibody galactosylation. These components were placed in the feed medium at proportionally increasing concentrations from 0 to 20 × UMG, where a 1× concentration of U was 1 mM, a 1× concentration of M was 0.002 mM, and a 1× concentration of G was 5 mM. Antibody galactosylation increased rapidly from 3% at 0× UMG up to 21% at 8× UMG and then more slowly to 23% at 20× UMG. The increase was primarily due to a shift from G0F to G1F, with minimal impact on other glycoforms or product quality attributes. Cell culture performance was largely not impacted by addition of up to 20× UMG except for suppression of glucose consumption and lactate production at 16 and 20× UMG and a slight drop in antibody concentration at 20× UMG. Higher accumulation of free galactose in the medium was observed at 8× UMG and above, coincident with achieving the plateau of maximal galactosylation. A concentration of 4× UMG resulted in achieving the target of 18% galactosylation at 2-L scale, a result that was reproduced in a 1,000-L run. Follow-up studies to evaluate the addition of each component individually up to 12× concentration revealed that the effect was synergistic; the combination of all three components gave a higher level of galactosylation than addition of the each effect independently. The approach was found generally useful since a second cell line responded similarly, with an increase in galactosylation from 5% to 29% from 0 to 8× UMG and no further increase or impact on culture performance up to 12× UMG. These results demonstrate a useful approach to provide exact and specific control of antibody galactosylation through manipulation of the concentrations of uridine, manganese chloride, and galactose in the cell culture medium.


Asunto(s)
Anticuerpos/metabolismo , Cloruros/metabolismo , Galactosa/metabolismo , Compuestos de Manganeso/metabolismo , Uridina/metabolismo , Animales , Reactores Biológicos , Células CHO , Cricetinae , Cricetulus , Medios de Cultivo/química , Glicosilación , Proteínas Recombinantes/metabolismo
14.
Blood ; 112(6): 2390-9, 2008 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-18566325

RESUMEN

Glycosylation of the antibody Fc fragment is essential for Fc receptor-mediated activity. Carbohydrate heterogeneity is known to modulate the activity of effector cells in the blood, in which fucosylation particularly affects NK cell-mediated killing. Here, we investigated how the glycosylation profile of 2F8, a human IgG(1) monoclonal antibody against epidermal growth factor receptor in clinical development, impacted effector function. Various 2F8 batches differing in fucosylation, galactosylation, and sialylation of the complex-type oligosaccharides in the Fc fragment were investigated. Our results confirmed that low fucose levels enhance mononuclear cell-mediated antibody-mediated cellular cytotoxicity (ADCC). In contrast, polymorphonuclear cells were found to preferentially kill via high-fucosylated antibody. Whole blood ADCC assays, containing both types of effector cells, revealed little differences in tumor cell killing between both batches. Significantly, however, high-fucose antibody induced superior ADCC in blood from granulocyte colony-stimulating factor-primed donors containing higher numbers of activated polymorphonuclear cells. In conclusion, our data demonstrated for the first time that lack of fucose does not generally increase the ADCC activity of therapeutic antibodies and that the impact of Fc glycosylation on ADCC is critically dependent on the recruited effector cell type.


Asunto(s)
Anticuerpos/metabolismo , Citotoxicidad Celular Dependiente de Anticuerpos , Fucosa/inmunología , Células Asesinas Naturales/inmunología , Neutrófilos/inmunología , Anticuerpos/inmunología , Línea Celular , Fucosa/metabolismo , Glicosilación , Humanos , Fragmentos Fc de Inmunoglobulinas/inmunología , Fragmentos Fc de Inmunoglobulinas/metabolismo
15.
Biotechnol Bioeng ; 105(2): 350-7, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-19739094

RESUMEN

Rapid production of recombinant human IgG with improved antibody dependent cell-mediated cytotoxicity (ADCC) effector function is presented. The technique employs transient expression of IgG in suspension growing HEK-293F cells in the presence of the glycosidase inhibitor kifunensine. The procedure takes approximately 7 days, provided that expression plasmids encoding the IgG of interest are available. Kifunensine inhibits the N-linked glycosylation pathway of HEK-293F cells in the endoplasmatic reticulum, resulting in IgG with oligomannose type glycans lacking core-fucose. IgG1 transiently produced in kifunensine- treated HEK-293F cells has improved affinity for the FcgammaRIIIA molecule as measured in an ELISA based assay, and almost eightfold enhanced ADCC using primary peripheral blood mononuclear effector cells.


Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos , Biotecnología/métodos , Inmunoglobulina G/biosíntesis , Inmunoglobulina G/inmunología , Alcaloides/metabolismo , Biotecnología/economía , Línea Celular , Expresión Génica , Glicósido Hidrolasas/antagonistas & inhibidores , Humanos , Inmunoglobulina G/genética , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/inmunología , Plásmidos/genética , Receptores de IgG/inmunología , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Factores de Tiempo
16.
J Immunother Cancer ; 8(2)2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32912922

RESUMEN

BACKGROUND: Regulatory T cells (Tregs) contribute to an immunosuppressive tumor microenvironment. They play an important role in the establishment and progression of tumors with high Tregs infiltration and present a major obstacle to tumor eradication by immunotherapies. Numerous strategies have been attempted to deplete or block Tregs, although their success has been limited. METHODS: A CD25-targeted, pyrrolobenzodiazepine (PBD) dimer-based antibody-drug conjugate (ADC) was investigated for its ability to deplete Tregs and induce antitumor immunity. Antitumor activity of CD25-ADC either alone or in combination with an anti-programmed cell death protein 1 (PD-1) antibody was evaluated in CD25-negative syngeneic models that exhibit tumor infiltration of CD25-expressing Tregs, and its pharmacodynamics and pharmacokinetics were assessed. RESULTS: Single low doses of CD25-ADC resulted in potent and durable antitumor activity in established syngeneic solid tumor models and the combination of a suboptimal dose was synergistic with PD-1 blockade. Tumor eradication by the CD25-targeted ADC was CD8+ T cell-dependent and CD25-ADC induced protective immunity. Importantly, while CD25-ADC mediated a significant and sustained intratumoral Tregs depletion, accompanied by a concomitant increase in the number of activated and proliferating tumor-infiltrating CD8+ T effector cells, systemic Tregs depletion was transient, alleviating concerns of potential autoimmune side effects. CONCLUSIONS: This study shows that a PBD dimer-based, CD25-targeted ADC is able to deplete Tregs and eradicate established tumors via antitumor immunity. This represents a novel approach to efficiently deplete Tregs via a very potent DNA damaging toxin known to induce immunogenic cell death. Moreover, this study provides proof of concept for a completely new application of ADCs as immunotherapeutic agents, as the main mode of action relies on the ADC directly targeting immune cells, rather than tumor cells. These strong preclinical data warrant the clinical evaluation of camidanlumab tesirine (ADCT-301), a PBD-based ADC targeting human CD25, either alone or in combination with checkpoint inhibitors in solid tumors with known Tregs infiltration. A phase I trial (NCT03621982) of camidanlumab tesirine in patients with selected advanced solid tumors is ongoing.


Asunto(s)
Inmunoconjugados/uso terapéutico , Inmunoterapia/métodos , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Neoplasias/genética , Linfocitos T Reguladores/inmunología , Línea Celular Tumoral , Humanos , Inmunoconjugados/farmacología , Neoplasias/patología , Microambiente Tumoral
17.
Mol Cancer Ther ; 19(9): 1856-1865, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32669316

RESUMEN

Antibody-drug conjugates (ADC) containing pyrrolobenzodiazepine (PBD) dimers are being evaluated clinically in both hematologic and solid tumors. These include ADCT-301 (camidanlumab tesirine) and ADCT-402 (loncastuximab tesirine) in pivotal phase II trials that contain the payload tesirine, which releases the PBD dimer warhead SG3199. An important consideration in future clinical development is acquired resistance. The aim was to generate and characterize PBD acquired resistant cell lines in both hematologic and solid tumor settings. Human Karpas-299 (ALCL) and NCI-N87 (gastric cancer) cells were incubated with increasing IC50 doses of ADC (targeting CD25 and HER2, respectively) or SG3199 in a pulsed manner until stable acquired resistance was established. The level of resistance achieved was approximately 3,000-fold for ADCT-301 and 3-fold for SG3199 in Karpas-299, and 8-fold for ADCT-502 and 4-fold for SG3199 in NCI-N87. Cross-resistance between ADC and SG3199, and with an alternative PBD-containing ADC or PBD dimer was observed. The acquired resistant lines produced fewer DNA interstrand cross-links, indicating an upstream mechanism of resistance. Loss of antibody binding or internalization was not observed. A human drug transporter PCR Array revealed several genes upregulated in all the resistant cell lines, including ABCG2 and ABCC2, but not ABCB1(MDR1). These findings were confirmed by RT-PCR and Western blot, and inhibitors and siRNA knockdown of ABCG2 and ABCC2 recovered drug sensitivity. These data show that acquired resistance to PBD-ADCs and SG3199 can involve specific ATP-binding cassette drug transporters. This has clinical implications as potential biomarkers of resistance and for the rational design of drug combinations.


Asunto(s)
Benzodiazepinas/química , Resistencia a Antineoplásicos , Inmunoconjugados/farmacología , Linfoma Anaplásico de Células Grandes/genética , Pirroles/química , Neoplasias Gástricas/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Anticuerpos Monoclonales Humanizados/química , Anticuerpos Monoclonales Humanizados/farmacología , Benzodiazepinas/farmacología , Línea Celular Tumoral , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunoconjugados/química , Linfoma Anaplásico de Células Grandes/tratamiento farmacológico , Linfoma Anaplásico de Células Grandes/metabolismo , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/metabolismo
18.
Theranostics ; 10(7): 2930-2942, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194845

RESUMEN

Goals of investigation: The 5-year survival rate for pancreatic ductal adenocarcinoma (PDAC) has remained at <5% for decades because no effective therapies have been identified. Integrin αvß6 is overexpressed in most PDAC and represents a promising therapeutic target. Thus, we attempted to develop an αvß6-specific peptide-drug conjugate (PDC) for therapy of PDAC. Methodology: We conjugated the DNA-binding pyrrolobenzodiazepine (PBD)-based payload SG3249 (tesirine) to an αvß6-specific 20mer peptide from the VP1 coat protein of foot-and-mouth-disease virus (FMDV) (forming conjugate SG3299) or to a non-targeting peptide (forming conjugate SG3511). PDCs were tested for specificity and toxicity on αvß6-negative versus-positive PDAC cells, patient-derived cell lines from tumor xenografts, and on two different in vivo models of PDAC. Immunohistochemical analyses were performed to establish therapeutic mechanism. Results: The αvß6-targeted PDC SG3299 was significantly more toxic (up to 78-fold) for αvß6-expressing versus αvß6-negative PDAC cell lines in vitro, and achieved significantly higher toxicity at equal dose than the non-targeted PDC SG3511 (up to 15-fold better). Moreover, SG3299 eliminated established (100mm3) Capan-1 PDAC human xenografts, extending the lifespan of mice significantly (P=0.005). Immunohistochemistry revealed SG3299 induced DNA damage and apoptosis (increased γH2AX and cleaved caspase 3, respectively) associated with significant reductions in proliferation (Ki67), ß6 expression and PDAC tumour growth. Conclusions: The FMDV-peptide drug conjugate SG3299 showed αvß6-selectivity in vitro and in vivo and can specifically eliminate αvß6-positive cancers, providing a promising new molecular- specific therapy for pancreatic cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Proteínas de la Cápside/uso terapéutico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Daño del ADN/efectos de los fármacos , Integrinas/antagonistas & inhibidores , Neoplasias Pancreáticas/tratamiento farmacológico , Animales , Antígenos de Neoplasias , Benzodiazepinas/uso terapéutico , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Noqueados , Péptidos/uso terapéutico , Pirroles/uso terapéutico
19.
Mol Cancer Ther ; 18(2): 335-345, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30413648

RESUMEN

Antibody-drug conjugates (ADC) have revolutionized the field of cancer therapy. ADCs combine the high specificity of tumor-targeting monoclonal antibodies with potent cytotoxic drugs, which cannot be used alone because of their high toxicity. Till date, all ADCs have either targeted cell membrane proteins on tumors or the tumor vasculature and microenvironment. Here, we investigate ADCs of APOMAB (DAB4, or its chimeric derivative, chDAB4), which is a mAb targeting the La/SSB protein, which is only accessible for binding in dying or dead cancer cells. We show that DAB4-labeled dead cells are phagocytosed by macrophages, and that the apoptotic/necrotic areas within lung tumor xenografts are bound by DAB4 and are infiltrated with macrophages. We show that only DAB4-ADCs with a cleavable linker and diffusible drug are effective in two lung cancer models, particularly when given after chemotherapy. These results are consistent with other recent studies showing that direct internalization of ADCs by target cells is not essential for ADC activity because the linker can be cleaved extracellularly or through other mechanisms. Rather than targeting a tumor cell type specific antigen, DAB4-ADCs have the advantage of targeting a common trait in most solid tumors: an excess of post-apoptotic, necrotic cells either adjacent to hypoxic tumor regions or distributed more generally after cytotoxic therapy. Consequently, any antitumor effects are solely the result of bystander killing, either through internalization of the dead, ADC-bound tumor cells by macrophages, or extracellular cleavage of the ADC in the tumor microenvironment.


Asunto(s)
Anticuerpos Monoclonales/química , Inmunoconjugados/administración & dosificación , Neoplasias Pulmonares/tratamiento farmacológico , Macrófagos/metabolismo , Células A549 , Animales , Apoptosis , Línea Celular Tumoral , Humanos , Inmunoconjugados/química , Inmunoconjugados/farmacología , Neoplasias Pulmonares/metabolismo , Ratones , Fagocitosis , Células RAW 264.7 , Microambiente Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Sci Rep ; 8(1): 10479, 2018 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-29992976

RESUMEN

Synthetic pyrrolobenzodiazepine (PBD) dimers, where two PBD monomers are linked through their aromatic A-ring phenolic C8-positions via a flexible propyldioxy tether, are highly efficient DNA minor groove cross-linking agents with potent cytotoxicity. PBD dimer SG3199 is the released warhead component of the antibody-drug conjugate (ADC) payload tesirine (SG3249), currently being evaluated in several ADC clinical trials. SG3199 was potently cytotoxic against a panel of human solid tumour and haematological cancer cell lines with a mean GI50 of 151.5 pM. Cells defective in DNA repair protein ERCC1 or homologous recombination repair showed increased sensitivity to SG3199 and the drug was only moderately susceptible to multidrug resistance mechanisms. SG3199 was highly efficient at producing DNA interstrand cross-links in naked linear plasmid DNA and dose-dependent cross-linking was observed in cells. Cross-links formed rapidly in cells and persisted over 36 hours. Following intravenous (iv) administration to rats SG3199 showed a very rapid clearance with a half life as short as 8 minutes. These combined properties of cytotoxic potency, rapid formation and persistence of DNA interstrand cross-links and very short half-life contribute to the emerging success of SG3199 as a warhead in clinical stage ADCs.


Asunto(s)
Antineoplásicos/química , Benzodiazepinas/farmacocinética , Inmunotoxinas/química , Pirroles/farmacocinética , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Benzodiazepinas/uso terapéutico , Línea Celular Tumoral , Reactivos de Enlaces Cruzados , ADN/metabolismo , Reparación del ADN , Dimerización , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Pirroles/uso terapéutico , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA