Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Osteoarthritis Cartilage ; 32(4): 355-364, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38142733

RESUMEN

Inflammation, both locally in the joint and systemic, is nowadays considered among the mechanisms involved in osteoarthritis (OA). However, this concept has not always been generally accepted. In fact, for long OA has been described as a relatively simple degeneration of articular cartilage as the result of wear and tear only. In this narrative review, we present what our understanding of OA was at the time of the inaugural release of Osteoarthritis and Cartilage about 30 years ago and discuss a set of pivotal papers that changed our view on the role of inflammation in OA development. Furthermore, we briefly discuss the current view on the involvement of inflammation in OA. Next, we use the example of transforming growth factor-ß signaling to show how inflammation might influence processes in the joint in a manner that is beyond the simple interaction of ligand and receptor leading to the release of inflammatory and catabolic mediators. Finally, we discuss our view on what should be done in the future to bring the field forward.


Asunto(s)
Cartílago Articular , Osteoartritis , Humanos , Inflamación , Osteoartritis/metabolismo , Cartílago Articular/metabolismo , Factor de Crecimiento Transformador beta
2.
Rheumatology (Oxford) ; 63(3): 608-618, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37788083

RESUMEN

Local and systemic low-grade inflammation, mainly involving the innate immune system, plays an important role in the development of OA. A receptor playing a key role in initiation of this inflammation is the pattern-recognition receptor Toll-like receptor 4 (TLR4). In the joint, various ligands for TLR4, many of which are damage-associated molecular patterns (DAMPs), are present that can activate TLR4 signalling. This leads to the production of pro-inflammatory and catabolic mediators that cause joint damage. In this narrative review, we will first discuss the involvement of TLR4 ligands and signalling in OA. Furthermore, we will provide an overview of methods for inhibit, TLR4 signalling by RNA interference, neutralizing anti-TLR4 antibodies, small molecules and inhibitors targeting the TLR4 co-receptor MD2. Finally, we will focus on possible applications and challenges of these strategies in the dampening of inflammation in OA.


Asunto(s)
Osteoartritis , Receptor Toll-Like 4 , Humanos , Inflamación , Transducción de Señal , Alarminas
3.
Artículo en Inglés | MEDLINE | ID: mdl-38466933

RESUMEN

OBJECTIVES: It is well-known that long-term osteoarthritis prognosis is not improved by corticosteroid treatments. Here we investigate what could underlie this phenomenon by measuring the short term corticosteroid response of OA-Mf. METHODS: We determined the genome-wide transcriptomic response to corticosteroids of end-stage osteoarthritic joint synovial macrophages (OA-Mf). This was compared with LPS-tolerized and ß-glucan-trained circulating blood monocyte-derived macrophage models. RESULTS: Upon corticosteroid stimulation, the trained and tolerized macrophages significantly alter the abundance of 201 and 257 RNA transcripts, respectively. By contrast, by the same criteria, OA-Mf have a very restricted corticosteroid response of only 12 RNA transcripts. Furthermore, while metalloproteinases 1, -2, -3 and -10 expression clearly distinguish OA-Mf from both the tolerized and trained macrophage models, OA-Mf Interleukin 1 (IL1), chemokine (CXCL) and cytokine (CCL) family member profiles resemble the tolerized macrophage model, with the exception that OA-Mf show high levels of CCL20. CONCLUSION: Terminal osteoarthritis joints therefore harbor macrophages with an inflammatory state that closely resembles the tolerized macrophage state and this is compounded by a weak corticosteroid response capacity that may explain the lack of positive long-term effects of corticosteroid treatment for osteoarthritis patients.

4.
Rheumatology (Oxford) ; 63(4): 1180-1188, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-37341635

RESUMEN

OBJECTIVES: OA is characterized by cartilage degeneration and persistent pain. The majority of OA patients present with synovitis, which is associated with increased cartilage damage. Activated synovial macrophages are key contributors to joint destruction. Therefore, a marker that reflects the activation of these cells could be a valuable tool to characterize the destructive potential of synovitis and benefit monitoring of OA. Here, we aimed to investigate the use of CD64 (FcγRI) as a marker to characterize the damaging potential of synovitis in OA. METHODS: Synovial biopsies were obtained from end-stage OA patients that underwent joint replacement surgery. CD64 protein expression and localization was evaluated using immunohistochemistry and immunofluorescence and quantified using flow cytometry. qPCR was performed to measure the expression of FCGR1 and OA-related genes in synovial biopsies, and in primary chondrocytes and primary fibroblasts stimulated with OA conditioned medium (OAS-CM). RESULTS: Our data exposed a wide range of CD64 expression in OA synovium and showed positive correlations between FCGR1 and S100A8, S100A9, IL1B, IL6 and MMP1/2/3/9/13 expression. CD64 protein correlated with MMP1, MMP3, MMP9, MMP13 and S100A9. Furthermore, we observed that synovial CD64 protein levels in source tissue for OAS-CM significantly associated with the OAS-CM-induced expression of MMP1, MMP3 and especially ADAMTS4 in cultured fibroblasts, but not chondrocytes. CONCLUSION: Together, these results indicate that synovial CD64 expression is associated with the expression of proteolytic enzymes and inflammatory markers related to structural damage in OA. CD64 therefore holds promise as marker to characterize the damaging potential of synovitis.


Asunto(s)
Osteoartritis , Sinovitis , Humanos , Metaloproteinasa 1 de la Matriz/metabolismo , Metaloproteinasa 3 de la Matriz , Osteoartritis/metabolismo , Sinovitis/patología , Calgranulina B/metabolismo , Membrana Sinovial/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-38216750

RESUMEN

OBJECTIVES: Macrophages are key orchestrators of the osteoarthritis (OA)-associated inflammatory response. Macrophage phenotype is dependent on environmental cues like the inflammatory factor S100A8/A9. Here, we investigated how S100A9 exposure during monocyte-to-macrophage differentiation affects macrophage phenotype and function. METHODS: OA synovium cellular composition was determined using flow cytometry and multiplex immunohistochemistry. Healthy donor monocytes were differentiated towards M1- and M2-like macrophages in presence of S100A9. Macrophage markers were measured using flow cytometry and phagocytic activity was determined using pHrodo Red Zymosan A BioParticles. Gene expression was determined using qPCR. Protein secretion was measured using Luminex and ELISA. RESULTS: Macrophages were the dominant leucocyte subpopulation in OA synovium. They mainly presented with a M2-like phenotype, although the majority also expressed M1-like macrophage markers. Long-term exposure to S100A9 during monocyte-to-macrophage differentiation increased M2-like macrophage markers CD163 and CD206 in M1-like and M2-like differentiated cells. In addition, M1-like macrophage markers were increased in M1-like, but decreased in M2-like differentiated macrophages. In agreement with this mixed phenotype, S100A9 stimulation modestly increased expression and secretion of pro-inflammatory markers and catabolic enzymes, but also increased expression and secretion of anti-inflammatory/anabolic markers. In accordance with the upregulation of M2-like macrophage markers, S100A9 increased phagocytic activity. Finally, we indeed observed a strong association between S100A8 and S100A9 expression and the M2-like/M1-like macrophage ratio in end-stage OA synovium. CONCLUSION: Chronic S100A8/A9 exposure during monocyte-to-macrophage differentiation favours differentiation towards a M2-like macrophage phenotype. The properties of these cells could help explain the catabolic/anabolic dualism in established OA joints with low-grade inflammation.

6.
Osteoarthritis Cartilage ; 31(11): 1481-1490, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37652257

RESUMEN

OBJECTIVE: Transforming growth factor-ß (TGF-ß) signaling via SMAD2/3 is crucial to control cartilage homeostasis. However, TGF-ß can also have detrimental effects by signaling via SMAD1/5/9 and thereby contribute to diseases like osteoarthritis (OA). In this study, we aimed to block TGF-ß-induced SMAD1/5/9 signaling in primary human OA chondrocytes, while maintaining functional SMAD2/3 signaling. DESIGN: Human OA chondrocytes were pre-incubated with different concentrations of ALK4/5/7 kinase inhibitor SB-505124 before stimulation with TGF-ß. Changes in SMAD C-terminal phosphorylation were analyzed using Western blot and response genes were measured with quantitative Polymerase Chain Reaction. To further explore the consequences of our ability to separate pathways, we investigated TGF-ß-induced chondrocyte hypertrophy. RESULTS: Pre-incubation with 0.5 µM SB-505124, maintained ±50% of C-terminal SMAD2/3 phosphorylation and induction of JUNB and SERPINE1, but blocked SMAD1/5/9-C phosphorylation and expression of ID1 and ID3. Furthermore, TGF-ß, in levels comparable to those in the synovial fluid of OA patients, resulted in regulation of hypertrophic and dedifferentiation markers in OA chondrocytes; i.e. an increase in COL10, RUNX2, COL1A1, and VEGF and a decrease in ACAN expression. Interestingly, in a subgroup of OA chondrocyte donors, blocking only SMAD1/5/9 caused stronger inhibition on TGF-ß-induced RUNX2 than blocking both SMAD pathways. CONCLUSION: Our findings indicate that using low dose of SB-505124 we maintained functional SMAD2/3 signaling that blocks RUNX2 expression in a subgroup of OA patients. We are the first to show that SMAD2/3 and SMAD1/5/9 pathways can be separately modulated using low and high doses of SB-505124 and thereby split TGF-ß's detrimental from protective function in chondrocytes.


Asunto(s)
Cartílago Articular , Osteoartritis , Humanos , Condrocitos/metabolismo , Fosforilación , Factor de Crecimiento Transformador beta/farmacología , Factor de Crecimiento Transformador beta/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Cartílago Articular/metabolismo , Osteoartritis/metabolismo , Proteína Smad2/metabolismo
7.
Rheumatology (Oxford) ; 62(1): 42-51, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-35863051

RESUMEN

Synovial macrophages are key mediators of OA pathology, and skewing of macrophage phenotype in favour of an M1-like phenotype is thought to underlie the chronicity of synovial inflammation in OA. Components of the metabolic syndrome (MetS), such as dyslipidaemia, can affect macrophage phenotype and function, which could explain the link between MetS and OA development. Recently published studies have provided novel insights into the different origins and heterogeneity of synovial macrophages. Considering these findings, we propose an important role for monocyte-derived macrophages in particular, as opposed to yolk-sac derived residential macrophages, in causing a pro-inflammatory phenotype shift. We will further explain how this can start even prior to synovial infiltration; in the circulation, monocytes can be trained by metabolic factors such as low-density lipoprotein to become extra responsive to chemokines and damage-associated molecular patterns. The concept of innate immune training has been widely studied and implicated in atherosclerosis pathology, but its involvement in OA remains uncharted territory. Finally, we evaluate the implications of these insights for targeted therapy directed to macrophages and metabolic factors.


Asunto(s)
Síndrome Metabólico , Osteoartritis , Humanos , Monocitos/metabolismo , Lipoproteínas LDL/metabolismo , Osteoartritis/metabolismo , Inflamación/metabolismo , Síndrome Metabólico/complicaciones , Factores de Riesgo , Membrana Sinovial/metabolismo
8.
Rheumatology (Oxford) ; 60(3): 1042-1053, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33410465

RESUMEN

OA is a complex and highly prevalent degenerative disease affecting the whole joint, in which factors like genetic predisposition, gender, age, obesity and traumas contribute to joint destruction. ∼50-80% of OA patients develop synovitis. OA-associated risk factors contribute to joint instability and the release of cartilage matrix fragments, activating the synovium to release pro-inflammatory factors and catabolic enzymes in turn damaging the cartilage and creating a vicious circle. Currently, no cure is available for OA. Mesenchymal stromal cells (MSCs) have been tested in OA for their chondrogenic and anti-inflammatory properties. Interestingly, MSCs are most effective when administered during synovitis. This review focusses on the interplay between joint inflammation and the immunomodulation by MSCs in OA. We discuss the potential of MSCs to break the vicious circle of inflammation and describe current perspectives and challenges for clinical application of MSCs in treatment and prevention of OA, focussing on preventing post-traumatic OA.


Asunto(s)
Inmunomodulación , Inflamación/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Osteoartritis/terapia , Sinovitis/terapia , Humanos , Inflamación/inmunología , Osteoartritis/inmunología , Sinovitis/inmunología
9.
Int J Mol Sci ; 21(11)2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32471111

RESUMEN

Recently, it was shown that interleukin-1ß (IL-1ß) has diverse stimulatory effects on different murine long bone marrow osteoclast precursors (OCPs) in vitro. In this study, interleukin-1 receptor antagonist deficient (Il1rn-/-) and wild-type (WT) mice were compared to investigate the effects of enhanced IL-1 signaling on the composition of OCPs in long bone, calvaria, vertebra, and jaw. Bone marrow cells were isolated from these sites and the percentage of early blast (CD31hi Ly-6C-), myeloid blast (CD31+ Ly-6C+), and monocyte (CD31- Ly-6Chi) OCPs was assessed by flow cytometry. At the time-point of cell isolation, Il1rn-/- mice showed no inflammation or bone destruction yet as determined by histology and microcomputed tomography. However, Il1rn-/- mice had an approximately two-fold higher percentage of OCPs in long bone and jaw marrow compared to WT. Conversely, vertebrae and calvaria marrow contained a similar composition of OCPs in both strains. Bone marrow cells were cultured with macrophage colony stimulating factor (M-CSF) and receptor of NfκB ligand (RANKL) on bone slices to assess osteoclastogenesis and on calcium phosphate-coated plates to analyze mineral dissolution. Deletion of Il1rn increased osteoclastogenesis from long bone, calvaria, and jaw marrows, and all Il1rn-/- cultures showed increased mineral dissolution compared to WT. However, osteoclast markers increased exclusively in Il1rn-/- osteoclasts from long bone and jaw. Collectively, these findings indicate that a lack of IL-1RA increases the numbers of OCPs in vivo, particularly in long bone and jaw, where rheumatoid arthritis and periodontitis develop. Thus, increased bone loss at these sites may be triggered by a larger pool of OCPs due to the disruption of IL-1 inhibitors.


Asunto(s)
Células de la Médula Ósea/citología , Médula Ósea/metabolismo , Proteína Antagonista del Receptor de Interleucina 1/deficiencia , Maxilares/citología , Osteoclastos/citología , Animales , Biomarcadores/metabolismo , Fosfatos de Calcio/metabolismo , Recuento de Células , Proteína Antagonista del Receptor de Interleucina 1/metabolismo , Maxilares/diagnóstico por imagen , Ratones Endogámicos BALB C , Minerales/metabolismo , Monocitos/citología , Cráneo/citología , Microtomografía por Rayos X
10.
Rheumatology (Oxford) ; 58(8): 1331-1343, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31180451

RESUMEN

Bone erosion is one of the central hallmarks of RA and is caused by excessive differentiation and activation of osteoclasts. Presence of autoantibodies in seropositive arthritis is associated with radiographic disease progression. ICs, formed by autoantibodies and their antigens, activate Fcγ-receptor signalling in immune cells, and as such stimulate inflammation-mediated bone erosion. Interestingly, ICs can also directly activate osteoclasts by binding to FcγRs on their surface. Next to autoantibodies, high levels of alarmins, among which is S100A8/A9, are typical for RA and they can further activate the immune system but also directly promote osteoclast function. Therefore, IC-activated FcγRs and S100A8/A9 might act as partners in crime to stimulate inflammation and osteoclasts differentiation and function, thereby stimulating bone erosion. This review discusses the separate roles of ICs, FcγRs and alarmins in bone erosion and sheds new light on the possible interplay between them, which could fuel bone erosion.


Asunto(s)
Artritis Reumatoide/metabolismo , Resorción Ósea/metabolismo , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Receptores de IgG/metabolismo , Animales , Complejo Antígeno-Anticuerpo/metabolismo , Artritis Reumatoide/complicaciones , Artritis Reumatoide/inmunología , Autoanticuerpos/metabolismo , Resorción Ósea/etiología , Resorción Ósea/inmunología , Diferenciación Celular , Humanos , Osteoclastos/metabolismo
11.
Rheumatology (Oxford) ; 58(6): 1065-1074, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30649473

RESUMEN

OBJECTIVES: Previously, we have shown the involvement of Wnt-activated protein Wnt-1-induced signaling protein 1 (WISP1) in the development of OA in mice. Here, we aimed to characterize the relation between WISP1 expression and human OA and its regulatory epigenetic determinants. METHODS: Preserved and lesioned articular cartilage from end-stage OA patients and non-OA-diagnosed individuals was collected. WISP1 expression was determined using immunohistochemistry and damage was classified using Mankin scoring. RNA expression and DNA methylation were assessed in silico from genome-wide datasets (microarray analysis and RNA sequencing, and 450 k-methylationarrays, respectively). Effects of WISP1 were tested in pellet cultures of primary human chondrocytes. RESULTS: WISP1 expression in cartilage of OA patients was increased compared with non-OA-diagnosed controls and, within OA patients, WISP1 was even higher in lesioned compared with preserved regions, with expression strongly correlating with Mankin score. In early symptomatic OA patients with disease progression, higher synovial WISP1 expression was observed as compared with non-progressors. Notably, increased WISP1 expression was inversely correlated with methylation levels of a positional CpG-dinucleotide (cg10191240), with lesioned areas showing strong hypomethylation for this CpG as compared with preserved cartilage. Additionally, we observed that methylation levels were allele-dependent for an intronic single-nucleotide polymorphism nearby cg10191240. Finally, addition of recombinant WISP1 to pellets of primary chondrocytes strongly inhibited deposition of extracellular matrix as reflected by decreased pellet circumference, proteoglycan content and decreased expression of matrix components. CONCLUSION: Increased WISP1 expression is found in lesioned human articular cartilage, and appears epigenetically regulated via DNA methylation. In vitro assays suggest that increased WISP1 is detrimental for cartilage integrity.


Asunto(s)
Proteínas CCN de Señalización Intercelular/metabolismo , Cartílago Articular/metabolismo , Osteoartritis de la Rodilla/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Condrocitos/metabolismo , Metilación de ADN , Epigénesis Genética , Humanos , Articulación de la Rodilla/metabolismo
12.
Clin Exp Rheumatol ; 37(6): 983-993, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31074720

RESUMEN

OBJECTIVES: In this study, we used hypercholesterolaemic apolipoprotein E-deficient (Apoe-/-) mice to investigate LDL/oxLDL effect on synovial inflammation and cartilage destruction during antigen-induced arthritis (AIA). Further, as macrophage FcγRs are crucial to immune complex-mediated AIA, we investigated in vitro the effects of high cholesterol levels on the expression of FcγRs on macrophages. METHODS: AIA was induced by intra-articular injection of mBSA into knee joints of immunised Apoe-/- and wild type (WT) control mice. Joint swelling was measured by uptake of 99mTc pertechnetate (99mTc). Joint inflammation and cartilage destruction were assessed by histology. Anti-mBSA IgGs were measured by ELISA and specific T-cell response by lymphocyte stimulation test. Upon oxLDL stimulation of WT macrophages, protein levels of FcγRs were measured by flow cytometry. RESULTS: Local induction of AIA resulted in less joint swelling, synovial infiltrate and exudate in the joint cavity in Apoe-/- mice compared to WT controls, even though both their humoral and adaptive immune response were comparable. Whereas Apoe deficiency alone did not affect macrophage expression of FcγRs, oxLDL sharply reduced the protein levels of activating FcγRs, crucial in mediating cartilage damage. In agreement with the reduced inflammation in Apoe-/- mice, we observed decreased MMP activity and destruction in the articular cartilage. CONCLUSIONS: Taken together, our findings suggest that high levels of LDL/oxLDL during inflammation, dampen the initiation and chronicity of joint inflammation and cartilage destruction in AIA by regulating macrophage FcγR expression.


Asunto(s)
Artritis Experimental , Cartílago Articular , LDL-Colesterol/sangre , Animales , Artritis Experimental/inmunología , Artritis Experimental/metabolismo , Artritis Experimental/patología , Cartílago Articular/metabolismo , Cartílago Articular/patología , Modelos Animales de Enfermedad , Inflamación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de IgG
13.
J Orthop Res ; 42(2): 286-295, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37525432

RESUMEN

Dysregulation of Wingless and Int-1 (Wnt) signaling has been strongly associated with development and progression of osteoarthritis (OA). Here, we set out to investigate the independent effects of either mechanical stress (MS) or inflammation on Wnt signaling in human neocartilage pellets, and to relate this Wnt signaling to OA pathophysiology. OA synovium-conditioned media (OAS-CM) was collected after incubating synovium from human end-stage OA joints for 24 h in medium. Cytokine levels in the OAS-CM were determined with a multiplex immunoassay (Luminex). Human neocartilage pellets were exposed to 20% MS, 2% OAS-CM or 1 ng/mL Interleukin-1ß (IL-1ß). Effects on expression levels of Wnt signaling members were determined by reverse transcription-quantitative polymerase chain reaction. Additionally, the expression of these members in articular cartilage from human OA joints was analyzed in association with joint space narrowing (JSN) and osteophyte scores. Protein levels of IL-1ß, IL-6, IL-8, IL-10, tumor necrosis factor α, and granulocyte-macrophage colony-stimulating factor positively correlated with each other. MS increased noncanonical WNT5A and FOS expression. In contrast, these genes were downregulated upon stimulation with OAS-CM or IL-1ß. Furthermore, Wnt inhibitors DKK1 and FRZB decreased in response to OAS-CM or IL-1ß exposure. Finally, expression of WNT5A in OA articular cartilage was associated with increased JSN scores, but not osteophyte scores. Our results demonstrate that MS and inflammatory stimuli have opposite effects on canonical and noncanonical Wnt signaling in human neocartilage. Considering the extent to which MS and inflammation contribute to OA in individual patients, we hypothesize that targeting specific Wnt pathways offers a more effective, individualized approach.


Asunto(s)
Cartílago Articular , Osteoartritis , Humanos , Condrocitos/metabolismo , Vía de Señalización Wnt , Estrés Mecánico , Inflamación/metabolismo , Osteoartritis/metabolismo , Cartílago Articular/patología , Interleucina-1beta/metabolismo , Células Cultivadas
14.
Osteoarthr Cartil Open ; 6(2): 100459, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38486843

RESUMEN

Introduction: Articular cartilage makes smooth movement possible and destruction of this tissue leads to loss of joint function. An important biomolecule that determines this function is the large aggregating proteoglycan of cartilage, aggrecan. Aggrecan has a relatively short half-life in cartilage and therefore continuous production of this molecule is essential. Methods: In this narrative review we discuss what is the role of growth factors in driving the synthesis of aggrecan in articular cartilage. A literature search has been done using the search items; cartilage, aggrecan, explant, Transforming Growth factor-ß (TGF-ß), Insulin-like Growth Factor (IGF), Bone Morphogenetic Protein (BMP) and the generic term "growth factors". Focus has been on studies using healthy cartilage and models of cartilage regeneration have been excluded. Results: In healthy adult articular cartilage IGF is the main factor that drives aggrecan synthesis and maintains adequate levels of production. BMP's and TGF-ß have a very limited role but appear to be more important during chondrogenesis and cartilage development. The major role of TGF-ß is not stimulation of aggrecan synthesis but maintenance of the differentiated articular cartilage chondrocyte phenotype. Conclusion: TGF-ß is a factor that is generally considered as an important factor in stimulating aggrecan synthesis in cartilage but its role in this might be very restrained in healthy, adult articular cartilage.

15.
Arthritis Rheum ; 64(5): 1477-87, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22127564

RESUMEN

OBJECTIVE: S100A8 and S100A9 are two Ca(2+) binding proteins classified as damage-associated molecular patterns or alarmins that are found in high amounts in the synovial fluid of osteoarthritis (OA) patients. The purpose of this study was to investigate whether S100A8 and/or S100A9 can interact with chondrocytes from OA patients to increase catabolic mediators. METHODS: Using immunohistochemistry, we stained for S100A8 and S100A9 protein, matrix metalloproteinases (MMPs), and a cartilage-breakdown epitope specific for MMPs (VDIPEN) in cartilage from OA donors. Isolated chondrocytes or explants from OA and non-OA donors were stimulated with S100A8 and/or S100A9. Messenger RNA and protein levels of MMPs, cytokines, and cartilage matrix molecules were determined with quantitative reverse transcription-polymerase chain reaction and Luminex techniques, respectively. For receptor blocking studies, specific inhibitors for Toll-like receptor 4 (TLR-4), receptor for advanced glycation end products (RAGE), and carboxylated glycans were used. RESULTS: In cartilage from OA patients, the expression of S100A8 and S100A9 protein close to chondrocytes was associated with proteoglycan depletion and expression of MMP-1, MMP-3, and VDIPEN. Stimulation of chondrocytes with S100A8 and S100A9 caused a strong up-regulation of catabolic markers (MMPs 1, 3, 9, and 13, interleukin-6 [IL-6], IL-8, and monocyte chemotactic protein 1) and down-regulation of anabolic markers (aggrecan and type II collagen), thereby favoring cartilage breakdown. Blocking TLR-4, but not carboxylated glycans or RAGE, inhibited the S100 effect. The catabolic S100 effect was significantly more pronounced in chondrocytes from OA patients as compared to those from non-OA patients, possibly due to higher TLR-4 expression. CONCLUSION: S100A8 and S100A9 have a catabolic effect on human chondrocytes that is TLR-4 dependent. OA chondrocytes are more sensitive than normal chondrocytes to S100 stimulation.


Asunto(s)
Calgranulina A/metabolismo , Calgranulina B/metabolismo , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Osteoartritis/metabolismo , Receptor Toll-Like 4/metabolismo , Biomarcadores/metabolismo , Calgranulina A/administración & dosificación , Calgranulina B/farmacología , Proteína de la Matriz Oligomérica del Cartílago , Cartílago Articular/efectos de los fármacos , Cartílago Articular/patología , Células Cultivadas , Condrocitos/efectos de los fármacos , Condrocitos/patología , Citocinas/genética , Citocinas/metabolismo , Epítopos/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Expresión Génica , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Proteínas Matrilinas , Metaloproteinasas de la Matriz/genética , Metaloproteinasas de la Matriz/metabolismo , Oligopéptidos/metabolismo , Osteoartritis/patología , Fragmentos de Péptidos/metabolismo , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/antagonistas & inhibidores , Proteínas Recombinantes , Receptor Toll-Like 4/antagonistas & inhibidores
16.
Methods Mol Biol ; 2582: 369-390, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36370364

RESUMEN

The matricellular protein Wnt-induced secreted protein 1 (WISP1) is the fourth member of the CCN family of proteins, which has been shown to affect tissues of the musculoskeletal system. In the context of the musculoskeletal disorder osteoarthritis, our lab studied the function of CCN4/WISP1 in joint tissues, including synovium and cartilage, using both gain- and loss-of-function approaches. In mice, this was done by genetic engineering and recombination to generate mice deficient in CCN4/WISP1 protein. Various experimental models of osteoarthritis with different characteristics were induced in these mice. Moreover, CCN4/WISP1 levels in joints were experimentally increased by adenoviral transfections. Osteoarthritis pathology was determined using histology, and the effect of different CCN4/WISP1 levels on gene expression was evaluated in individual tissues. Effects of high levels of CCN4/WISP1 on chondrocytes were studied with an in vitro chondrocyte pellet model. In this chapter, we describe the procedures to conduct these experiments.


Asunto(s)
Proteínas CCN de Señalización Intercelular , Osteoartritis , Ratones , Animales , Proteínas CCN de Señalización Intercelular/genética , Proteínas CCN de Señalización Intercelular/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Condrocitos/metabolismo , Membrana Sinovial/metabolismo , Osteoartritis/genética , Osteoartritis/metabolismo
17.
Cartilage ; 14(1): 67-75, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36546648

RESUMEN

OBJECTIVES: Previously, we have shown the involvement of cellular communication network factor 4/Wnt-activated protein Wnt-1-induced signaling protein 1 (CCN4/WISP1) in osteoarthritic (OA) cartilage and its detrimental effects on cartilage. Here, we investigated characteristics of CCN4 in chondrocyte biology by exploring correlations of CCN4 with genes expressed in human OA cartilage with functional follow-up. DESIGN: Spearman correlation analysis was performed for genes correlating with CCN4 using our previously established RNA sequencing dataset of human preserved OA cartilage of the RAAK study, followed by a pathway enrichment analysis for genes with ρ ≥|0.6.| Chondrocyte migration in the absence or presence of CCN4 was determined in a scratch assay, measuring scratch size using a live cell imager for up to 36 h. Changes in expression levels of 12 genes, correlating with CCN4 and involved in migratory processes, were determined with reverse transcription-quantitative polymerase chain reaction (RT-qPCR). RESULTS: Correlation of CCN4 with ρ ≥|0.6| was found for 58 genes in preserved human OA cartilage. Pathway analysis revealed "neural crest cell migration" as most significant enriched pathway, containing among others CORO1C, SEMA3C, and SMO. Addition of CCN4 to primary chondrocytes significantly enhance chondrocyte migration as demonstrated by reduced scratch size over the course of 36 h, but at the timepoints measured no effect was observed on mRNA expression of the 12 genes. CONCLUSION: CCN4 increases cell migration of human primary OA chondrocytes. Since WISP1 expression is known to be increased in OA cartilage, this may serve to direct chondrocytes toward cartilage defects and orchestrate repair.


Asunto(s)
Cartílago Articular , Condrocitos , Humanos , Condrocitos/metabolismo , Cartílago Articular/metabolismo , Células Cultivadas , Diferenciación Celular , Transducción de Señal
18.
Arthritis Res Ther ; 25(1): 158, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37653557

RESUMEN

BACKGROUND: Rheumatoid arthritis (RA) is one of the most prevalent and debilitating joint diseases worldwide. RA is characterized by synovial inflammation (synovitis), which is linked to the development of joint destruction. Magnetic resonance imaging and ultrasonography are widely being used to detect the presence and extent of synovitis. However, these techniques do not reveal the activation status of inflammatory cells such as macrophages that play a crucial role in synovitis and express CD64 (Fc gamma receptor (FcγR)I) which is considered as macrophage activation marker. OBJECTIVES: We aimed to investigate CD64 expression and its correlation with pro-inflammatory cytokines and pro-damaging factors in human-derived RA synovium. Furthermore, we aimed to set up a molecular imaging modality using a radiolabeled CD64-specific antibody as a novel imaging tracer that could be used to determine the extent and phenotype of synovitis using optical and nuclear imaging. METHODS: First, we investigated CD64 expression in synovium of early- and late-stage RA patients and studied its correlation with the expression of pro-inflammatory and tissue-damaging factors. Next, we conjugated an anti-CD64 antibody with IRDye 800CW and diethylenetriamine penta-acetic acid (DTPA; used for 111In labeling) and tested its binding on cultured THP1 cells, ex vivo RA synovium explants and its imaging potential in SCID mice implanted with human RA synovium explants obtained from RA patients who underwent total joint replacement. RESULTS: We showed that CD64 is expressed in synovium of early and late-stage RA patients and that FCGR1A/CD64 expression is strongly correlated with factors known to be involved in RA progression. Combined, this makes CD64 a useful marker for imaging the extent and phenotype of synovitis. We reported higher binding of the [111In]In-DTPA-IRDye 800CW anti-CD64 antibody to in vitro cultured THP1 monocytes and ex vivo RA synovium compared to isotype control. In human RA synovial explants implanted in SCID mice, the ratio of uptake of the antibody in synovium over blood was significantly higher when injected with anti-CD64 compared to isotype and injecting an excess of unlabeled antibody significantly reduced the antibody-binding associated signal, both indicating specific receptor binding. CONCLUSION: Taken together, we successfully developed an optical and nuclear imaging modality to detect CD64 in human RA synovium in vivo.


Asunto(s)
Artritis Reumatoide , Sinovitis , Ratones , Animales , Humanos , Ratones SCID , Imagen Molecular , Sinovitis/diagnóstico por imagen , Artritis Reumatoide/diagnóstico por imagen , Biomarcadores , Anticuerpos , Isotipos de Inmunoglobulinas , Ácido Pentético
19.
Pharmaceuticals (Basel) ; 16(5)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37242486

RESUMEN

Osteoarthritis (OA) is the most prevalent joint disease, and it is characterized by cartilage degeneration, synovitis, and bone sclerosis, resulting in swelling, stiffness, and joint pain. TAM receptors (Tyro3, Axl, and Mer) play an important role in regulating immune responses, clearing apoptotic cells, and promoting tissue repair. Here, we investigated the anti-inflammatory effects of a TAM receptor ligand, i.e., growth arrest-specific gene 6 (Gas6), in synovial fibroblasts from OA patients. TAM receptor expression was determined in synovial tissue. Soluble Axl (sAxl), a decoy receptor for the ligand Gas6, showed concentrations 4.6 times higher than Gas6 in synovial fluid of OA patients. In OA fibroblast-like synoviocytes (OAFLS) exposed to inflammatory stimuli, the levels of sAxl in the supernatants were increased, while the expression of Gas6 was downregulated. In OAFLS under TLR4 stimulation by LPS (Escherichia coli lipopolysaccharide), the addition of exogenous Gas6 by Gas6-conditioned medium (Gas6-CM) reduced pro-inflammatory markers including IL-6, TNF-α, IL-1ß, CCL2, and CXCL8. Moreover, Gas6-CM downregulated IL-6, CCL2, and IL-1ß in LPS-stimulated OA synovial explants. Pharmacological inhibition of TAM receptors by a pan inhibitor (RU301) or by a selective Axl inhibitor (RU428) similarly abrogated Gas6-CM anti-inflammatory effects. Mechanistically, Gas6 effects were dependent on Axl activation, determined by Axl, STAT1, and STAT3 phosphorylation, and by the downstream induction of the suppressors of the cytokine signaling family (SOCS1 and SOCS3). Taken together, our results showed that Gas6 treatment dampens inflammatory markers of OAFLS and synovial explants derived from OA patients associated with SOCS1/3 production.

20.
Front Med (Lausanne) ; 9: 973870, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072956

RESUMEN

Knee injuries such as anterior cruciate ligament ruptures and meniscal injury are common and are most frequently sustained by young and active individuals. Knee injuries will lead to post-traumatic osteoarthritis (PTOA) in 25-50% of patients. Mechanical processes where historically believed to cause cartilage breakdown in PTOA patients. But there is increasing evidence suggesting a key role for inflammation in PTOA development. Inflammation in PTOA might be aggravated by hemarthrosis which frequently occurs in injured knees. Whereas mechanical symptoms (joint instability and locking of the knee) can be successfully treated by surgery, there still is an unmet need for anti-inflammatory therapies that prevent PTOA progression. In order to develop anti-inflammatory therapies for PTOA, more knowledge about the exact pathophysiological mechanisms and exact course of post-traumatic inflammation is needed to determine possible targets and timing of future therapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA