RESUMEN
Signaling events triggered by hydrogen peroxide (H2O2) regulate plant growth and defense by orchestrating a genome-wide transcriptional reprogramming. However, the specific mechanisms that govern H2O2-dependent gene expression are still poorly understood. Here, we identify the Arabidopsis Mediator complex subunit MED8 as a regulator of H2O2 responses. The introduction of the med8 mutation in a constitutive oxidative stress genetic background (catalase-deficient, cat2) was associated with enhanced activation of the salicylic acid pathway and accelerated cell death. Interestingly, med8 seedlings were more tolerant to oxidative stress generated by the herbicide methyl viologen (MV) and exhibited transcriptional hyperactivation of defense signaling, in particular salicylic acid- and jasmonic acid-related pathways. The med8-triggered tolerance to MV was manipulated by the introduction of secondary mutations in salicylic acid and jasmonic acid pathways. In addition, analysis of the Mediator interactome revealed interactions with components involved in mRNA processing and microRNA biogenesis, hence expanding the role of Mediator beyond transcription. Notably, MED8 interacted with the transcriptional regulator NEGATIVE ON TATA-LESS, NOT2, to control the expression of H2O2-inducible genes and stress responses. Our work establishes MED8 as a component regulating oxidative stress responses and demonstrates that it acts as a negative regulator of H2O2-driven activation of defense gene expression.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Herbicidas/farmacología , Complejo Mediador/metabolismo , Estrés Oxidativo/fisiología , Amitrol (Herbicida)/farmacología , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Complejo Mediador/genética , MicroARNs , Estrés Oxidativo/efectos de los fármacos , Paraquat/farmacología , Plantas Modificadas Genéticamente , Dominios Proteicos , Especies Reactivas de Oxígeno/metabolismo , Ácido Salicílico/metabolismo , Factores Generales de Transcripción/genética , Factores Generales de Transcripción/metabolismoRESUMEN
Hydrogen peroxide (H2O2) can act as a signaling molecule that influences various aspects of plant growth and development, including stress signaling and cell death. To analyze molecular mechanisms that regulate the response to increased H2O2 levels in plant cells, we focused on the photorespiration-dependent peroxisomal H2O2 production in Arabidopsis thaliana mutants lacking CATALASE2 (CAT2) activity (cat2-2). By screening for second-site mutations that attenuate the PSII maximum efficiency (Fv'/Fm') decrease and lesion formation linked to the cat2-2 phenotype, we discovered that a mutation in SHORT-ROOT (SHR) rescued the cell death phenotype of cat2-2 plants under photorespiration-promoting conditions. SHR deficiency attenuated H2O2-dependent gene expression, oxidation of the glutathione pool, and ascorbate depletion in a cat2-2 genetic background upon exposure to photorespiratory stress. Decreased glycolate oxidase and catalase activities together with accumulation of glycolate further implied that SHR deficiency impacts the cellular redox homeostasis by limiting peroxisomal H2O2 production. The photorespiratory phenotype of cat2-2 mutants did not depend on the SHR functional interactor SCARECROW and the sugar signaling component ABSCISIC ACID INSENSITIVE4, despite the requirement for exogenous sucrose for cell death attenuation in cat2-2 shr-6 double mutants. Our findings reveal a link between SHR and photorespiratory H2O2 production that has implications for the integration of developmental and stress responses.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Catalasa/metabolismo , Factores de Transcripción/deficiencia , Factores de Transcripción/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Catalasa/genética , Muerte Celular/genética , Muerte Celular/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Peróxido de Hidrógeno/metabolismo , Oxidación-Reducción , Plantas Modificadas Genéticamente/citología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Factores de Transcripción/genéticaRESUMEN
The genes coding for the core metabolic enzymes of the photorespiratory pathway that allows plants with C3-type photosynthesis to survive in an oxygen-rich atmosphere, have been largely discovered in genetic screens aimed to isolate mutants that are unviable under ambient air. As an exception, glycolate oxidase (GOX) mutants with a photorespiratory phenotype have not been described yet in C3 species. Using Arabidopsis (Arabidopsis thaliana) mutants lacking the peroxisomal CATALASE2 (cat2-2) that display stunted growth and cell death lesions under ambient air, we isolated a second-site loss-of-function mutation in GLYCOLATE OXIDASE1 (GOX1) that attenuated the photorespiratory phenotype of cat2-2 Interestingly, knocking out the nearly identical GOX2 in the cat2-2 background did not affect the photorespiratory phenotype, indicating that GOX1 and GOX2 play distinct metabolic roles. We further investigated their individual functions in single gox1-1 and gox2-1 mutants and revealed that their phenotypes can be modulated by environmental conditions that increase the metabolic flux through the photorespiratory pathway. High light negatively affected the photosynthetic performance and growth of both gox1-1 and gox2-1 mutants, but the negative consequences of severe photorespiration were more pronounced in the absence of GOX1, which was accompanied with lesser ability to process glycolate. Taken together, our results point toward divergent functions of the two photorespiratory GOX isoforms in Arabidopsis and contribute to a better understanding of the photorespiratory pathway.
Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Oxidorreductasas de Alcohol/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Respiración de la Célula , Evolución Molecular , Glicolatos/metabolismo , Luz , Metaboloma/genética , Mutación , Oxidación-Reducción , Fenotipo , FotosíntesisRESUMEN
Since its discovery over two decades ago as an important cell death regulator in Arabidopsis thaliana, the role of LESION SIMULATING DISEASE 1 (LSD1) has been studied intensively within both biotic and abiotic stress responses as well as with respect to plant fitness regulation. However, its molecular mode of action remains enigmatic. Here, we demonstrate that nucleo-cytoplasmic LSD1 interacts with a broad range of other proteins that are engaged in various molecular pathways such as ubiquitination, methylation, cell cycle control, gametogenesis, embryo development and cell wall formation. The interaction of LSD1 with these partners is dependent on redox status, as oxidative stress significantly changes the quantity and types of LSD1-formed complexes. Furthermore, we show that LSD1 regulates the number and size of leaf mesophyll cells and affects plant vegetative growth. Importantly, we also reveal that in addition to its function as a scaffold protein, LSD1 acts as a transcriptional regulator. Taken together, our results demonstrate that LSD1 plays a dual role within the cell by acting as a condition-dependent scaffold protein and as a transcription regulator.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Hidrolasas de Éster Carboxílico/metabolismo , Recuento de Células , Núcleo Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Oxidación-Reducción , Estrés Oxidativo , Regiones Promotoras Genéticas/genética , Unión Proteica , Mapas de Interacción de Proteínas , Multimerización de ProteínaRESUMEN
Biotic and abiotic stresses, such as fungal infection and drought, cause major yield losses in modern agriculture. Kresoxim-methyl (KM) belongs to the strobilurins, one of the most important classes of agricultural fungicides displaying a direct effect on several plant physiological and developmental processes. However, the impact of KM treatment on salt and drought stress tolerance is unknown. In this study we demonstrate that KM pre-treatment of Medicago truncatula plants results in increased protection to drought and salt stress. Foliar application with KM prior to stress imposition resulted in improvement of physiological parameters compared with stressed-only plants. This protective effect was further supported by increased proline biosynthesis, modified reactive oxygen and nitrogen species signalling, and attenuation of cellular damage. In addition, comprehensive transcriptome analysis identified a number of transcripts that are differentially accumulating in drought- and salinity-stressed plants (646 and 57, respectively) after KM pre-treatment compared with stressed plants with no KM pre-treatment. Metabolomic analysis suggests that the priming role of KM in drought- and to a lesser extent in salinity-stressed plants can be attributed to the regulation of key metabolites (including sugars and amino acids) resulting in protection against abiotic stress factors. Overall, the present study highlights the potential use of this commonly used fungicide as a priming agent against key abiotic stress conditions.
Asunto(s)
Medicago truncatula/genética , Medicago truncatula/metabolismo , Fenilacetatos/farmacología , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Aminoácidos/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Malondialdehído/metabolismo , Medicago truncatula/efectos de los fármacos , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Metaboloma/efectos de los fármacos , Metaboloma/genética , Metacrilatos/farmacología , Nitrato-Reductasa/metabolismo , Óxido Nítrico/biosíntesis , Estrés Oxidativo/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , Prolina/metabolismo , Proteolisis/efectos de los fármacos , Salinidad , Transducción de Señal/efectos de los fármacos , Cloruro de Sodio/farmacología , EstrobilurinasRESUMEN
Programmed cell death often depends on generation of reactive oxygen species, which can be detoxified by antioxidative enzymes, including catalases. We previously isolated catalase-deficient mutants (cat2) in a screen for resistance to hydroxyurea-induced cell death. Here, we identify an Arabidopsis thaliana hydroxyurea-resistant autophagy mutant, atg2, which also shows reduced sensitivity to cell death triggered by the bacterial effector avrRpm1. To test if catalase deficiency likewise affected both hydroxyurea and avrRpm1 sensitivity, we selected mutants with extremely low catalase activities and showed that they carried mutations in a gene that we named NO CATALASE ACTIVITY1 (NCA1). nca1 mutants showed severely reduced activities of all three catalase isoforms in Arabidopsis, and loss of NCA1 function led to strong suppression of RPM1-triggered cell death. Basal and starvation-induced autophagy appeared normal in the nca1 and cat2 mutants. By contrast, autophagic degradation induced by avrRpm1 challenge was compromised, indicating that catalase acted upstream of immunity-triggered autophagy. The direct interaction of catalase with reactive oxygen species could allow catalase to act as a molecular link between reactive oxygen species and the promotion of autophagy-dependent cell death.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/fisiología , Autofagia/fisiología , Catalasa/metabolismo , Aminopeptidasas/genética , Aminopeptidasas/metabolismo , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Autofagia/efectos de los fármacos , Proteínas Relacionadas con la Autofagia , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Catalasa/genética , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Hidroxiurea/farmacología , Mutación , Estrés OxidativoRESUMEN
The high metabolic flux through photorespiration constitutes a significant part of the carbon cycle. Although the major enzymatic steps of the photorespiratory pathway are well characterized, little information is available on the functional significance of photorespiration beyond carbon recycling. Particularly important in this respect is the peroxisomal catalase activity which removes photorespiratory H2O2 generated during the oxidation of glycolate to glyoxylate, thus maintaining the cellular redox homeostasis governing the perception, integration and execution of stress responses. By performing a chemical screen, we identified 34 small molecules that alleviate the negative effects of photorespiration in Arabidopsis thaliana mutants lacking photorespiratory catalase (cat2). The chlorophyll fluorescence parameter photosystem II maximum efficiency (Fv'/Fm') was used as a high-throughput readout. The most potent chemical that could rescue the photorespiratory phenotype of cat2 is a pro-auxin that contains a synthetic auxin-like substructure belonging to the phenoxy herbicide family, which can be released in planta. The naturally occurring indole-3-acetic acid (IAA) and other chemically distinct synthetic auxins also inhibited the photorespiratory-dependent cell death in cat2 mutants, implying a role for auxin signalling in stress tolerance.
Asunto(s)
Arabidopsis/citología , Arabidopsis/metabolismo , Peróxido de Hidrógeno/farmacología , Ácidos Indolacéticos/metabolismo , Luz , Transducción de Señal/efectos de los fármacos , Ácido 2,4-Diclorofenoxiacético/análogos & derivados , Ácido 2,4-Diclorofenoxiacético/química , Ácido 2,4-Diclorofenoxiacético/metabolismo , Amidas/metabolismo , Aminoácidos/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/efectos de la radiación , Catalasa/metabolismo , Muerte Celular/efectos de los fármacos , Muerte Celular/efectos de la radiación , Respiración de la Célula/efectos de los fármacos , Respiración de la Célula/efectos de la radiación , Mutación/genética , Bibliotecas de Moléculas Pequeñas/farmacologíaRESUMEN
There is growing evidence that for a comprehensive insight into the function of plant genes, it is crucial to assess their functionalities under a wide range of conditions. In this study, we examined the role of lesion simulating disease1 (LSD1), enhanced disease susceptibility1 (EDS1), and phytoalexin deficient4 (PAD4) in the regulation of photosynthesis, water use efficiency, reactive oxygen species/hormonal homeostasis, and seed yield in Arabidopsis (Arabidopsis thaliana) grown in the laboratory and in the field. We demonstrate that the LSD1 null mutant (lsd1), which is known to exhibit a runaway cell death in nonpermissive conditions, proves to be more tolerant to combined drought and high-light stress than the wild type. Moreover, depending on growing conditions, it shows variations in water use efficiency, salicylic acid and hydrogen peroxide concentrations, photosystem II maximum efficiency, and transcription profiles. However, despite these changes, lsd1 demonstrates similar seed yield under all tested conditions. All of these traits depend on EDS1 and PAD4. The differences in the pathways prevailing in the lsd1 in various growing environments are manifested by the significantly smaller number of transcripts deregulated in the field compared with the laboratory, with only 43 commonly regulated genes. Our data indicate that LSD1, EDS1, and PAD4 participate in the regulation of various molecular and physiological processes that influence Arabidopsis fitness. On the basis of these results, we emphasize that the function of such important regulators as LSD1, EDS1, and PAD4 should be studied not only under stable laboratory conditions, but also in the environment abounding in multiple stresses.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Homeostasis , Fotosíntesis , Semillas/crecimiento & desarrollo , Transducción de Señal , Agua/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/genética , Adaptación Fisiológica/efectos de la radiación , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Hidrolasas de Éster Carboxílico/metabolismo , Análisis por Conglomerados , Proteínas de Unión al ADN/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Homeostasis/efectos de los fármacos , Homeostasis/efectos de la radiación , Peróxido de Hidrógeno/metabolismo , Luz , Fotosíntesis/efectos de los fármacos , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema II/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Ácido Salicílico/metabolismo , Semillas/efectos de los fármacos , Semillas/metabolismo , Semillas/efectos de la radiación , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/efectos de la radiación , Factores de Transcripción/metabolismo , Transcriptoma/efectos de los fármacos , Transcriptoma/genética , Transcriptoma/efectos de la radiaciónRESUMEN
Alternative splicing is a key posttranscriptional gene regulatory process, acting in diverse adaptive and basal plant processes. Splicing of precursor-messenger RNA (pre-mRNA) is catalyzed by a dynamic ribonucleoprotein complex, designated the spliceosome. In a suppressor screen, we identified a nonsense mutation in the Smith (Sm) antigen protein SME1 to alleviate photorespiratory H2O2-dependent cell death in catalase deficient plants. Similar attenuation of cell death was observed upon chemical inhibition of the spliceosome, suggesting pre-mRNA splicing inhibition to be responsible for the observed cell death alleviation. Furthermore, the sme1-2 mutants showed increased tolerance to the reactive oxygen species inducing herbicide methyl viologen. Both an mRNA-seq and shotgun proteomic analysis in sme1-2 mutants displayed a constitutive molecular stress response, together with extensive alterations in pre-mRNA splicing of transcripts encoding metabolic enzymes and RNA binding proteins, even under unstressed conditions. Using SME1 as a bait to identify protein interactors, we provide experimental evidence for almost 50 homologs of the mammalian spliceosome-associated protein to reside in the Arabidopsis thaliana spliceosome complexes and propose roles in pre-mRNA splicing for four uncharacterized plant proteins. Furthermore, as for sme1-2, a mutant in the Sm core assembly protein ICLN resulted in a decreased sensitivity to methyl viologen. Taken together, these data show that both a perturbed Sm core composition and assembly results in the activation of a defense response and in enhanced resilience to oxidative stress.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Paraquat , Proteómica , Empalme Alternativo , Mutación , ARN Mensajero/metabolismo , Estrés Oxidativo , Regulación de la Expresión Génica de las Plantas , Mamíferos/metabolismoRESUMEN
Quantitative traits, such as size and weight in animals and seed yield in plants, are distributed normally, even within a population of genetically identical individuals. For example, in plants, various factors, such as local soil quality, microclimate, and sowing depth, affect growth differences among individual plants of isogenic populations. Besides these physical factors, also epigenetic components contribute to differences in growth and yield. The network that regulates crop yield is still not well understood. Although this network is expected to have epigenetic elements, it is completely unclear whether it would be possible to shape the epigenome to increase crop yield. Here we show that energy use efficiency is an important factor in determining seed yield in canola (Brassica napus) and that it can be selected artificially through an epigenetic feature. From an isogenic canola population of which the individual plants and their self-fertilized progenies were recursively selected for respiration intensity, populations with distinct physiological and agronomical characteristics could be generated. These populations were found to be genetically identical, but epigenetically different. Furthermore, both the DNA methylation patterns as well as the agronomical and physiological characteristics of the selected lines were heritable. Hybrids derived from parent lines selected for high energy use efficiencies had a 5% yield increase on top of heterosis. Our results demonstrate that artificial selection allows the increase of the yield potential by selecting populations with particular epigenomic states.
Asunto(s)
Brassica napus , Metabolismo Energético/genética , Epigénesis Genética , Selección Genética , Ácido Ascórbico/metabolismo , Brassica napus/genética , Brassica napus/crecimiento & desarrollo , Respiración de la Célula/genética , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Histonas/metabolismo , Vigor HíbridoRESUMEN
Translational control mechanisms are, besides transcriptional control and mRNA stability, the most determining for final protein levels. A large number of accessory factors that assist the ribosome during initiation, elongation, and termination of translation are required for protein synthesis. Cap-dependent translational control occurs mainly during the initiation step, involving eukaryotic initiation factors (eIFs) and accessory proteins. Initiation is affected by various stimuli that influence the phosphorylation status of both eIF4E and eIF2 and through binding of 4E-binding proteins to eIF4E, which finally inhibits cap- dependent translation. Under conditions where cap-dependent translation is hampered, translation of transcripts containing an internal ribosome entry site can still be supported in a cap-independent manner. An interesting example of translational control is the switch between cap-independent and cap-dependent translation during the eukaryotic cell cycle. At the G1-to-S transition, translation occurs predominantly in a cap-dependent manner, while during the G2-to-M transition, cap-dependent translation is inhibited and transcripts are predominantly translated through a cap-independent mechanism.
Asunto(s)
Células Eucariotas/metabolismo , Regulación de la Expresión Génica , Biosíntesis de Proteínas , Animales , Ciclo Celular , Genómica , Humanos , Caperuzas de ARN/genéticaRESUMEN
Reactive oxygen species (ROS)-dependent signaling pathways from chloroplasts and mitochondria merge at the nuclear protein RADICAL-INDUCED CELL DEATH1 (RCD1). RCD1 interacts in vivo and suppresses the activity of the transcription factors ANAC013 and ANAC017, which mediate a ROS-related retrograde signal originating from mitochondrial complex III. Inactivation of RCD1 leads to increased expression of mitochondrial dysfunction stimulon (MDS) genes regulated by ANAC013 and ANAC017. Accumulating MDS gene products, including alternative oxidases (AOXs), affect redox status of the chloroplasts, leading to changes in chloroplast ROS processing and increased protection of photosynthetic apparatus. ROS alter the abundance, thiol redox state and oligomerization of the RCD1 protein in vivo, providing feedback control on its function. RCD1-dependent regulation is linked to chloroplast signaling by 3'-phosphoadenosine 5'-phosphate (PAP). Thus, RCD1 integrates organellar signaling from chloroplasts and mitochondria to establish transcriptional control over the metabolic processes in both organelles.
Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Cloroplastos/genética , Complejo III de Transporte de Electrones/genética , Regulación de la Expresión Génica de las Plantas/genética , Mitocondrias/genética , Plantas Modificadas Genéticamente/genética , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/genética , Estrés Fisiológico/genéticaRESUMEN
Due to their sessile lifestyle, plants can be exposed to several kinds of stresses that will increase the production of reactive oxygen species (ROS), such as hydrogen peroxide, singlet oxygen, and hydroxyl radicals, in the plant cells and activate several signaling pathways that cause alterations in the cellular metabolism. Nevertheless, when ROS production outreaches a certain level, oxidative damage to nucleic acids, lipids, metabolites, and proteins will occur, finally leading to cell death. Until now, the most comprehensive and detailed readout of oxidative stress responses is undoubtedly obtained at the transcriptome level. However, transcript levels often do not correlate with the corresponding protein levels. Indeed, together with transcriptional regulations, post-transcriptional, translational, and/or post-translational regulations will shape the active proteome. Here, we review the current knowledge on the post-transcriptional gene regulation during the oxidative stress responses in planta.
Asunto(s)
Antioxidantes/metabolismo , Estrés Oxidativo/genética , Proteoma/genética , Especies Reactivas de Oxígeno/metabolismo , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , Oxidación-Reducción , Plantas/genética , Plantas/metabolismoRESUMEN
Reactive oxygen species (ROS)- and calcium- dependent signaling pathways play well-established roles during plant innate immunity. Chloroplasts host major biosynthetic pathways and have central roles in energy production, redox homeostasis, and retrograde signaling. However, the organelle's importance in immunity has been somehow overlooked. Recent findings suggest that the chloroplast also has an unanticipated function as a hub for ROS- and calcium-signaling that affects immunity responses at an early stage after pathogen attack. In this opinion article, we discuss a chloroplastic calcium-ROS signaling branch of plant innate immunity. We propose that this chloroplastic branch acts as a light-dependent rheostat that, through the production of ROS, influences the severity of the immune response.
Asunto(s)
Calcio/metabolismo , Inmunidad de la Planta , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Cloroplastos/metabolismo , LuzRESUMEN
Hydrogen peroxide (H2O2) operates as a signaling molecule in eukaryotes, but the specificity of its signaling capacities remains largely unrevealed. Here, we analyzed whether a moderate production of H2O2 from two different plant cellular compartments has divergent effects on the plant transcriptome. Arabidopsis thaliana overexpressing glycolate oxidase in the chloroplast (Fahnenstich et al., 2008; Balazadeh et al., 2012) and plants deficient in peroxisomal catalase (Queval et al., 2007; Inzé et al., 2012) were grown under non-photorespiratory conditions and then transferred to photorespiratory conditions to foster the production of H2O2 in both organelles. We show that H2O2 originating in a specific organelle induces two types of responses: one that integrates signals independently from the subcellular site of H2O2 production and another that is dependent on the H2O2 production site. H2O2 produced in peroxisomes induces transcripts involved in protein repair responses, while H2O2 produced in chloroplasts induces early signaling responses, including transcription factors and biosynthetic genes involved in production of secondary signaling messengers. There is a significant bias towards the induction of genes involved in responses to wounding and pathogen attack by chloroplastic-produced H2O2, including indolic glucosinolates-, camalexin-, and stigmasterol-biosynthetic genes. These transcriptional responses were accompanied by the accumulation of 4-methoxy-indol-3-ylmethyl glucosinolate and stigmasterol.
Asunto(s)
Arabidopsis/citología , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Peróxido de Hidrógeno/metabolismo , Peroxisomas/metabolismo , Transcriptoma , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Dióxido de Carbono/farmacología , Cloroplastos/efectos de los fármacos , Genoma de Planta/genética , Cinética , Metabolómica , Peroxisomas/efectos de los fármacos , Plantas Modificadas Genéticamente , Estigmasterol/metabolismo , Transcriptoma/efectos de los fármacos , Triptófano/metabolismoRESUMEN
Poly-ADP-ribose polymerase (PARP) post-translationally modifies proteins through the addition of ADP-ribose polymers, yet its role in modulating plant development and stress responses is only poorly understood. The experiments presented here address some of the gaps in our understanding of its role in stress tolerance and thereby provide new insights into tolerance mechanisms and growth. Using a combination of chemical and genetic approaches, this study characterized phenotypes associated with PARP inhibition at the physiological level. Molecular analyses including gene expression analysis, measurement of primary metabolites and redox metabolites were used to understand the underlying processes. The analysis revealed that PARP inhibition represses anthocyanin and ascorbate accumulation under stress conditions. The reduction in defense is correlated with enhanced biomass production. Even in unstressed conditions protective genes and molecules are repressed by PARP inhibition. The reduced anthocyanin production was shown to be based on the repression of transcription of key regulatory and biosynthesis genes. PARP is a key factor for understanding growth and stress responses of plants. PARP inhibition allows plants to reduce protection such as anthocyanin, ascorbate or Non-Photochemical-Quenching whilst maintaining high energy levels likely enabling the observed enhancement of biomass production under stress, opening interesting perspectives for increasing crop productivity.
Asunto(s)
Antocianinas/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Estrés Fisiológico , Arabidopsis/crecimiento & desarrollo , Vías Biosintéticas/fisiología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Metaboloma/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Transcripción Genética/efectos de los fármacosRESUMEN
Hydrogen peroxide plays a central role in launching the defense response during stress in plants. To establish a molecular profile provoked by a sustained increase in hydrogen peroxide levels, catalase-deficient tobacco plants (CAT1AS) were exposed to high light (HL) intensities over a detailed time course. The expression kinetics of >14000 genes were monitored by using transcript profiling technology based on cDNA-amplified fragment length polymorphism. Clustering and sequence analysis of 713 differentially expressed transcript fragments revealed a transcriptional response that mimicked that reported during both biotic and abiotic stresses, including the up-regulation of genes involved in the hypersensitive response, vesicular transport, posttranscriptional processes, biosynthesis of ethylene and jasmonic acid, proteolysis, mitochondrial metabolism, and cell death, and was accompanied by a very rapid up-regulation of several signal transduction components. Expression profiling corroborated by functional experiments showed that HL induced photoinhibition in CAT1AS plants and that a short-term HL exposure of CAT1AS plants triggered an increased tolerance against a subsequent severe oxidative stress.