Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neuroscience ; 146(1): 463-70, 2007 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-17320295

RESUMEN

We used electron microscopy to determine the relative numbers of the three synaptic terminal types, RL (round vesicle, large terminal), RS (round vesicles, small terminal), and F (flattened vesicles), found in several representative thalamic nuclei in cats chosen as representative examples of first and higher order thalamic nuclei, where the first order nuclei relay subcortical information mainly to primary sensory cortex, and the higher order nuclei largely relay information from one cortical area to another. The nuclei sampled were the first order ventral posterior nucleus (somatosensory) and the ventral portion of the medial geniculate nucleus (auditory), and the higher order posterior nucleus (somatosensory) and the medial portion of the medial geniculate nucleus (auditory). We found that the relative percentage of synapses from RL terminals varied significantly among these nuclei, these values being higher for first order nuclei (12.6% for the ventral posterior nucleus and 8.2% for the ventral portion of the medial geniculate nucleus) than for the higher order nuclei (5.4% for the posterior nucleus, and 3.5% for the medial portion of the medial geniculate nucleus). This is consistent with a similar analysis of first and higher order nuclei for the visual system (the lateral geniculate nucleus and pulvinar, respectively). Since synapses from RL terminals represent the main information to be relayed, whereas synapses from F and RS terminals are modulatory in function, we conclude that there is relatively more modulation of the thalamic relay in the cortico-thalamo-cortical higher order pathway than in first order relays.


Asunto(s)
Vías Nerviosas/anatomía & histología , Neuronas/ultraestructura , Sinapsis/fisiología , Tálamo/citología , Animales , Gatos , Microscopía Electrónica de Transmisión/métodos , Microscopía Inmunoelectrónica/métodos , Neuronas/metabolismo , Sinapsis/ultraestructura , Ácido gamma-Aminobutírico/metabolismo
2.
J Comp Neurol ; 416(4): 509-20, 2000 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-10660881

RESUMEN

Previous electron microscopic studies of synaptic terminal distributions in the lateral geniculate nucleus have been flawed by potential sampling biases favoring larger synapses. We have thus re-investigated this in the geniculate A-laminae of the cat with an algorithm to correct this sampling bias. We used serial reconstructions with the electron microscope to determine the size of each terminal and synaptic type. We observed that RL (retinal) terminals are largest, F (local, GABAergic, inhibitory) terminals are intermediate in size, and RS (cortical and brainstem) terminals are smallest. We also found that synapses from RL terminals are largest, and thus most oversampled, and we used synaptic size data to correct for sampling errors. Doing so, we found that the relative synaptic percentages overall are 11.7% for RL terminals, 27.5% for F, and 60.8% for RS. Furthermore, we distinguished between relay cells and interneurons with post-embedding immunocytochemistry for GABA (relay cells are GABA negative and interneurons are GABA positive). Onto relay cells, RL terminals contributed 7.1%, F terminals contributed 30.9%, and RS terminals contributed 62.0%. Onto interneurons, RL terminals contributed 48.7%, F terminals contributed 24.4%, and RS terminals contributed 26.9%. We also found that RL terminals included many more separate synaptic contact zones (9.1 +/- 1.6) than did F terminals (2.6 +/- 0.2) or RS terminals (1.02 +/- 0.02). We used these data plus the calculation of overall percentages of each synaptic type to compute the relative percentage of each terminal type in the neuropil: RL terminals represent 1.8%, F terminals represent 14.5%, and RS terminals represent 83.7%. We argue that this relative synaptic paucity is typical for driver inputs (from retina), whereas modulator inputs (all others) require many more synapses to achieve their function.


Asunto(s)
Gatos/anatomía & histología , Cuerpos Geniculados/ultraestructura , Sinapsis/ultraestructura , Algoritmos , Animales , Cuerpos Geniculados/metabolismo , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Microscopía Electrónica , Terminaciones Nerviosas/metabolismo , Terminaciones Nerviosas/ultraestructura , Ácido gamma-Aminobutírico/metabolismo
3.
J Comp Neurol ; 390(2): 247-55, 1998 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-9453668

RESUMEN

Laminae A and A1 of the lateral geniculate nucleus in the cat are generally considered to be a structurally and functionally matched pair of inputs from two eyes, although there are subtle light microscopic and physiological differences. The present study aims to display ultrastructural differences between these two laminae based on electron microscopic observances on the connectivity patterns of their afferents onto two main cell types: relay cells, and interneurons present in this nucleus. In a design of population measurement from randomized sample areas in laminae A and A1 from six brains, all synaptic contacts made by three terminal types of the geniculate nucleus were identified, and a number of relative distribution properties were analyzed. When the A-laminae were considered as a homogeneous structure, the distribution of the three terminal types on geniculate cells was similar to previously reported results, confirming the validity of the sampling strategies used; RLP (retinal) terminals provided one-fifth of all synapses, whereas RD (from cortex and brainstem) and F (inhibitory) types constituted one-half and one-third, respectively. The relay cells alone received a similar composition of afferents. However, interneurons alone received approximately equal amounts of synapses from the three sources. Similar analyses comparing the distributions in lamina A and A1 revealed that RD and F terminals, but not RLP terminals, innervate these two laminae differently; more RD and fewer F terminals were found in lamina A1. This difference was also present in the distribution of terminals on relay cells alone, but not on interneurons. These results suggest that (1) retinal terminals form a significantly larger fraction of the input to interneurons than to relay cells; correspondingly, cortex and brainstem provide a smaller fraction of all inputs to interneurons than to relay cells; and (2) laminae A and A1 are not strictly equivalent projection sites of the two retinae. The results are discussed in relation to the Y-cell subpopulation in lamina A1 that is involved in corticotectal, as well as corticogeniculate circuits, as opposed to Y-cells of lamina A that are involved in only the latter.


Asunto(s)
Mapeo Encefálico , Gatos/fisiología , Cuerpos Geniculados/ultraestructura , Interneuronas/fisiología , Sinapsis/fisiología , Animales , Microscopía Electrónica
4.
J Comp Neurol ; 348(4): 481-510, 1994 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-7836559

RESUMEN

We examined the projection from the basal forebrain to thalamic and cortical regions of the visual system in cats, with particular reference to the visual sector of the thalamic reticular nucleus, the lateral geniculate nucleus, and the striate cortex. First, we made injections of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) into the visual sector of the thalamic reticular nucleus and found cells labeled by retrograde transport in the lateral nucleus basalis magnocellularis. Injection of biocytin into the basal forebrain resulted in the anterograde labeling of a dense band of fibers and terminals within the entire thalamic reticular nucleus; this labeling extended through the visual sector including the perigeniculate nucleus. No orthograde labeling was found in the lateral geniculate nucleus. Next, we addressed the issue of putative neurotransmitters used by this pathway using a variety of immunocytochemical and histochemical markers. In this fashion, we identified two populations of cells in the nucleus basalis magnocellularis of the cat; large cholinergic cells that contain choline acetyltransferase, NADPH-diaphorase, and calbindin and that project to striate cortex and smaller cells that contain gamma-aminobutyric acid (GABA), glutamic acid decarboxylase, and parvalbumin and that project to the visual sector of the thalamic reticular nucleus. We also examined at the electron microscopic level terminals in the visual sector of the thalamic reticular nucleus that were labeled from a biocytin injection in the basal forebrain. Most of these terminals form symmetric contacts onto dendrites and were revealed by postembedding immunocytochemical staining to be positive for GABA.


Asunto(s)
Gatos/anatomía & histología , Prosencéfalo/anatomía & histología , Núcleos Talámicos/anatomía & histología , Ácido gamma-Aminobutírico/fisiología , Acetilcolina/fisiología , Animales , Histocitoquímica , Inmunohistoquímica , Vías Nerviosas/anatomía & histología , Neuronas/fisiología , Prosencéfalo/citología
5.
J Comp Neurol ; 259(2): 165-92, 1987 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-3584556

RESUMEN

In order to describe the circuitry of a single retinal X-cell axon in the lateral geniculate nucleus, we physiologically characterized such an axon in the optic tract and injected it intra-axonally with horseradish peroxidase. Subsequently, we recovered the axon and employed electron microscopic techniques to examine the distribution of synapses from 18% of its labeled terminals by reconstructing the unlabeled postsynaptic neurons through a series of 1,200 consecutive thin sections. We found remarkable selectivity for the axon's output, since only four of the 43 available neurons in a limited portion of the terminal arbor receive synapses from labeled terminals. Moreover, the distribution of these synapses on the four neurons, which we term cells 1 through 4, varies with respect to synapses from other classes of terminals that contact the same cells, including synapses from unlabeled retinal terminals. For cells 1 and 3, the labeled terminals provide 49% and 33%, respectively, of their retinal synapses, and these are located on both dendritic shafts and appendages. Synapses from the injected axon to these cells are thus integrated with those from other retinal axons. For cell 2, the labeled terminals provide 100% of its retinal synapses, but these synapses converge on clusters of dendritic appendages where they are integrated with convergent inhibitory inputs. Finally, for cell 4, the labeled terminals provide less than 2% of its retinal inputs, and these are distally located; we suggest that these synapses are remnants of physiologically inappropriate miswiring that occurs during development. The findings from this study support a concept of selectivity in neuronal circuitry in the mammalian central nervous system and also reveal some of the diverse integrative properties of neurons in the lateral geniculate nucleus.


Asunto(s)
Cuerpos Geniculados/ultraestructura , Retina/ultraestructura , Células Ganglionares de la Retina/ultraestructura , Sinapsis/ultraestructura , Animales , Axones/ultraestructura , Gatos , Dendritas/ultraestructura , Peroxidasa de Rábano Silvestre , Microscopía Electrónica , Neuronas/clasificación , Neuronas/ultraestructura , Vías Visuales/fisiología , Vías Visuales/ultraestructura
6.
J Comp Neurol ; 377(4): 535-49, 1997 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-9007191

RESUMEN

We used immunohistochemistry in cats to demonstrate the presence of brain nitric oxide synthase (BNOS) in cholinergic fibers within the A-laminae of the lateral geniculate nucleus. We used a double labeling procedure with electron microscopy and found that all terminals labeled for choline acetyltransferase (ChAT) in the geniculate A-laminae were double labeled for BNOS. Also, some interneuron dendrites, identified by labeling for gamma-aminobutyric acid (GABA), contained BNOS, but relay cell dendrites did not. We then compared parabrachial and corticogeniculate terminals, identifying the former by BNOS/ChAT labeling and the latter by orthograde transport of biocytin injected into cortical area 17, 18, or 19. All corticogeniculate terminals and most BNOS- or ChAT-positive brainstem terminals displayed RSD morphology, whereas some brainstem terminals exhibited RLD morphology. However, parabrachial terminals were larger, on average, than corticogeniculate terminals. We also found that parabrachial terminals were located both inside and outside of glomeruli, and they always contacted relay cell dendrites proximally among retinal terminals (the retinal recipient zone). In contrast, the cortical terminals were limited to peripheral dendrites (the cortical recipient zone). Thus, little if any overlap exists in the distribution of parabrachial and corticogeniculate terminals on the dendrites of relay cells.


Asunto(s)
Mapeo Encefálico , Gatos/fisiología , Cuerpos Geniculados/enzimología , Mesencéfalo/fisiología , Terminaciones Nerviosas/enzimología , Corteza Visual/fisiología , Animales , Gatos/metabolismo , Inmunohistoquímica , Óxido Nítrico Sintasa/análisis , Vías Visuales/enzimología
7.
J Comp Neurol ; 440(4): 321-41, 2001 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-11745627

RESUMEN

A major inhibitory input to the dorsal thalamus arises from neurons in the thalamic reticular nucleus (TRN), which use gamma-aminobutyric acid (GABA) as a neurotransmitter. We examined the synaptic targets of TRN terminals in the visual thalamus, including the A lamina of the dorsal lateral geniculate nucleus (LGN), the medial interlaminar nucleus (MIN), the lateral posterior nucleus (LP), and the pulvinar nucleus (PUL). To identify TRN terminals, we injected biocytin into the visual sector of the TRN to label terminals by anterograde transport. We then used postembedding immunocytochemical staining for GABA to distinguish TRN terminals as biocytin-labeled GABA-positive terminals and to distinguish the postsynaptic targets of TRN terminals as GABA-negative thalamocortical cells or GABA-positive interneurons. We found that, in all nuclei, the TRN provides GABAergic input primarily to thalamocortical relay cells (93-100%). Most of this input seems targeted to peripheral dendrites outside of glomeruli. The TRN does not appear to be a significant source of GABAergic input to interneurons in the visual thalamus. We also examined the synaptic targets of the overall population of GABAergic axon terminals (F1 profiles) within these same regions of the visual thalamus and found that the TRN contacts cannot account for all F1 profiles. In addition to F1 contacts on the dendrites of thalamocortical cells, which presumably include TRN terminals, another population of F1 profiles, most likely interneuron axons, provides input to GABAergic interneuron dendrites. Our results suggest that the TRN terminals are ideally situated to modulate thalamocortical transmission by controlling the response mode of thalamocortical cells.


Asunto(s)
Gatos/anatomía & histología , Sinapsis/ultraestructura , Núcleos Talámicos/citología , Vías Visuales/citología , Animales , Cuerpos Geniculados/citología , Interneuronas/química , Interneuronas/ultraestructura , Núcleos Talámicos Intralaminares/citología , Núcleos Talámicos Laterales/citología , Microscopía Electrónica , Pulvinar/citología , Sinapsis/química , Ácido gamma-Aminobutírico/análisis
8.
Proc Natl Acad Sci U S A ; 94(4): 1517-20, 1997 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-9037085

RESUMEN

Terminals of a morphological type known as RD (for round vesicles and dense mitochondria, which we define here as the aggregate of types formerly known as RSD and RLD, where "S" is small and "L" is large) constitute at least half of the synaptic inputs to the feline lateral geniculate nucleus, which represents the thalamic relay of retinal input to cortex. It had been thought that the vast majority of these RD terminals were of cortical origin, making the corticogeniculate pathway by far the largest source of input to geniculate relay cells. However, another source of RD terminals recently identified derives from cholinergic cells of the brainstem parabrachial region. (These cells also contain NO.) We used techniques of electron microscopy to determine quantitatively the relative contribution of cortex and brainstem to the population of RD terminals. We identified corticogeniculate terminals by orthograde transport of biocytin injected into the visual cortex and identified brainstem terminals by immunocytochemical labeling for choline acetyltransferase or brain NO synthase (the synthesizing enzymes for acetylcholine and NO, respectively). We estimated the relative numbers of corticogeniculate and brainstem terminals with a two-step algorithm: First, we determined the relative probability of sampling each terminal type in our material, and then we calculated what mixture of identified corticogeniculate and brainstem terminals was needed to recreate the size distribution of the parent RD terminal population. We conclude that brainstem terminals comprise roughly one-half of the RD population. Thus, the cortical input is perhaps half as large and the brainstem input is an order of magnitude larger than had been thought. This further suggests that the brainstem inputs might play a surprisingly complex and subtle role in the control of the geniculocortical relay.


Asunto(s)
Tronco Encefálico , Cuerpos Geniculados/ultraestructura , Vías Nerviosas , Sinapsis/ultraestructura , Corteza Visual , Algoritmos , Animales , Transporte Axonal , Gatos , Colina O-Acetiltransferasa/aislamiento & purificación , Inmunohistoquímica , Lisina/análogos & derivados , Lisina/metabolismo
9.
J Neurosci ; 16(24): 8181-92, 1996 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-8987843

RESUMEN

Glutamate has an important neuromodulatory role in synaptic transmission through metabotropic glutamate receptors (mGluRs) linked to a variety of G-protein-coupled second messenger pathways. Activation of these receptors on relay cells in the lateral geniculate nucleus (LGN) with the agonist trans-(1S,3R)-1-amino-1, 3-cyclopentanedicarboxylic acid produces a membrane depolarization that inactivates the low-threshold Ca2+ spike, causing a transition from burst to tonic response mode. The excitatory effects of metabotropic receptor activation in the LGN appear to be produced through the receptors linked to phosphoinositide hydrolysis and apparently only through activation of the corticogeniculate pathway. Two mGluRs, mGluR1alpha (a splice variant of mGluR1) and mGluR5, are linked to the phosphoinositide system. We examined the localization of these receptors with affinity-purified, anti-peptide, polyclonal antibodies raised to the C-terminal region of each receptor protein. Under examination with the light microscope, we found that both types of receptors are present in the geniculate neuropil and in that of the overlying thalamic reticular nucleus, including the perigeniculate nucleus. We also examined the ultrastructural localization of immunolabel with the electron microscope, using a postembedding immunogold marker to identify terminals, dendrites, and somata that contain GABA. Label for the antibody directed against mGluR1alpha was primarily localized in the dendrites of relay cells, postsynaptic to various terminal types. Of these, terminal profiles normally associated with corticogeniculate inputs predominated, whereas retinal terminal profiles were scarce. Label for the antibody directed against mGluR5 label was prominent in inhibitory F2-terminal profiles associated with the retinal input to relay cells. In the perigeniculate nucleus, both mGluRs were localized to dendrites. The distribution of the two phosphoinositide-linked mGluRs in the LGN suggests very different functional roles for the two receptor types. We conclude from these data that mGluR1 appears to have a dominant role in corticogeniculate control of response mode through the feedback glutamatergic pathway from layer VI, whereas mGluR5 is positioned to affect retinogeniculate activation of relay cells through feed forward glomerular interactions.


Asunto(s)
Corteza Cerebral/fisiología , Cuerpos Geniculados/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Retina/fisiología , Vías Aferentes/fisiología , Animales , Gatos , Dendritas/metabolismo , Dendritas/ultraestructura , Cuerpos Geniculados/metabolismo , Cuerpos Geniculados/ultraestructura , Inmunohistoquímica , Microscopía Electrónica , Terminaciones Nerviosas/fisiología , Terminaciones Nerviosas/ultraestructura , Receptores de Glutamato Metabotrópico/metabolismo , Sinapsis/fisiología , Sinapsis/ultraestructura , Distribución Tisular
10.
Nature ; 317(6038): 618-21, 1985.
Artículo en Inglés | MEDLINE | ID: mdl-4058571

RESUMEN

Although receptive fields of relay cells in the lateral geniculate nucleus of the cat nearly match those of their retinal afferents, only 10-20% of the synapses on these cells derive from the retina and are excitatory. Many more (30-40%) are inhibitory and largely control the gating of retinogeniculate transmission. These inhibitory synapses derive chiefly from two cell types: intrinsic local circuit neurones and cells in the adjacent perigeniculate nucleus. It has been difficult to study the functional organization of these inhibitory pathways; most efforts have relied on indirect approaches. Here we describe the use of direct techniques to study a local circuit neurone by iontophoresing horseradish peroxidase (HRP) into it, which completely labels the soma and processes of cells for subsequent light- and electron microscopic analysis. Although the response properties of the labelled cell are virtually indistinguishable from those of many relay cells, its morphology is typical of 'class 3' neurones (see Fig. 1 legend), which are widely believed to be interneurones (but see ref. 12). Here, we refer to the cell as a 'local circuit neurone', which allows for the possibility of a projection axon, rather than as an 'interneurone', a term that commonly excludes a projection axon. We find that the labelled cell has a myelinated axon, but that the axon loses its myelin within 50 microns of the soma and has not yet been traced further. The dendrites of the labelled cell possess presynaptic terminals that act as intrinsic sources of inhibition on geniculate relay cells. We also characterize other morphological aspects of this inhibitory circuitry.


Asunto(s)
Neuronas/ultraestructura , Sinapsis/ultraestructura , Núcleos Talámicos/ultraestructura , Animales , Gatos , Dendritas/ultraestructura , Microscopía Electrónica , Retina/ultraestructura , Vías Visuales/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA