Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Hum Genomics ; 18(1): 53, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802968

RESUMEN

BACKGROUND: The human lineage has undergone a postcranial skeleton gracilization (i.e. lower bone mass and strength relative to body size) compared to other primates and archaic populations such as the Neanderthals. This gracilization has been traditionally explained by differences in the mechanical load that our ancestors exercised. However, there is growing evidence that gracilization could also be genetically influenced. RESULTS: We have analyzed the LRP5 gene, which is known to be associated with high bone mineral density conditions, from an evolutionary and functional point of view. Taking advantage of the published genomes of archaic Homo populations, our results suggest that this gene has a complex evolutionary history both between archaic and living humans and within living human populations. In particular, we identified the presence of different selective pressures in archaics and extant modern humans, as well as evidence of positive selection in the African and South East Asian populations from the 1000 Genomes Project. Furthermore, we observed a very limited evidence of archaic introgression in this gene (only at three haplotypes of East Asian ancestry out of the 1000 Genomes), compatible with a general erasing of the fingerprint of archaic introgression due to functional differences in archaics compared to extant modern humans. In agreement with this hypothesis, we observed private mutations in the archaic genomes that we experimentally validated as putatively increasing bone mineral density. In particular, four of five archaic missense mutations affecting the first ß-propeller of LRP5 displayed enhanced Wnt pathway activation, of which two also displayed reduced negative regulation. CONCLUSIONS: In summary, these data suggest a genetic component contributing to the understanding of skeletal differences between extant modern humans and archaic Homo populations.


Asunto(s)
Evolución Molecular , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad , Hombre de Neandertal , Humanos , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Animales , Hombre de Neandertal/genética , Selección Genética/genética , Hominidae/genética , Haplotipos/genética , Densidad Ósea/genética , Genoma Humano/genética
2.
J Clin Endocrinol Metab ; 109(7): 1891-1898, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38173341

RESUMEN

CONTEXT: Osteopathia striata with cranial sclerosis (OSCS) is a rare bone disorder with X-linked dominant inheritance, characterized by a generalized hyperostosis in the skull and long bones and typical metaphyseal striations in the long bones. So far, loss-of-function variants in AMER1 (also known as WTX or FAM123B), encoding the APC membrane recruitment protein 1 (AMER1), have been described as the only molecular cause for OSCS. AMER1 promotes the degradation of ß-catenin via AXIN stabilization, acting as a negative regulator of the WNT/ß-catenin signaling pathway, a central pathway in bone formation. OBJECTIVE: In this study, we describe a Dutch adult woman with an OSCS-like phenotype, namely, generalized high bone mass and characteristic metaphyseal striations, but no genetic variant affecting AMER1. RESULTS: Whole exome sequencing led to the identification of a mosaic missense variant (c.876A > C; p.Lys292Asn) in CTNNB1, coding for ß-catenin. The variant disrupts an amino acid known to be crucial for interaction with AXIN, a key factor in the ß-catenin destruction complex. Western blotting experiments demonstrate that the p.Lys292Asn variant does not significantly affect the ß-catenin phosphorylation status, and hence stability in the cytoplasm. Additionally, luciferase reporter assays were performed to investigate the effect of p.Lys292Asn ß-catenin on canonical WNT signaling. These studies indicate an average 70-fold increase in canonical WNT signaling activity by p.Lys292Asn ß-catenin. CONCLUSION: In conclusion, this study indicates that somatic variants in the CTNNB1 gene could explain the pathogenesis of unsolved cases of osteopathia striata.


Asunto(s)
Mosaicismo , Osteosclerosis , beta Catenina , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Femenino , Osteosclerosis/genética , Osteosclerosis/patología , Mutación Missense , Adulto , Vía de Señalización Wnt/genética , Persona de Mediana Edad , Secuenciación del Exoma , Proteínas Supresoras de Tumor , Proteínas Adaptadoras Transductoras de Señales
3.
Front Mol Med ; 3: 1283170, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-39086681

RESUMEN

Metabolic Dysfunction Associated Steatotic Liver Disease (MASLD) is a growing epidemic with an estimated prevalence of 20%-30% in Europe and the most common cause of chronic liver disease worldwide. The onset and progression of MASLD are orchestrated by an interplay of the metabolic environment with genetic and epigenetic factors. Emerging evidence suggests altered DNA methylation pattern as a major determinant of MASLD pathogenesis coinciding with progressive DNA hypermethylation and gene silencing of the liver-specific nuclear receptor PPARα, a key regulator of lipid metabolism. To investigate how PPARα loss of function contributes to epigenetic dysregulation in MASLD pathology, we studied DNA methylation changes in liver biopsies of WT and hepatocyte-specific PPARα KO mice, following a 6-week CDAHFD (choline-deficient, L-amino acid-defined, high-fat diet) or chow diet. Interestingly, genetic loss of PPARα function in hepatocyte-specific KO mice could be phenocopied by a 6-week CDAHFD diet in WT mice which promotes epigenetic silencing of PPARα function via DNA hypermethylation, similar to MASLD pathology. Remarkably, genetic and lipid diet-induced loss of PPARα function triggers compensatory activation of multiple lipid sensing transcription factors and epigenetic writer-eraser-reader proteins, which promotes the epigenetic transition from lipid metabolic stress towards ferroptosis and pyroptosis lipid hepatoxicity pathways associated with advanced MASLD. In conclusion, we show that PPARα function is essential to support lipid homeostasis and to suppress the epigenetic progression of ferroptosis-pyroptosis lipid damage associated pathways towards MASLD fibrosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA