RESUMEN
Pollution by chemicals and waste impacts human and ecosystem health on regional, national, and global scales, resulting, together with climate change and biodiversity loss, in a triple planetary crisis. Consequently, in 2022, countries agreed to establish an intergovernmental science-policy panel (SPP) on chemicals, waste, and pollution prevention, complementary to the existing intergovernmental science-policy bodies on climate change and biodiversity. To ensure the SPP's success, it is imperative to protect it from conflicts of interest (COI). Here, we (i) define and review the implications of COI, and its relevance for the management of chemicals, waste, and pollution; (ii) summarize established tactics to manufacture doubt in favor of vested interests, i.e., to counter scientific evidence and/or to promote misleading narratives favorable to financial interests; and (iii) illustrate these with selected examples. This analysis leads to a review of arguments for and against chemical industry representation in the SPP's work. We further (iv) rebut an assertion voiced by some that the chemical industry should be directly involved in the panel's work because it possesses data on chemicals essential for the panel's activities. Finally, (v) we present steps that should be taken to prevent the detrimental impacts of COI in the work of the SPP. In particular, we propose to include an independent auditor's role in the SPP to ensure that participation and processes follow clear COI rules. Among others, the auditor should evaluate the content of the assessments produced to ensure unbiased representation of information that underpins the SPP's activities.
Asunto(s)
Conflicto de Intereses , Ecosistema , Humanos , Contaminación Ambiental , BiodiversidadRESUMEN
BACKGROUND: Obesity is a leading risk factor for chronic diseases, potentially related to excess abdominal adiposity. Phthalates are environmental chemicals that have been suggested to act as obesogens, driving obesity risk. For the associations between phthalates and adiposity, prior studies have focused primarily on body mass index. We hypothesize that more refined measures of adiposity and fat distribution may provide greater insights into these associations given the role of central adiposity in chronic disease risk. OBJECTIVES: To evaluate associations between urinary phthalate biomarkers and both visceral and subcutaneous adipose tissue (VAT and SAT) among postmenopausal women enrolled in the Women's Health Initiative (WHI). METHODS: We included 1125 WHI participants with available, coincident measurements of urinary phthalate biomarkers (baseline, year 3) and VAT and SAT (baseline, year 3, year 6). VAT and SAT measurements were estimated from DXA scans. Multilevel mixed-effects models estimated the prospective associations between urinary phthalate biomarkers at baseline and VAT and SAT three years later. RESULTS: In multivariable adjusted models, we observed positive associations between some phthalate biomarkers, including the sum of di-isobutyl phthalate (ΣDiBP) biomarkers, MCNP, and ΣDEHP, with VAT three years later. For example, we observed positive associations between concentrations of ΣDiBP and VAT (Q4 vs Q1 ß = 7.15, 95% CI -1.76-16.06; Q3 vs Q1 ß = 10.94, 95% CI 3.55-18.33). Associations were generally attenuated but remained significant after additional adjustment for SAT. MBzP was positively associated with SAT. Other phthalate biomarkers investigated (MEP, MCOP, MCPP, ΣDBP) were not significantly associated with VAT or SAT. DISCUSSION: Based on robust measures of adiposity, this study provides supportive evidence that higher urinary concentrations of select phthalate compounds were associated with higher VAT levels over time in postmenopausal women. Efforts to replicate these findings are needed.
Asunto(s)
Adiposidad , Posmenopausia , Humanos , Femenino , Obesidad , Biomarcadores/metabolismo , Grasa Intraabdominal/metabolismoRESUMEN
BACKGROUND: In the US, the Food and Drug Administration (US FDA) is charged with protecting the safety of food from both pathogens and chemicals used in food production and food packaging. To protect the public in a transparent manner, the FDA needs to have an operational definition of what it considers to be an "adverse effect" so that it can take action against harmful agents. The FDA has recently published two statements where, for the first time, it defines the characteristics of an adverse effect that it uses to interpret toxicity studies. OBJECTIVE: In this brief review, we examine two recent actions by the FDA, a proposed rule regarding a color additive used in vegetarian burgers and a decision not to recall fish with high levels of scombrotoxin. We evaluated the FDA's description of the criteria used to determine which outcomes should be considered adverse. OVERVIEW: We describe three reasons why the FDA's criteria for "adverse effects" is not public health protective. These include an unscientific requirement for a monotonic dose response, which conflates hazard assessment and dose response assessment while also ignoring evidence for non-linear and non-monotonic effects for many environmental agents; a requirement that the effect be observed in both sexes, which fails to acknowledge the many sex- and gender-specific effects on physiology, disease incidence and severity, and anatomy; and a requirement that the effects are irreversible, which does not acknowledge the role of exposure timing or appreciate transgenerational effects that have been demonstrated for environmental chemicals. CONCLUSIONS: The FDA's criteria for identifying adverse effects are inadequate because they are not science-based. Addressing this is important, because the acknowledgement of adverse effects is central to regulatory decisions and the protection of public health.
Asunto(s)
Inocuidad de los Alimentos , Estados Unidos , United States Food and Drug AdministrationRESUMEN
BACKGROUND: Understanding, characterizing, and quantifying human exposures to environmental chemicals is critical to protect public health. Exposure assessments are key to determining risks to the general population and for specific subpopulations given that exposures differ between groups. Exposure data are also important for understanding where interventions, including public policies, should be targeted and the extent to which interventions have been successful. In this review, we aim to show how inadequacies in exposure assessments conducted by polluting industries or regulatory agencies have led to downplaying or disregarding exposure concerns raised by communities; that underestimates of exposure can lead regulatory agencies to conclude that unacceptable risks are, instead, acceptable, allowing pollutants to go unregulated; and that researchers, risk assessors, and policy makers need to better understand the issues that have affected exposure assessments and how appropriate use of exposure data can contribute to health-protective decisions. METHODS: We describe current approaches used by regulatory agencies to estimate human exposures to environmental chemicals, including approaches to address limitations in exposure data. We then illustrate how some exposure assessments have been used to reach flawed conclusions about environmental chemicals and make recommendations for improvements. RESULTS: Exposure data are important for communities, public health advocates, scientists, policy makers, and other groups to understand the extent of environmental exposures in diverse populations. We identify four areas where exposure assessments need to be improved due to systemic sources of error or uncertainty in exposure assessments and illustrate these areas with examples. These include: (1) an inability of regulatory agencies to keep pace with the increasing number of chemicals registered for use or assess their exposures, as well as complications added by use of 'confidential business information' which reduce available exposure data; (2) the failure to keep assessments up-to-date; (3) how inadequate assumptions about human behaviors and co-exposures contribute to underestimates of exposure; and (4) that insufficient models of toxicokinetics similarly affect exposure estimates. CONCLUSION: We identified key issues that impact capacity to conduct scientifically robust exposure assessments. These issues must be addressed with scientific or policy approaches to improve estimates of exposure and protect public health.
Asunto(s)
Exposición a Riesgos Ambientales , Contaminantes Ambientales , Humanos , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/prevención & control , Contaminantes Ambientales/toxicidad , Contaminantes Ambientales/análisis , Salud Pública , Política Pública , Incertidumbre , Medición de RiesgoRESUMEN
The manufacture and production of industrial chemicals continues to increase, with hundreds of thousands of chemicals and chemical mixtures used worldwide, leading to widespread population exposures and resultant health impacts. Low-wealth communities and communities of color often bear disproportionate burdens of exposure and impact; all compounded by regulatory delays to the detriment of public health. Multiple authoritative bodies and scientific consensus groups have called for actions to prevent harmful exposures via improved policy approaches. We worked across multiple disciplines to develop consensus recommendations for health-protective, scientific approaches to reduce harmful chemical exposures, which can be applied to current US policies governing industrial chemicals and environmental pollutants. This consensus identifies five principles and scientific recommendations for improving how agencies like the US Environmental Protection Agency (EPA) approach and conduct hazard and risk assessment and risk management analyses: (1) the financial burden of data generation for any given chemical on (or to be introduced to) the market should be on the chemical producers that benefit from their production and use; (2) lack of data does not equate to lack of hazard, exposure, or risk; (3) populations at greater risk, including those that are more susceptible or more highly exposed, must be better identified and protected to account for their real-world risks; (4) hazard and risk assessments should not assume existence of a "safe" or "no-risk" level of chemical exposure in the diverse general population; and (5) hazard and risk assessments must evaluate and account for financial conflicts of interest in the body of evidence. While many of these recommendations focus specifically on the EPA, they are general principles for environmental health that could be adopted by any agency or entity engaged in exposure, hazard, and risk assessment. We also detail recommendations for four priority areas in companion papers (exposure assessment methods, human variability assessment, methods for quantifying non-cancer health outcomes, and a framework for defining chemical classes). These recommendations constitute key steps for improved evidence-based environmental health decision-making and public health protection.
Asunto(s)
Contaminantes Ambientales , Humanos , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/prevención & control , Salud Ambiental , Contaminantes Ambientales/análisis , Salud Pública , Medición de Riesgo , Conferencias de Consenso como AsuntoRESUMEN
BACKGROUND: Technological advancements make lives safer and more convenient. Unfortunately, many of these advances come with costs to susceptible individuals and public health, the environment, and other species and ecosystems. Synthetic chemicals in consumer products represent a quintessential example of the complexity of both the benefits and burdens of modern living. How we navigate this complexity is a matter of a society's values and corresponding principles. OBJECTIVES: We aimed to develop a series of ethical principles to guide decision-making within the landscape of environmental health, and then apply these principles to a specific environmental chemical, oxybenzone. Oxybenzone is a widely used ultraviolet (UV) filter added to personal care products and other consumer goods to prevent UV damage, but potentially poses harm to humans, wildlife, and ecosystems. It provides an excellent example of a chemical that is widely used for the alleged purpose of protecting human health and product safety, but with costs to human health and the environment that are often ignored by stakeholders. DISCUSSION: We propose six ethical principles to guide environmental health decision-making: principles of sustainability, beneficence, non-maleficence, justice, community, and precautionary substitution. We apply these principles to the case of oxybenzone to demonstrate the complex but imperative decision-making required if we are to address the limits of the biosphere's regenerative rates. We conclude that both ethical and practical considerations should be included in decisions about the commercial, pervasive application of synthetic compounds and that the current flawed practice of cost-benefit analysis be recognized for what it is: a technocratic approach to support corporate interests.
Asunto(s)
Benzofenonas , Ecosistema , Salud Ambiental , Humanos , Justicia SocialRESUMEN
In the past several decades, the incidence of two male breast diseases, gynecomastia and male breast cancer, have increased in human populations. Whereas male breast cancer remains a rare disease, gynecomastia, a condition that arises due to abnormal development and growth of the male breast epithelium, is fairly common. In this review, we present the male mouse mammary gland as a potential model to understand human male breast diseases. Even though the male mouse typically lacks nipples, the male retains a small mammary rudiment with epithelium that is highly sensitive to estrogenic chemicals during the perinatal and peripubertal periods. In just the last few years, our understanding of the biology of the male mouse mammary gland has expanded. Researchers have characterized the complexity and size of the male mammary epithelium across the life course. Studies have documented that the male mouse mammary gland has left-right asymmetric morphologies, as well as asymmetries in the responsiveness of the left and right glands to estrogens. Recent studies have also revealed that the effect of xenoestrogens on the male mammary gland can differ based on the timing of evaluation (prior to puberty, in puberty, and in adulthood) and the administered dose. Based on the available evidence, we argue that there is a strong case that estrogenic chemicals promote the growth of the male mouse epithelium, consistent with human gynecomastia. We also argue that these outcomes should be characterized as adverse effects and should be considered in regulatory decision-making.
Asunto(s)
Disruptores Endocrinos , Glándulas Mamarias Animales , Adulto , Animales , Disruptores Endocrinos/toxicidad , Estrógenos/toxicidad , Femenino , Humanos , Masculino , Glándulas Mamarias Humanas , Ratones , Embarazo , ReproducciónRESUMEN
BACKGROUND: Numerous groups, such as the tobacco industry, have deliberately altered and misrepresented knowable facts and empirical evidence to promote an agenda, often for monetary benefit, with consequences for environmental and public health. Previous research has explored cases individually, but none have conducted an in-depth comparison between cases. The purpose of this study was to compile a comprehensive list of tactics used by disparate groups and provide a framework for identifying further instances of manufactured doubt. METHODS: We examined scholarly books, peer-reviewed articles, well-researched journalism pieces, and legal evidence related to five disparate industries and organizations selected for their destructive impacts on environmental and public health (tobacco, coal, and sugar industries, manufacturers of the pesticide Atrazine, and the Marshall Institute, an institute focused on climate change research, and other scientists from the era that associated with those in the Institute). These documents provided evidence for a list of tactics used to generate pro-industry spin and manufacture doubt about conferred harm. We then identified trends among sets of strategies that could explain their differential use or efficacy. RESULTS: We recognized 28 unique tactics used to manufacture doubt. Five of these tactics were used by all five organizations, suggesting that they are key features of manufactured doubt. The intended audience influences the strategy used to misinform, and logical fallacies contribute to their efficacy. CONCLUSIONS: This list of tactics can be used by others to build a case that an industry or group is deliberately manipulating information associated with their actions or products. Improved scientific and rhetorical literacy could be used to render them less effective, depending on the audience targeted, and ultimately allow for the protection of both environmental health and public health more generally.
Asunto(s)
Academias e Institutos , Comunicación , Decepción , Salud Ambiental , Industrias , Salud Pública , Carbón Mineral , Herbicidas , Humanos , Difusión de la Información , Plaguicidas , Relaciones Públicas , Azúcares , NicotianaRESUMEN
During pregnancy, the sequential release of progesterone, 17ß-estradiol, prolactin, oxytocin and placental lactogens reorganize the female brain. Brain structures such as the medial preoptic area, the bed nucleus of the stria terminalis and the motivation network including the ventral tegmental area and the nucleus accumbens are reorganized by this specific hormonal schedule such that the future mother will be ready to provide appropriate care for her offspring right at parturition. Any disruption to this hormone pattern, notably by exposures to endocrine disrupting chemicals (EDC), is therefore likely to affect the maternal brain and result in maladaptive maternal behavior. Development effects of EDCs have been the focus of intense study, but relatively little is known about how the maternal brain and behavior are affected by EDCs. We encourage further research to better understand how the physiological hormone sequence prepares the mother's brain and how EDC exposure could disturb this reorganization.
Asunto(s)
Conducta Animal/fisiología , Encéfalo/metabolismo , Disruptores Endocrinos/farmacología , Hormonas Esteroides Gonadales/metabolismo , Conducta Materna/fisiología , Embarazo/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Femenino , Conducta Materna/efectos de los fármacos , Ratones , Embarazo/efectos de los fármacos , RatasRESUMEN
Antibiotics have recently gained attention because they are emerging environmental pollutants with obesogenic properties. In this study, Drosophila melanogaster were exposed to sulfamethoxazole (SMX), a sulfonamide antibiotic, and the effects were measured on circadian rhythm (represented by the eclosion rhythm), lipid metabolism, and microbiota. Circadian rhythm disorder was considered due to its connection with lipid metabolism and microbiota in association with obesity. SMX decreased the proportion of adult flies that eclosed in the morning (AM adults) and increased the proportion of PM adults. Moreover, SMX increased the body weight of PM adults, indicating that SMX exposure caused dysrhythmia in eclosion together with obesity. In measurements of key metabolites and metabolic enzymes, SMX exposure stimulated 3 indices in AM adults and 10 indices in PM adults. In AMP-activated protein kinase and insulin/IGF-1 signaling pathways, SMX upregulated six genes in AM adults and nine genes in PM adults. Finally, microbiota analysis demonstrated that SMX increased the Firmicutes/Bacteroides ratios (F/B) by 79.6- and 5.8-fold compared to concurrent controls in AM and PM adults. Collectively, these results suggest that SMX showed obesogenic effects accompanied with dysrhythmia and disturbances in lipid metabolism and microbiota. Further studies on the intrinsic connection are needed.
Asunto(s)
Microbiota , Sulfametoxazol , Animales , Antibacterianos , Ritmo Circadiano , Drosophila melanogasterRESUMEN
Food packaging is of high societal value because it conserves and protects food, makes food transportable and conveys information to consumers. It is also relevant for marketing, which is of economic significance. Other types of food contact articles, such as storage containers, processing equipment and filling lines, are also important for food production and food supply. Food contact articles are made up of one or multiple different food contact materials and consist of food contact chemicals. However, food contact chemicals transfer from all types of food contact materials and articles into food and, consequently, are taken up by humans. Here we highlight topics of concern based on scientific findings showing that food contact materials and articles are a relevant exposure pathway for known hazardous substances as well as for a plethora of toxicologically uncharacterized chemicals, both intentionally and non-intentionally added. We describe areas of certainty, like the fact that chemicals migrate from food contact articles into food, and uncertainty, for example unidentified chemicals migrating into food. Current safety assessment of food contact chemicals is ineffective at protecting human health. In addition, society is striving for waste reduction with a focus on food packaging. As a result, solutions are being developed toward reuse, recycling or alternative (non-plastic) materials. However, the critical aspect of chemical safety is often ignored. Developing solutions for improving the safety of food contact chemicals and for tackling the circular economy must include current scientific knowledge. This cannot be done in isolation but must include all relevant experts and stakeholders. Therefore, we provide an overview of areas of concern and related activities that will improve the safety of food contact articles and support a circular economy. Our aim is to initiate a broader discussion involving scientists with relevant expertise but not currently working on food contact materials, and decision makers and influencers addressing single-use food packaging due to environmental concerns. Ultimately, we aim to support science-based decision making in the interest of improving public health. Notably, reducing exposure to hazardous food contact chemicals contributes to the prevention of associated chronic diseases in the human population.
Asunto(s)
Contaminación de Alimentos/análisis , Embalaje de Alimentos/métodos , Sustancias Peligrosas/efectos adversos , Humanos , Plásticos/efectos adversosRESUMEN
Adolescence is a vulnerable period of breast development, and environmental chemical exposures that occur during this period can increase the risk of breast cancer in adulthood. Discussing breast health with adolescent girls can be difficult for several reasons. In this project, we worked to not only inform adolescent researchers about environmental risks for breast cancer but to also involve them in research studies. We taught adolescents about the stages of mammary gland development using samples collected from mice, with a specific focus on pre-pubertal and pubertal stages of development. Our analysis shows that adolescent researchers, with relatively modest training, can collect reliable and reproducible data on aspects of mammary gland biology that are known to be disrupted by environmental chemicals, with coefficients of variation < 2.5% for basic mammary gland parameters and 5-7% for more complex measures. Finally, we provided these adolescents with information about environmental risk factors for breast cancer that they could share with their peers and community and action items to potentially modify their individual risk. We hope that researchers working in this field will engage adolescent researchers in projects to evaluate chemicals that influence breast cancer risk. Summer research programs that inform young adolescents about breast cancer risk factors not only benefit these novice researchers individually but also benefit their communities when they are encouraged to talk about the value of basic science studies, discuss vulnerable periods of mammary gland development, and share what they have learned about cancer and the environment.
Asunto(s)
Neoplasias de la Mama/etiología , Neoplasias de la Mama/patología , Exposición a Riesgos Ambientales/efectos adversos , Laboratorios/estadística & datos numéricos , Personal de Laboratorio/estadística & datos numéricos , Glándulas Mamarias Animales/patología , Adolescente , Animales , Femenino , Humanos , RatonesRESUMEN
Breast cancer risk is intimately intertwined with exposure to estrogens. While more than 160 breast cancer risk loci have been identified in humans, genetic interactions with estrogen exposure remain to be established. Strains of rodents exhibit striking differences in their responses to endogenous ovarian estrogens (primarily 17ß-estradiol). Similar genetic variation has been observed for synthetic estrogen agonists (ethinyl estradiol) and environmental chemicals that mimic the actions of estrogens (xenoestrogens). This review of literature highlights the extent of variation in responses to estrogens among strains of rodents and compiles the genetic loci underlying pathogenic effects of excessive estrogen signaling. Genetic linkage studies have identified a total of the 35 quantitative trait loci (QTL) affecting responses to 17ß-estradiol or diethylstilbestrol in five different tissues. However, the QTL appear to act in a tissue-specific manner with 9 QTL affecting the incidence or latency of mammary tumors induced by 17ß-estradiol or diethylstilbestrol. Mammary gland development during puberty is also exquisitely sensitive to the actions of endogenous estrogens. Analysis of mammary ductal growth and branching in 43 strains of inbred mice identified 20 QTL. Regions in the human genome orthologous to the mammary development QTL harbor loci associated with breast cancer risk or mammographic density. The data demonstrate extensive genetic variation in regulation of estrogen signaling in rodent mammary tissues that alters susceptibility to tumors. Genetic variants in these pathways may identify a subset of women who are especially sensitive to either endogenous estrogens or environmental xenoestrogens and render them at increased risk of breast cancer.
Asunto(s)
Neoplasias de la Mama/genética , Estrógenos/genética , Neoplasias Mamarias Animales/genética , Sitios de Carácter Cuantitativo/genética , Animales , Neoplasias de la Mama/patología , Estradiol/genética , Estradiol/metabolismo , Femenino , Predisposición Genética a la Enfermedad , Variación Genética , Humanos , Glándulas Mamarias Humanas/metabolismo , Neoplasias Mamarias Animales/patología , Ratones , Factores de RiesgoRESUMEN
Due of its structural similarity to the endogenous estrogen 17ß-estradiol (E2), the synthetic estrogen 17α-ethinyl estradiol (EE2) is widely used to study the effects of estrogenic substances on sensitive organs at multiple stages of development. Here, we investigated the effects of EE2 on maternal behavior and the maternal brain in females exposed during gestation and the perinatal period. We assessed several components of maternal behavior including nesting behavior and pup retrieval; characterized the expression of estrogen receptor (ER)α in the medial preoptic area (MPOA), a brain region critical for the display of maternal behavior; and measured expression of tyrosine hydroxylase, a marker for dopaminergic cells, in the ventral tegmental area (VTA), a brain region important in maternal motivation. We found that developmental exposure to EE2 induces subtle effects on several aspects of maternal behavior including time building the nest and time spent engaged in self-care. Developmental exposure to EE2 also altered ERα expression in the central MPOA during both early and late lactation and led to significantly reduced tyrosine hydroxylase immunoreactivity in the VTA. Our results demonstrate both dose- and postpartum stage-related effects of developmental exposure to EE2 on behavior and brain that manifest later in adulthood, during the maternal period. These findings provide further evidence for effects of exposure to exogenous estrogenic compounds during the critical periods of fetal and perinatal development.
Asunto(s)
Encéfalo/efectos de los fármacos , Disruptores Endocrinos/farmacología , Estrógenos/farmacología , Etinilestradiol/farmacología , Conducta Materna/efectos de los fármacos , Comportamiento de Nidificación/efectos de los fármacos , Animales , Encéfalo/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Disruptores Endocrinos/toxicidad , Femenino , Reacción Cataléptica de Congelación/efectos de los fármacos , Aseo Animal/efectos de los fármacos , Lactancia/efectos de los fármacos , Ratones , EmbarazoRESUMEN
BACKGROUND: There are numerous examples of laboratory animals that were inadvertently exposed to endocrine disrupting chemicals (EDCs) during the process of conducting experiments. Controlling contaminations in the laboratory is challenging, especially when their source is unknown. Unfortunately, EDC contaminations can interfere with the interpretation of data during toxicological evaluations. We propose that the male CD-1 mouse mammary gland is a sensitive bioassay to evaluate the inadvertent contamination of animal colonies. METHODS: We evaluated mammary glands collected from two CD-1 mouse populations with distinct environmental histories. Population 1 was born and raised in a commercial laboratory with unknown EDC exposures; Population 2 was the second generation raised in an animal facility with limited exposures to xenoestrogens from caging, feed, etc. Mammary glands were collected from all animals and evaluated using morphometric techniques to quantify morphological characteristics of the mammary gland. RESULTS: Population 1 (with suspected history of environmental chemical exposure) and Population 2 (with known limited history of xenoestrogen exposure) were morphologically distinguishable in adult males, prepubertal females, and pubertal females. Mammary glands from males raised in the commercial animal facility were significantly more developed, with larger ductal trees and more branching points. The appearance of these mammary glands was consistent with prior reports of male mice exposed to low doses of bisphenol A (BPA) during early development. In females, the two populations were morphologically distinct at both prepuberty and puberty, with the most striking differences observed in the number, size, and density of terminal end buds, e.g. highly proliferative structures found in the developing mammary gland. CONCLUSIONS: Collectively, these results suggest that the mouse mammary gland has the potential to be used as a sentinel organ to evaluate and distinguish animal colonies raised in different environmental conditions including potential EDC exposures. Our findings could help researchers that wish to perform a posteriori evaluations to determine whether inadvertent contamination with xenoestrogens (and potentially other EDCs) has occurred in their animal colonies, especially after new materials (feed, caging, water bottles) have been introduced. Finally, our results challenge the relatively common practice of using historical controls in toxicological experiments.
Asunto(s)
Experimentación Animal , Grupos Control , Disruptores Endocrinos , Exposición a Riesgos Ambientales , Glándulas Mamarias Animales/anatomía & histología , Animales , Estradiol/sangre , Femenino , Laboratorios , Masculino , Ratones , Maduración SexualRESUMEN
The broad-spectrum herbicide glyphosate (common trade name "Roundup") was first sold to farmers in 1974. Since the late 1970s, the volume of glyphosate-based herbicides (GBHs) applied has increased approximately 100-fold. Further increases in the volume applied are likely due to more and higher rates of application in response to the widespread emergence of glyphosate-resistant weeds and new, pre-harvest, dessicant use patterns. GBHs were developed to replace or reduce reliance on herbicides causing well-documented problems associated with drift and crop damage, slipping efficacy, and human health risks. Initial industry toxicity testing suggested that GBHs posed relatively low risks to non-target species, including mammals, leading regulatory authorities worldwide to set high acceptable exposure limits. To accommodate changes in GBH use patterns associated with genetically engineered, herbicide-tolerant crops, regulators have dramatically increased tolerance levels in maize, oilseed (soybeans and canola), and alfalfa crops and related livestock feeds. Animal and epidemiology studies published in the last decade, however, point to the need for a fresh look at glyphosate toxicity. Furthermore, the World Health Organization's International Agency for Research on Cancer recently concluded that glyphosate is "probably carcinogenic to humans." In response to changing GBH use patterns and advances in scientific understanding of their potential hazards, we have produced a Statement of Concern drawing on emerging science relevant to the safety of GBHs. Our Statement of Concern considers current published literature describing GBH uses, mechanisms of action, toxicity in laboratory animals, and epidemiological studies. It also examines the derivation of current human safety standards. We conclude that: (1) GBHs are the most heavily applied herbicide in the world and usage continues to rise; (2) Worldwide, GBHs often contaminate drinking water sources, precipitation, and air, especially in agricultural regions; (3) The half-life of glyphosate in water and soil is longer than previously recognized; (4) Glyphosate and its metabolites are widely present in the global soybean supply; (5) Human exposures to GBHs are rising; (6) Glyphosate is now authoritatively classified as a probable human carcinogen; (7) Regulatory estimates of tolerable daily intakes for glyphosate in the United States and European Union are based on outdated science. We offer a series of recommendations related to the need for new investments in epidemiological studies, biomonitoring, and toxicology studies that draw on the principles of endocrinology to determine whether the effects of GBHs are due to endocrine disrupting activities. We suggest that common commercial formulations of GBHs should be prioritized for inclusion in government-led toxicology testing programs such as the U.S. National Toxicology Program, as well as for biomonitoring as conducted by the U.S. Centers for Disease Control and Prevention.
Asunto(s)
Carcinógenos/toxicidad , Consenso , Contaminantes Ambientales/toxicidad , Glicina/análogos & derivados , Herbicidas/toxicidad , Guías de Práctica Clínica como Asunto , Glicina/toxicidad , Humanos , Medición de Riesgo/normas , Pruebas de Toxicidad/normas , Estados Unidos , GlifosatoRESUMEN
BACKGROUND: The issue of endocrine disrupting chemicals (EDCs) is receiving wide attention from both the scientific and regulatory communities. Recent analyses of the EDC literature have been criticized for failing to use transparent and objective approaches to draw conclusions about the strength of evidence linking EDC exposures to adverse health or environmental outcomes. Systematic review methodologies are ideal for addressing this issue as they provide transparent and consistent approaches to study selection and evaluation. Objective methods are needed for integrating the multiple streams of evidence (epidemiology, wildlife, laboratory animal, in vitro, and in silico data) that are relevant in assessing EDCs. METHODS: We have developed a framework for the systematic review and integrated assessment (SYRINA) of EDC studies. The framework was designed for use with the International Program on Chemical Safety (IPCS) and World Health Organization (WHO) definition of an EDC, which requires appraisal of evidence regarding 1) association between exposure and an adverse effect, 2) association between exposure and endocrine disrupting activity, and 3) a plausible link between the adverse effect and the endocrine disrupting activity. RESULTS: Building from existing methodologies for evaluating and synthesizing evidence, the SYRINA framework includes seven steps: 1) Formulate the problem; 2) Develop the review protocol; 3) Identify relevant evidence; 4) Evaluate evidence from individual studies; 5) Summarize and evaluate each stream of evidence; 6) Integrate evidence across all streams; 7) Draw conclusions, make recommendations, and evaluate uncertainties. The proposed method is tailored to the IPCS/WHO definition of an EDC but offers flexibility for use in the context of other definitions of EDCs. CONCLUSIONS: When using the SYRINA framework, the overall objective is to provide the evidence base needed to support decision making, including any action to avoid/minimise potential adverse effects of exposures. This framework allows for the evaluation and synthesis of evidence from multiple evidence streams. Finally, a decision regarding regulatory action is not only dependent on the strength of evidence, but also the consequences of action/inaction, e.g. limited or weak evidence may be sufficient to justify action if consequences are serious or irreversible.
Asunto(s)
Disruptores Endocrinos/toxicidad , Contaminantes Ambientales/toxicidad , Medición de Riesgo/métodos , Animales , Exposición a Riesgos Ambientales , Humanos , Modelos Teóricos , Pruebas de ToxicidadRESUMEN
The possibility that endocrine disrupting chemicals (EDCs) in our environment contribute to hormonally related effects and diseases observed in human and wildlife populations has caused concern among decision makers and researchers alike. EDCs challenge principles traditionally applied in chemical risk assessment and the identification and assessment of these compounds has been a much debated topic during the last decade. State of the science reports and risk assessments of potential EDCs have been criticized for not using systematic and transparent approaches in the evaluation of evidence. In the fields of medicine and health care, systematic review methodologies have been developed and used to enable objectivity and transparency in the evaluation of scientific evidence for decision making. Lately, such approaches have also been promoted for use in the environmental health sciences and risk assessment of chemicals. Systematic review approaches could provide a tool for improving the evaluation of evidence for decision making regarding EDCs, e.g. by enabling systematic and transparent use of academic research data in this process. In this review we discuss the advantages and challenges of applying systematic review methodology in the identification and assessment of EDCs.
Asunto(s)
Toma de Decisiones , Ecosistema , Disruptores Endocrinos , Contaminantes Ambientales , Humanos , Medición de Riesgo/métodosRESUMEN
PURPOSE OF REVIEW: Although diseases may appear clinically throughout the lifespan, it is clear that many diseases have origins during development. Altered nutrition, as well as exposure to environmental chemicals, drugs, infections, or stress during specific times of development, can lead to functional changes in tissues, predisposing those tissues to diseases that manifest later in life. This review will focus on the role of altered nutrition and exposures to environmental chemicals during development in the role of disease and dysfunction. RECENT FINDINGS: The effects of altered nutrition or exposure to environmental chemicals during development are likely because of altered programming of epigenetic marks, which persist across the lifespan. Indeed some changes can be transmitted to future generations. SUMMARY: The evidence in support of the developmental origins of the health and disease paradigm is sufficiently robust and repeatable across species, including humans, to suggest a need for greater emphasis in the clinical area. As a result of these data, obesity, diabetes, cardiovascular morbidity, and neuropsychiatric diseases can all be considered pediatric diseases. Disease prevention must start with improved nutrition and reduced exposure to environmental chemicals during development.
Asunto(s)
Exposición a Riesgos Ambientales/efectos adversos , Contaminantes Ambientales/toxicidad , Epigenómica , Efectos Tardíos de la Exposición Prenatal/prevención & control , Salud Pública , Niño , Femenino , Interacción Gen-Ambiente , Humanos , Masculino , Fenómenos Fisiológicos de la Nutrición , Embarazo , Efectos Tardíos de la Exposición Prenatal/epidemiologíaRESUMEN
The fundamental principle in regulatory toxicology is that all chemicals are toxic and that the severity of effect is proportional to the exposure level. An ancillary assumption is that there are no effects at exposures below the lowest observed adverse effect level (LOAEL), either because no effects exist or because they are not statistically resolvable, implying that they would not be adverse. Chemicals that interfere with hormones violate these principles in two important ways: dose-response relationships can be non-monotonic, which have been reported in hundreds of studies of endocrine disrupting chemicals (EDCs); and effects are often observed below the LOAEL, including all environmental epidemiological studies examining EDCs. In recognition of the importance of this issue, Lagarde et al. have published the first proposal to qualitatively assess non-monotonic dose response (NMDR) relationships for use in risk assessments. Their proposal represents a significant step forward in the evaluation of complex datasets for use in risk assessments. Here, we comment on three elements of the Lagarde proposal that we feel need to be assessed more critically and present our arguments: 1) the use of Klimisch scores to evaluate study quality, 2) the concept of evaluating study quality without topical experts' knowledge and opinions, and 3) the requirement of establishing the biological plausibility of an NMDR before consideration for use in risk assessment. We present evidence-based logical arguments that 1) the use of the Klimisch score should be abandoned for assessing study quality; 2) evaluating study quality requires experts in the specific field; and 3) an understanding of mechanisms should not be required to accept observable, statistically valid phenomena. It is our hope to contribute to the important and ongoing debate about the impact of NMDRs on risk assessment with positive suggestions.