Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Comput Biol ; 18(3): e1009178, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35294435

RESUMEN

Proteins are typically represented by discrete atomic coordinates providing an accessible framework to describe different conformations. However, in some fields proteins are more accurately represented as near-continuous surfaces, as these are imprinted with geometric (shape) and chemical (electrostatics) features of the underlying protein structure. Protein surfaces are dependent on their chemical composition and, ultimately determine protein function, acting as the interface that engages in interactions with other molecules. In the past, such representations were utilized to compare protein structures on global and local scales and have shed light on functional properties of proteins. Here we describe RosettaSurf, a surface-centric computational design protocol, that focuses on the molecular surface shape and electrostatic properties as means for protein engineering, offering a unique approach for the design of proteins and their functions. The RosettaSurf protocol combines the explicit optimization of molecular surface features with a global scoring function during the sequence design process, diverging from the typical design approaches that rely solely on an energy scoring function. With this computational approach, we attempt to address a fundamental problem in protein design related to the design of functional sites in proteins, even when structurally similar templates are absent in the characterized structural repertoire. Surface-centric design exploits the premise that molecular surfaces are, to a certain extent, independent of the underlying sequence and backbone configuration, meaning that different sequences in different proteins may present similar surfaces. We benchmarked RosettaSurf on various sequence recovery datasets and showcased its design capabilities by generating epitope mimics that were biochemically validated. Overall, our results indicate that the explicit optimization of surface features may lead to new routes for the design of functional proteins.


Asunto(s)
Ingeniería de Proteínas , Proteínas , Algoritmos , Biología Computacional/métodos , Conformación Proteica , Ingeniería de Proteínas/métodos , Proteínas/química , Electricidad Estática
2.
Neuroimage ; 155: 490-502, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28412440

RESUMEN

The study of brain dynamics enables us to characterize the time-varying functional connectivity among distinct neural groups. However, current methods suffer from the absence of structural connectivity information. We propose to integrate infra-slow neural oscillations and anatomical-connectivity maps, as derived from functional and diffusion MRI, in a multilayer-graph framework that captures transient networks of spatio-temporal connectivity. These networks group anatomically wired and temporary synchronized brain regions and encode the propagation of functional activity on the structural connectome. In a group of 71 healthy subjects, we find that these transient networks demonstrate power-law spatial and temporal size, globally organize into well-known functional systems and describe wave-like trajectories of activation across anatomically connected regions. Within the transient networks, activity propagates through polysynaptic paths that include selective ensembles of structural connections and differ from the structural shortest paths. In the light of the communication-through-coherence principle, the identified spatio-temporal networks could encode communication channels' selection and neural assemblies, which deserves further attention. This work contributes to the understanding of brain structure-function relationships by considering the time-varying nature of resting-state interactions on the axonal scaffold, and it offers a convenient framework to study large-scale communication mechanisms and functional dynamics.


Asunto(s)
Encéfalo , Conectoma/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Red Nerviosa , Adulto , Encéfalo/anatomía & histología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Femenino , Humanos , Masculino , Red Nerviosa/anatomía & histología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Adulto Joven
3.
IEEE Trans Image Process ; 18(8): 1703-16, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19389695

RESUMEN

In recent years, works on geometric multidimensional signal representations have established a close relation with signal expansions on redundant dictionaries. For this purpose, matching pursuits (MP) have shown to be an interesting tool. Recently, most important limitations of MP have been underlined, and alternative algorithms like weighted-MP have been proposed. This work explores the use of weighted-MP as a new framework for motion-adaptive geometric video approximations. We study a novel algorithm to decompose video sequences in terms of few, salient video components that jointly represent the geometric and motion content of a scene. Experimental coding results on highly geometric content reflect how the proposed paradigm exploits spatio-temporal video geometry. Two-dimensional weighted-MP improves the representation compared to those based on 2-D MP. Furthermore, the extracted video components represent relevant visual structures with high saliency. In an example application, such components are effectively used as video descriptors for the joint audio-video analysis of multimedia sequences.

4.
IEEE Trans Image Process ; 16(7): 1888-901, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17605386

RESUMEN

A new generation of optical devices that generate images covering a larger part of the field of view than conventional cameras, namely catadioptric cameras, is slowly emerging. These omnidirectional images will most probably deeply impact computer vision in the forthcoming years, provided that the necessary algorithmic background stands strong. In this paper, we propose a general framework that helps define various computer vision primitives. We show that geometry, which plays a central role in the formation of omnidirectional images, must be carefully taken into account while performing such simple tasks as smoothing or edge detection. Partial differential equations (PDEs) offer a very versatile tool that is well suited to cope with geometrical constraints. We derive new energy functionals and PDEs for segmenting images obtained from catadioptric cameras and show that they can be implemented robustly using classical finite difference schemes. Various experimental results illustrate the potential of these new methods on both synthetic and natural images.


Asunto(s)
Algoritmos , Inteligencia Artificial , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Dispositivos Ópticos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
5.
IEEE Trans Image Process ; 16(9): 2272-83, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17784601

RESUMEN

Real-world phenomena involve complex interactions between multiple signal modalities. As a consequence, humans are used to integrate at each instant perceptions from all their senses in order to enrich their understanding of the surrounding world. This paradigm can be also extremely useful in many signal processing and computer vision problems involving mutually related signals. The simultaneous processing of multimodal data can, in fact, reveal information that is otherwise hidden when considering the signals independently. However, in natural multimodal signals, the statistical dependencies between modalities are in general not obvious. Learning fundamental multimodal patterns could offer deep insight into the structure of such signals. In this paper, we present a novel model of multimodal signals based on their sparse decomposition over a dictionary of multimodal structures. An algorithm for iteratively learning multimodal generating functions that can be shifted at all positions in the signal is proposed, as well. The learning is defined in such a way that it can be accomplished by iteratively solving a generalized eigenvector problem, which makes the algorithm fast, flexible, and free of user-defined parameters. The proposed algorithm is applied to audiovisual sequences and it is able to discover underlying structures in the data. The detection of such audio-video patterns in audiovisual clips allows to effectively localize the sound source on the video in presence of substantial acoustic and visual distractors, outperforming state-of-the-art audiovisual localization algorithms.


Asunto(s)
Algoritmos , Inteligencia Artificial , Diccionarios como Asunto , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Almacenamiento y Recuperación de la Información/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Técnica de Sustracción
6.
Sci Rep ; 7: 42013, 2017 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-28186173

RESUMEN

Visual short-term memory binding tasks are a promising early marker for Alzheimer's disease (AD). To uncover functional deficits of AD in these tasks it is meaningful to first study unimpaired brain function. Electroencephalogram recordings were obtained from encoding and maintenance periods of tasks performed by healthy young volunteers. We probe the task's transient physiological underpinnings by contrasting shape only (Shape) and shape-colour binding (Bind) conditions, displayed in the left and right sides of the screen, separately. Particularly, we introduce and implement a novel technique named Modular Dirichlet Energy (MDE) which allows robust and flexible analysis of the functional network with unprecedented temporal precision. We find that connectivity in the Bind condition is less integrated with the global network than in the Shape condition in occipital and frontal modules during the encoding period of the right screen condition. Using MDE we are able to discern driving effects in the occipital module between 100-140 ms, coinciding with the P100 visually evoked potential, followed by a driving effect in the frontal module between 140-180 ms, suggesting that the differences found constitute an information processing difference between these modules. This provides temporally precise information over a heterogeneous population in promising tasks for the detection of AD.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/patología , Pruebas Diagnósticas de Rutina/métodos , Electroencefalografía/métodos , Memoria a Corto Plazo , Percepción Visual , Lóbulo Frontal/fisiología , Humanos , Lóbulo Occipital/fisiología
7.
IEEE Trans Image Process ; 15(3): 726-39, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16519358

RESUMEN

New breakthroughs in image coding possibly lie in signal decomposition through nonseparable basis functions that can efficiently capture edge characteristics, present in natural images. The work proposed in this paper provides an adaptive way of representing images as a sum of two-dimensional features. It presents a low bit-rate image coding method based on a matching pursuit (MP) expansion, over a dictionary built on anisotropic refinement and rotation of contour-like atoms. This method is shown to provide, at low bit rates, results comparable to the state of the art in image compression, represented here by JPEG2000 and SPIHT, with generally a better visual quality in the MP scheme. The coding artifacts are less annoying than the ringing introduced by wavelets at very low bit rate, due to the smoothing performed by the basis functions used in the MP algorithm. In addition to good compression performances at low bit rates, the new coder has the advantage of producing highly flexible streams. They can easily be decoded at any spatial resolution, different from the original image, and the bitstream can be truncated at any point to match diverse bandwidth requirements. The spatial adaptivity is shown to be more flexible and less complex than transcoding operations generally applied to state of the art codec bitstreams. Due to both its ability for capturing the most important parts of multidimensional signals, and a flexible stream structure, the image coder proposed in this paper represents an interesting solution for low to medium rate image coding in visual communication applications.


Asunto(s)
Algoritmos , Gráficos por Computador , Compresión de Datos/métodos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Procesamiento de Señales Asistido por Computador , Redes de Comunicación de Computadores
8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 3961-3664, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28269152

RESUMEN

Limited data and low-dose constraints are common problems in a variety of tomographic reconstruction paradigms, leading to noisy and incomplete data. Over the past few years, sinogram denoising has become an essential preprocessing step for low-dose Computed Tomographic (CT) reconstructions. We propose a novel sinogram denoising algorithm inspired by signal processing on graphs. Graph-based methods often perform better than standard filtering operations since they can exploit the signal structure. This makes the sinogram an ideal candidate for graph based denoising since it generally has a piecewise smooth structure. We test our method with a variety of phantoms using different reconstruction methods. Our numerical study shows that the proposed algorithm improves the performance of analytical filtered back-projection (FBP) and iterative methods such as ART (Kaczmarz), and SIRT (Cimmino). We observed that graph denoised sinograms always minimize the error measure and improve the accuracy of the solution, compared to regular reconstructions.


Asunto(s)
Gráficos por Computador , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Algoritmos , Humanos , Fantasmas de Imagen
9.
IEEE Trans Image Process ; 11(4): 363-72, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-18244638

RESUMEN

We propose a simple and efficient technique for designing translation invariant dyadic wavelet transforms (DWTs) in two dimensions. Our technique relies on an extension of the work of Duval-Destin et al. where dyadic decompositions are constructed starting from the continuous wavelet transform. The main advantage of this framework is that it allows for a lot of freedom in designing two-dimensional (2-D) dyadic wavelets. We use this property to construct directional wavelets, whose orientation filtering capabilities are very important in image processing. We address the efficient implementation of these decompositions by constructing approximate QMFs through an L(2) optimization. We also propose and study an efficient implementation in the Fourier domain for dealing with large filters.

10.
IEEE Trans Image Process ; 13(8): 1104-14, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15326852

RESUMEN

In this paper, we introduce a framework that merges classical ideas borrowed from scale-space and multiresolution segmentation with nonlinear partial differential equations. A non-linear scale-space stack is constructed by means of an appropriate diffusion equation. This stack is analyzed and a tree of coherent segments is constructed based on relationships between different scale layers. Pruning this tree proves to be a very efficient tool for unsupervised segmentation of different classes of images (e.g., natural, medical, etc.). This technique is light on the computational point of view and can be extended to nonscalar data in a straightforward manner.


Asunto(s)
Algoritmos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Reconocimiento de Normas Patrones Automatizadas , Procesamiento de Señales Asistido por Computador , Modelos Lineales , Dinámicas no Lineales , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
11.
IEEE Trans Pattern Anal Mach Intell ; 36(5): 874-87, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-26353223

RESUMEN

Local Binary Descriptors are becoming more and more popular for image matching tasks, especially when going mobile. While they are extensively studied in this context, their ability to carry enough information in order to infer the original image is seldom addressed. In this work, we leverage an inverse problem approach to show that it is possible to directly reconstruct the image content from Local Binary Descriptors. This process relies on very broad assumptions besides the knowledge of the pattern of the descriptor at hand. This generalizes previous results that required either a prior learning database or non-binarized features. Furthermore, our reconstruction scheme reveals differences in the way different Local Binary Descriptors capture and encode image information. Hence, the potential applications of our work are multiple, ranging from privacy issues caused by eavesdropping image keypoints streamed by mobile devices to the design of better descriptors through the visualization and the analysis of their geometric content.

12.
IEEE Trans Biomed Circuits Syst ; 8(6): 857-70, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24723633

RESUMEN

This paper introduces an area- and power-efficient approach for compressive recording of cortical signals used in an implantable system prior to transmission. Recent research on compressive sensing has shown promising results for sub-Nyquist sampling of sparse biological signals. Still, any large-scale implementation of this technique faces critical issues caused by the increased hardware intensity. The cost of implementing compressive sensing in a multichannel system in terms of area usage can be significantly higher than a conventional data acquisition system without compression. To tackle this issue, a new multichannel compressive sensing scheme which exploits the spatial sparsity of the signals recorded from the electrodes of the sensor array is proposed. The analysis shows that using this method, the power efficiency is preserved to a great extent while the area overhead is significantly reduced resulting in an improved power-area product. The proposed circuit architecture is implemented in a UMC 0.18 [Formula: see text]m CMOS technology. Extensive performance analysis and design optimization has been done resulting in a low-noise, compact and power-efficient implementation. The results of simulations and subsequent reconstructions show the possibility of recovering fourfold compressed intracranial EEG signals with an SNR as high as 21.8 dB, while consuming 10.5 [Formula: see text]W of power within an effective area of 250 [Formula: see text]m × 250 [Formula: see text]m per channel.


Asunto(s)
Corteza Cerebral , Electroencefalografía/instrumentación , Electroencefalografía/métodos , Monitorización Neurofisiológica/instrumentación , Monitorización Neurofisiológica/métodos , Humanos
13.
IEEE Trans Image Process ; 22(12): 5096-110, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24043385

RESUMEN

We propose and analyze a new model for hyperspectral images (HSIs) based on the assumption that the whole signal is composed of a linear combination of few sources, each of which has a specific spectral signature, and that the spatial abundance maps of these sources are themselves piecewise smooth and therefore efficiently encoded via typical sparse models. We derive new sampling schemes exploiting this assumption and give theoretical lower bounds on the number of measurements required to reconstruct HSI data and recover their source model parameters. This allows us to segment HSIs into their source abundance maps directly from compressed measurements. We also propose efficient optimization algorithms and perform extensive experimentation on synthetic and real datasets, which reveals that our approach can be used to encode HSI with far less measurements and computational effort than traditional compressive sensing methods.

14.
IEEE Trans Image Process ; 22(6): 2275-85, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23475360

RESUMEN

We study the impact of sampling theorems on the fidelity of sparse image reconstruction on the sphere. We discuss how a reduction in the number of samples required to represent all information content of a band-limited signal acts to improve the fidelity of sparse image reconstruction, through both the dimensionality and sparsity of signals. To demonstrate this result, we consider a simple inpainting problem on the sphere and consider images sparse in the magnitude of their gradient. We develop a framework for total variation inpainting on the sphere, including fast methods to render the inpainting problem computationally feasible at high resolution. Recently a new sampling theorem on the sphere was developed, reducing the required number of samples by a factor of two for equiangular sampling schemes. Through numerical simulations, we verify the enhanced fidelity of sparse image reconstruction due to the more efficient sampling of the sphere provided by the new sampling theorem.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Simulación por Computador , Diagnóstico por Imagen , Geografía
15.
IEEE Trans Image Process ; 21(4): 1950-62, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22203716

RESUMEN

This paper introduces a novel algorithm for sparse approximation in redundant dictionaries called the M-term pursuit (MTP). This algorithm decomposes a signal into a linear combination of atoms that are selected in order to represent the main signal components. The MTP algorithm provides an adaptive representation for signals in any complete dictionary. The basic idea behind the MTP is to partition the dictionary into L quasi-disjoint subdictionaries. A k-term signal approximation is then iteratively computed, where each iteration leads to the selection of M ≤ L atoms based on thresholding. The MTP algorithm is shown to achieve competitive performance with the matching pursuit (MP) algorithm that greedily selects atoms one by one. This is due to efficient partitioning of the dictionary. At the same time, the computational complexity is dramatically reduced compared to MP due to the batch selection of atoms. We finally illustrate the performance of MTP in image and video compression applications, where we show that the suboptimal atom selection of MTP is largely compensated by the reduction in complexity compared with MP.


Asunto(s)
Algoritmos , Compresión de Datos/métodos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Fotograbar/métodos , Procesamiento de Señales Asistido por Computador , Grabación en Video/métodos
16.
IEEE Trans Med Imaging ; 31(3): 586-98, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22042149

RESUMEN

We propose a novel compressed sensing technique to accelerate the magnetic resonance imaging (MRI) acquisition process. The method, coined spread spectrum MRI or simply s(2)MRI, consists of premodulating the signal of interest by a linear chirp before random k-space under-sampling, and then reconstructing the signal with nonlinear algorithms that promote sparsity. The effectiveness of the procedure is theoretically underpinned by the optimization of the coherence between the sparsity and sensing bases. The proposed technique is thoroughly studied by means of numerical simulations, as well as phantom and in vivo experiments on a 7T scanner. Our results suggest that s(2)MRI performs better than state-of-the-art variable density k-space under-sampling approaches.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética/métodos , Algoritmos , Encéfalo/anatomía & histología , Simulación por Computador , Humanos , Dinámicas no Lineales , Fantasmas de Imagen , Reproducibilidad de los Resultados
17.
IEEE Trans Image Process ; 20(9): 2636-49, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21411407

RESUMEN

In this paper, we address the issues of analyzing and classifying JPEG 2000 code-streams. An original representation, called integral volume, is first proposed to compute local image features progressively from the compressed code-stream, on any spatial image area, regardless of the code-blocks borders. Then, a JPEG 2000 classifier is presented that uses integral volumes to learn an ensemble of randomized trees. Several classification tasks are performed on various JPEG 2000 image databases and results are in the same range as the ones obtained in the literature with noncompressed versions of these databases. Finally, a cascade of such classifiers is considered, in order to specifically address the image retrieval issue, i.e., bi-class problems characterized by a highly skewed distribution. An efficient way to learn and optimize such cascade is proposed. We show that staying in a JPEG 2000 framework, initially seen as a constraint to avoid heavy decoding operations, is actually an advantage as it can benefit from the multiresolution and multilayer paradigms inherently present in this compression standard. In particular, unlike other existing cascaded retrieval systems, the features used along our cascade are increasingly discriminant and lead therefore to a better tradeoff of complexity versus performance.

18.
IEEE Trans Biomed Eng ; 58(9): 2456-66, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21606019

RESUMEN

Wireless body sensor networks (WBSN) hold the promise to be a key enabling information and communications technology for next-generation patient-centric telecardiology or mobile cardiology solutions. Through enabling continuous remote cardiac monitoring, they have the potential to achieve improved personalization and quality of care, increased ability of prevention and early diagnosis, and enhanced patient autonomy, mobility, and safety. However, state-of-the-art WBSN-enabled ECG monitors still fall short of the required functionality, miniaturization, and energy efficiency. Among others, energy efficiency can be improved through embedded ECG compression, in order to reduce airtime over energy-hungry wireless links. In this paper, we quantify the potential of the emerging compressed sensing (CS) signal acquisition/compression paradigm for low-complexity energy-efficient ECG compression on the state-of-the-art Shimmer WBSN mote. Interestingly, our results show that CS represents a competitive alternative to state-of-the-art digital wavelet transform (DWT)-based ECG compression solutions in the context of WBSN-based ECG monitoring systems. More specifically, while expectedly exhibiting inferior compression performance than its DWT-based counterpart for a given reconstructed signal quality, its substantially lower complexity and CPU execution time enables it to ultimately outperform DWT-based ECG compression in terms of overall energy efficiency. CS-based ECG compression is accordingly shown to achieve a 37.1% extension in node lifetime relative to its DWT-based counterpart for "good" reconstruction quality.


Asunto(s)
Algoritmos , Electrocardiografía Ambulatoria/instrumentación , Procesamiento de Señales Asistido por Computador/instrumentación , Telemedicina/instrumentación , Tecnología Inalámbrica/instrumentación , Humanos , Análisis de Ondículas
19.
IEEE Trans Neural Netw ; 20(12): 1898-910, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19963447

RESUMEN

A novel model is presented to learn bimodally informative structures from audio-visual signals. The signal is represented as a sparse sum of audio-visual kernels. Each kernel is a bimodal function consisting of synchronous snippets of an audio waveform and a spatio-temporal visual basis function. To represent an audio-visual signal, the kernels can be positioned independently and arbitrarily in space and time. The proposed algorithm uses unsupervised learning to form dictionaries of bimodal kernels from audio-visual material. The basis functions that emerge during learning capture salient audio-visual data structures. In addition, it is demonstrated that the learned dictionary can be used to locate sources of sound in the movie frame. Specifically, in sequences containing two speakers, the algorithm can robustly localize a speaker even in the presence of severe acoustic and visual distracters.


Asunto(s)
Inteligencia Artificial , Percepción Auditiva/fisiología , Aprendizaje/fisiología , Percepción Visual/fisiología , Estimulación Acústica , Algoritmos , Simulación por Computador , Aprendizaje Discriminativo , Humanos , Estimulación Luminosa , Reconocimiento en Psicología , Habla
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA