RESUMEN
Structural parameters play a crucial role in determining the electromagnetic and thermal responses of gold nanoconstructs (GNCs) at near-infrared (NIR) wavelengths. Therefore, developing GNCs for reliable, high-contrast photoacoustic imaging has been focused on adjusting structural parameters to achieve robust NIR light absorption with photostability. In this study, we introduce an efficient photoacoustic imaging contrast agent: gold sphere chains (GSCs) consisting of plasmonically coupled gold nanospheres. The chain geometry results in enhanced photoacoustic signal generation originating from outstanding photothermal characteristics compared to traditional gold contrast agents, such as gold nanorods. Furthermore, the GSCs produce consistent photoacoustic signals at laser fluences within the limits set by the American National Standards Institute. The exceptional photoacoustic response of GSCs allows for high-contrast photoacoustic imaging over multiple imaging sessions. Finally, we demonstrate the utility of our GSCs for molecular photoacoustic cancer imaging, both in vitro and in vivo, through the integration of a tumor-targeting moiety.
RESUMEN
Designing plasmonic nanoparticles for biomedical photoacoustic (PA) imaging involves tailoring material properties at the nanometer scale. A key in developing plasmonic PA contrast nanoagents is to engineer their enhanced optical responses in the near-infrared wavelength range, as well as heat transfer properties and photostability. This study introduces anisotropic plasmonic nanosphere aggregates with close interparticle proximity as photostable and efficient contrast agent for PA imaging. Silver (Ag), among plasmonic metals, is particularly attractive due to its strongest optical response and highest heat conductivity. Our results demonstrate that close interparticle proximity in silver nanoaggregates (AgNAs), spatially confined within a polymer shell layer, leads to blackbody-like optical absorption, resulting in robust PA signals through efficient pulsed heat generation and transfer. Additionally, our AgNAs exhibit a high photodamage threshold highlighting their potential to outperform conventional plasmonic contrast agents for high-contrast PA imaging over multiple imaging sessions. Furthermore, we demonstrate the capability of the AgNAs for molecular PA cancer imaging in vivo by incorporating a tumor-targeting peptide moiety.
RESUMEN
In plasmonic nanoconstructs (NCs), fine-tuning interparticle interactions at the subnanoscale offer enhanced electromagnetic and thermal responses in the near-infrared (NIR) wavelength range. Due to tunable electromagnetic and thermal characteristics, NCs can be excellent photoacoustic (PA) imaging contrast agents. However, engineering plasmonic NCs that maximize light absorption efficiency across multiple polarization directions, i.e., exhibiting blackbody absorption behavior, remains challenging. Herein, we present the synthesis, computational simulation, and characterization of hyper-branched gold nanoconstructs (HBGNCs) as a highly efficient PA contrast agent. HBGNCs exhibit remarkable optical properties, including strong NIR absorption, high absorption efficiency across various polarization angles, and superior photostability compared to conventional standard plasmonic NC-based contrast agents such as gold nanorods and gold nanostars. In vitro and in vivo experiments confirm the suitability of HBGNCs for cancer imaging, showcasing their potential as reliable PA contrast agents and addressing the need for enhanced imaging contrast and stability in bioimaging applications.
Asunto(s)
Neoplasias , Técnicas Fotoacústicas , Humanos , Oro , Técnicas Fotoacústicas/métodos , Medios de Contraste , Diagnóstico por Imagen/métodosRESUMEN
Manipulating matter at the nanometer scale to create desired plasmonic nanostructures holds great promise in the field of biomedical photoacoustic (PA) imaging. We demonstrate a strategy for regulating PA signal generation from anisotropic nano-sized assemblies of gold nanospheres (Au NSs) by adjusting the inter-particle connectivity between neighboring Au NSs. The inter-particle connectivity is controlled by modulating the diameter and inter-particle spacing of Au NSs in the nanoassemblies. The results indicate that nanoassemblies with semi-connectivity, i.e., assemblies with a finite inter-particle spacing shorter than the theoretical limit of repulsion between nearby Au NSs, exhibit 3.4-fold and 2.4-fold higher PA signals compared to nanoassemblies with no connectivity and full connectivity, respectively. Furthermore, due to the reduced diffusion of Au atoms, the semi-connectivity Au nanoassemblies demonstrate high photodamage threshold and, therefore, excellent photostability at fluences above the current American National Standards Institute limits. The exceptional photostability of the semi-connectivity nanoassemblies highlights their potential to surpass conventional plasmonic contrast agents for continuing PA imaging. Collectively, our findings indicate that semi-connected nanostructures are a promising option for reliable, high-contrast PA imaging applications over multiple imaging sessions due to their strong PA signals and enhanced photostability.
RESUMEN
Two generation mechanisms-optical perturbation and acoustic radiation force (ARF)-were investigated where high frame rate ultrasound imaging was used to track the propagation of induced SAWs. We compared ARF-induced SAWs with laser-induced SAWs generated by laser beam irradiation of the uniformly absorbing tissue-like viscoelastic phantom, where light was preferentially absorbed at the surface. We also compared the frequency content of SAWs generated by ARF versus pulsed laser light, using the same duration of excitation. Differences in the SAW bandwidth were expected because, in general, laser light can be focused into a smaller area. Finally, we compared wave generation and propagation when the wave's origin was below the surface. We also investigated the relationship between shear wave amplitude and optical fluence. The investigation reported here can potentially extend the applications of laser-induced SAW generation and imaging in life sciences and other applications.
RESUMEN
OBJECTIVES: Intravascular photoacoustic (IVPA) imaging is being developed to image atherosclerotic plaques, a leading cause of morbidity and mortality in the United States. However, the safety of this imaging modality, which requires repeated irradiation with short laser pulses, has not yet been investigated. This study has two objectives. First, determine in vitro the limit of cumulative fluence that can be applied to cells before death at IVPA relevant wavelengths. Second, evaluate if high single pulse fluences are a potential cause of cell death during IVPA imaging. MATERIALS AND METHODS: Experiments were conducted using endothelial cells, macrophages, and smooth muscle cells. The cumulative fluence experiments were conducted at 1064 and 1197 nm, using a high pulse repetition frequency laser. Cells were irradiated with a wide range of cumulative fluences and evaluated for cell death. The thresholds for death were compared to the maximum expected clinical cumulative fluence. To evaluate the effect of single pulse fluences, cells were irradiated at 1064, 1210, and 1720 nm. Light was delivered at a range of pulse energies to emulate the fluences that cells would be exposed to during clinical IVPA imaging. RESULTS: At 1064 nm, all three cell types remained viable at cumulative fluences above the maximum expected clinical cumulative fluence, which is calculated based on common IVPA imaging protocols. At 1197 nm, cells were viable near or just below the maximum expected clinical cumulative fluence, with some cell type to cell type variation. All three cell types remained viable after irradiation with high single pulse fluences at all three wavelengths. CONCLUSION: The cumulative fluence experiments indicate that safety considerations are likely to put constraints on the amount of irradiation that can be used in IVPA imaging protocols. However, this study also indicates that it will be possible to use IVPA imaging safely, since cumulative fluences could be reduced by as much as two orders of magnitude below the maximum expected clinical cumulative fluence by varying the imaging protocol, albeit at the expense of image quality. The single pulse fluence experiments indicate that cell death from single pulse fluence is not likely during IVPA imaging. Thus, future studies should focus on heat accumulation as the likely mechanism of tissue damage. Lasers Surg. Med. 51:466-474, 2019. © 2018 Wiley Periodicals, Inc.
RESUMEN
Many heart diseases can change the elasticity of myocardial tissues, making elastography a potential medical imaging strategy for heart disease diagnosis and cardiovascular risk assessment. Among the existing elastography methods, ultrasound elastography is an appealing choice because of ultrasound's inherent advantages of low cost, high safety, wide availability, and deep penetration. The existing investigations of cardiac ultrasound elastography were implemented based on a bulk model of heart tissue, treating the waves generated in the myocardial tissues as shear waves. In this pilot study, we considered the distinct geometric characteristics of heart tissue, i.e., being a layered structure and its dispersive nature as biological tissue. Based on these considerations, we modeled heart tissues as a layered-dispersive structure and developed a new ultrasound elastography method, ultrasonic guided wave elastography, to characterize the myocardial elasticity. The validity of this layered-dispersive model and the reliability of the developed guided wave elastography were first verified on tissue-mimicking phantoms. Then, the guided wave elastography was applied to an ex vivo imaging of a rat heart tissue specimen in real-time during the biaxial planar mechanical testing. The comparison of the real-time myocardial elasticity obtained from guided wave elastography and mechanical testing demonstrated strong matching, verifying the reliability of the developed cardiac guided wave elastography as a potential method for characterizing myocardial elasticity.
RESUMEN
SIGNIFICANCE: Intravascular photoacoustic (IVPA) imaging can identify native lipid in atherosclerotic plaques in vivo. However, the large number of laser pulses required to produce 3D images is a safety concern that has not been fully addressed. AIM: We aim to evaluate if irradiation at wavelengths and dosages relevant to IVPA imaging causes target vessel damage. APPROACH: We irradiate the carotid artery of swine at one of several energy dosages using radiation at 1064 or 1720 nm and use histological evaluation by a pathologist to identify dose-dependent damage. RESULTS: Media necrosis was the only dose-dependent form of injury. Damage was present at a cumulative fluence of 50 J / cm2 when using 1720 nm light. Damage was more equivocally identified at 700 J / cm2 using 1064 nm. CONCLUSIONS: In prior work, IVPA imaging of native lipid in swine has been successfully conducted below the damage thresholds identified. This indicates that it will be possible to use IVPA imaging in a clinical setting without damaging vessel tissue. Future work should determine if irradiation causes an increase in blood thrombogenicity and confirm whether damaged tissue will heal over longer time points.
Asunto(s)
Placa Aterosclerótica , Animales , Diagnóstico por Imagen , Rayos Láser , PorcinosRESUMEN
Pulsed laser irradiation has emerged as an effective means to photothermally transform plasmonic nanostructures after their use in different biomedical applications. However, the ability to predict the products after photothermal transformation requires extensive ex situ studies. Here, we report a systematic study of the photothermal transformation of Au-Ag nanocages with a localized surface plasmon resonance at ca. 750 nm under pulsed laser irradiation at different fluences and a pulse duration of 5 ns. At biologically relevant laser energies, the pulsed laser transforms Au-Ag nanocages into pseudo-spherical, solid nanoparticles. The solid nanoparticles contained similar numbers of Au and Ag atoms to the parent Au-Ag nanocages. At increased laser fluences (>16 mJ cm-2) and number of pulses (>150), the average diameter of the resulting pseudo-spherical particles increased due to the involvement of Ostwald ripening and/or attachment-based growth. The changes in optical properties as a result of the transformation were validated using simulations based on the discrete dipole approximation method, where the spectral profiles and peak positions of the initial and final states matched well with the experimentally derived data. The results may have implications for the future use of Au-Ag nanocages in biomedicine, catalysis, and sensing.