Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Gen Comp Endocrinol ; 204: 166-72, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24818971

RESUMEN

Brain nuclei within the song-control system of songbirds are seasonally plastic during adulthood. These nuclei are larger in birds exposed to long, spring-like days than short, winter-like days. There is overwhelming evidence that this effect is mediated by testosterone (T). However, castration studies have also demonstrated that photostimulation has gonad-independent effects on song-control system plasticity, but these studies rarely control for extra-gonadal sources of T. In this study, we used anti-androgen and anti-estrogen treatments in combination with castration to determine the sex steroid-independent effects of photostimulation on HVC size and doublecortin immunoreactivity in white-throated sparrows (Zonotrichia albicollis). Birds were kept on short days or photostimulated for 1 month. Photostimulated birds were intact, castrated and treated with anti-androgens and anti-estrogens, or castrated and treated with T. HVC volumes of photostimulated birds were significantly larger than short-day birds. HVC volume of castrated birds given anti-androgens/-estrogens was significantly larger than short-day birds, indicating a sex steroid-independent effect of photostimulation. Similar results were observed for RA. The number of migrating neurons (immunoreactive for doublecortin) in HVC did not differ between treatment groups. Our data support the view that photostimulation alone can drive song-control system nuclei growth, and that concurrent exposure to T potentiates this growth. Moreover, these effects do not appear dependent on modulation of neuron migration.


Asunto(s)
Estrógenos/farmacología , Estimulación Luminosa , Gorriones/fisiología , Testosterona/farmacología , Vocalización Animal/efectos de los fármacos , Animales , Encéfalo/efectos de los fármacos , Castración , Femenino , Técnicas para Inmunoenzimas , Masculino , Neurogénesis/efectos de los fármacos , Estaciones del Año , Conducta Sexual/efectos de los fármacos , Vocalización Animal/fisiología
2.
PLoS One ; 12(6): e0178568, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28575022

RESUMEN

Arthropods are the most diverse taxonomic group of terrestrial eukaryotes and are sensitive to physical alterations in their environment such as those caused by forestry. With their enormous diversity and physical omnipresence, arthropods could be powerful indicators of the effects of disturbance following forestry. When arthropods have been used to measure the effects of disturbance, the total diversity of some groups is often found to increase following forestry. However, these findings are frequently derived using a coarse taxonomic grain (family or order) to accommodate for various taxonomic impediments (including cryptic diversity and poorly resourced taxonomists). Our intent with this work was to determine the diversity of arthropods in and around Algonquin Park, and how this diversity was influenced by disturbance (in this case, forestry within the past 25 years). We used DNA barcode-derived diversity estimates (Barcode Index Number (BIN) richness) to avoid taxonomic impediments and as a source of genetic information with which we could conduct phylogenetic estimates of diversity (PD). Diversity patterns elucidated with PD are often, but not always congruent with taxonomic estimates-and departures from these expectations can help clarify disturbance effects that are hidden from richness studies alone. We found that BIN richness and PD were greater in disturbed (forested) areas, however when we controlled for the expected relationship between PD and BIN richness, we found that cut sites contained less PD than expected and that this diversity was more phylogenetically clustered than would be predicted by taxonomic richness. While disturbance may cause an evident increase in diversity, this diversity may not reflect the full evolutionary history of the assemblage within that area and thus a subtle effect of disturbance can be found decades following forestry.


Asunto(s)
Artrópodos/fisiología , Agricultura Forestal , Hojas de la Planta , Animales , Artrópodos/clasificación , Artrópodos/genética , Biodiversidad , Código de Barras del ADN Taxonómico , Ontario
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA