Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nicotine Tob Res ; 20(7): 810-818, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29059410

RESUMEN

Background: The goal of this study was to conduct a preliminary network analysis (using graph-theory measures) of intrinsic functional connectivity in adult smokers, with an exploration of sex differences in smokers. Methods: Twenty-seven adult smokers (13 males; mean age = 35) and 17 sex and age-matched controls (11 males; mean age = 35) completed a blood oxygen level-dependent resting state functional magnetic resonance imaging experiment. Data analysis involved preprocessing, creation of connectivity matrices using partial correlation, and computation of graph-theory measures using the Brain Connectivity Toolbox. Connector hubs and additional graph-theory measures were examined for differences between smokers and controls and correlations with nicotine dependence. Sex differences were examined in a priori regions of interest based on prior literature. Results: Compared to nonsmokers, connector hubs in smokers emerged primarily in limbic (parahippocampus) and salience network (cingulate cortex) regions. In addition, global influence of the right insula and left nucleus accumbens was associated with higher nicotine dependence. These trends were present in male but not female smokers. Conclusions: Network communication was altered in smokers, primarily in limbic and salience network regions. Network topology was associated with nicotine dependence in male but not female smokers in regions associated with reinforcement (nucleus accumbens) and craving (insula), consistent with the idea that male smokers are more sensitive to the reinforcing aspects of nicotine than female smokers. Implications: Identifying alterations in brain network communication in male and female smokers can help tailor future behavioral and pharmacological smoking interventions. Male smokers showed alterations in brain networks associated with the reinforcing effects of nicotine more so than females, suggesting that pharmacotherapies targeting reinforcement and craving may be more efficacious in male smokers.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Red Nerviosa/diagnóstico por imagen , Caracteres Sexuales , Fumar , Tabaquismo/diagnóstico por imagen , Adulto , Encéfalo/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Red Nerviosa/fisiología , Refuerzo en Psicología , Fumadores/psicología , Fumar/epidemiología , Fumar/psicología , Tabaquismo/epidemiología , Tabaquismo/psicología
2.
Front Oncol ; 13: 1196414, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37546399

RESUMEN

Background: Recent developments in artificial intelligence suggest that radiomics may represent a promising non-invasive biomarker to predict response to immune checkpoint inhibitors (ICIs). Nevertheless, validation of radiomics algorithms in independent cohorts remains a challenge due to variations in image acquisition and reconstruction. Using radiomics, we investigated the importance of scan normalization as part of a broader machine learning framework to enable model external generalizability to predict ICI response in non-small cell lung cancer (NSCLC) patients across different centers. Methods: Radiomics features were extracted and compared from 642 advanced NSCLC patients on pre-ICI scans using established open-source PyRadiomics and a proprietary DeepRadiomics deep learning technology. The population was separated into two groups: a discovery cohort of 512 NSCLC patients from three academic centers and a validation cohort that included 130 NSCLC patients from a fourth center. We harmonized images to account for variations in reconstruction kernel, slice thicknesses, and device manufacturers. Multivariable models, evaluated using cross-validation, were used to estimate the predictive value of clinical variables, PD-L1 expression, and PyRadiomics or DeepRadiomics for progression-free survival at 6 months (PFS-6). Results: The best prognostic factor for PFS-6, excluding radiomics features, was obtained with the combination of Clinical + PD-L1 expression (AUC = 0.66 in the discovery and 0.62 in the validation cohort). Without image harmonization, combining Clinical + PyRadiomics or DeepRadiomics delivered an AUC = 0.69 and 0.69, respectively, in the discovery cohort, but dropped to 0.57 and 0.52, in the validation cohort. This lack of generalizability was consistent with observations in principal component analysis clustered by CT scan parameters. Subsequently, image harmonization eliminated these clusters. The combination of Clinical + DeepRadiomics reached an AUC = 0.67 and 0.63 in the discovery and validation cohort, respectively. Conversely, the combination of Clinical + PyRadiomics failed generalizability validations, with AUC = 0.66 and 0.59. Conclusion: We demonstrated that a risk prediction model combining Clinical + DeepRadiomics was generalizable following CT scan harmonization and machine learning generalization methods. These results had similar performances to routine oncology practice using Clinical + PD-L1. This study supports the strong potential of radiomics as a future non-invasive strategy to predict ICI response in advanced NSCLC.

3.
Front Oncol ; 10: 543648, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33552946

RESUMEN

BACKGROUND: Primary central nervous system lymphomas (PCNSL) are rare and aggressive CNS tumors. Current management involves high-dose methotrexate (HD-MTX) typically administered intravenously (IV), despite the existence of the blood-brain barrier (BBB), which significantly decreases its bioavailability. Cerebral intra-arterial chemotherapy (CIAC) coupled with osmotic BBB disruption (OBBBD) can theoretically circumvent this issue. METHODS: We performed a retrospective analysis of patients with newly diagnosed PCNSL treated with HD-MTX-based CIAC+OBBBD at our center between November 1999 and May 2018. OBBBD was achieved using a 25% mannitol intra-arterial infusion. Patients were followed clinically and radiologically every month until death or remission. Demographics, clinical and outcome data were collected from the medical record. All imaging studies were reviewed for evidence of complication and outcome assessment. Kaplan-Meier analyses were used to compute remission, progression-free survival (PFS) as well as overall survival times. Subgroup analyses were performed using the log rank test. RESULTS: Forty-four patients were included in the cohort. Median follow-up was 38 months. Complete response was achieved in 34 patients (79%) at a median of 7.3 months. Actuarial median survival and PFS were 45 months and 24 months, respectively. Age, ECOG and lesion location did not impact outcome. Complications included thrombocytopenia (39%), neutropenia (20%), anemia (5%), seizures (11%), stroke (2%), and others (20%). CONCLUSION: CIAC using HD-MTX-based protocols with OBBBD is a safe and well-tolerated procedure for the management of PCNSL. Our data suggests better PFS and survival outcomes compared to IV protocols with less hematologic toxicity and good tolerability, especially in the elderly.

4.
Brain Struct Funct ; 225(4): 1413-1436, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32180019

RESUMEN

Primary brain tumors are notoriously hard to resect surgically. Due to their infiltrative nature, finding the optimal resection boundary without damaging healthy tissue can be challenging. One potential tool to help make this decision is diffusion-weighted magnetic resonance imaging (dMRI) tractography. dMRI exploits the diffusion of water molecule along axons to generate a 3D modelization of the white matter bundles in the brain. This feature is particularly useful to visualize how a tumor affects its surrounding white matter and plan a surgical path. This paper reviews the different ways in which dMRI can be used to improve brain tumor resection, its benefits and also its limitations. We expose surgical tools that can be paired with dMRI to improve its impact on surgical outcome, such as loading the 3D tractography in the neuronavigation system and direct electrical stimulation to validate the position of the white matter bundles of interest. We also review articles validating dMRI findings using other anatomical investigation techniques, such as postmortem dissections, manganese-enhanced MRI, electrophysiological stimulations, and phantom studies with known ground truth. We will be discussing the areas of the brain where dMRI performs well and where the future challenges are. We will conclude this review with suggestions and take home messages for neurosurgeons, tractographers, and vendors for advancing the field and on how to benefit from tractography's use in clinical practice.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Imagen de Difusión Tensora , Glioma/diagnóstico por imagen , Glioma/cirugía , Procedimientos Neuroquirúrgicos/métodos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/cirugía , Neoplasias Encefálicas/patología , Glioma/patología , Humanos , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/patología , Vías Nerviosas/cirugía , Cirugía Asistida por Computador/métodos , Sustancia Blanca/patología
5.
Brain Connect ; 9(2): 231-239, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30489152

RESUMEN

Face processing capacities become more specialized and advanced during development, but neural underpinnings of these processes are not fully understood. The present study applied graph theory-based network analysis to task-negative (resting blocks) and task-positive (viewing faces) functional magnetic resonance imaging data in children (5-17 years) and adults (18-42 years) to test the hypothesis that the development of a specialized network for face processing is driven by task-positive processing (face viewing) more than by task-negative processing (visual fixation) and by both progressive and regressive changes in network properties. Predictive modeling was used to predict age from node-based network properties derived from task-positive and task-negative states in a whole-brain network (WBN) and a canonical face network (FN). The best-fitting model indicated that FN maturation was marked by both progressive and regressive changes in information diffusion (eigenvector centrality) in the task-positive state, with regressive changes outweighing progressive changes. Hence, FN maturation was characterized by reductions in information diffusion potentially reflecting the development of more specialized modules. In contrast, WBN maturation was marked by a balance of progressive and regressive changes in hub-connectivity (betweenness centrality) in the task-negative state. These findings suggest that the development of specialized networks like the FN depends on dynamic developmental changes associated with domain-specific information (e.g., face processing), but maturation of the brain as a whole can be predicted from task-free states.


Asunto(s)
Conectoma/métodos , Reconocimiento Facial/fisiología , Adolescente , Adulto , Encéfalo/patología , Encéfalo/fisiología , Niño , Preescolar , Simulación por Computador , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Vías Nerviosas/patología , Descanso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA