Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
EMBO J ; 37(18)2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30065071

RESUMEN

Parkinson's disease, the second most common neurodegenerative disorder, affects millions of people globally. There is no cure, and its prevalence will double by 2030. In recent years, numerous causative genes and risk factors for Parkinson's disease have been identified and more than half appear to function at the synapse. Subtle synaptic defects are thought to precede blunt neuronal death, but the mechanisms that are dysfunctional at synapses are only now being unraveled. Here, we review recent work and propose a model where different Parkinson proteins interact in a cell compartment-specific manner at the synapse where these proteins regulate endocytosis and autophagy. While this field is only recently emerging, the work suggests that the loss of synaptic homeostasis may contribute to neurodegeneration and is a key player in Parkinson's disease.


Asunto(s)
Autofagia , Endocitosis , Homeostasis , Enfermedad de Parkinson/metabolismo , Sinapsis/metabolismo , Humanos , Enfermedad de Parkinson/patología , Sinapsis/patología
2.
EMBO J ; 36(10): 1392-1411, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28331029

RESUMEN

Presynaptic terminals are metabolically active and accrue damage through continuous vesicle cycling. How synapses locally regulate protein homeostasis is poorly understood. We show that the presynaptic lipid phosphatase synaptojanin is required for macroautophagy, and this role is inhibited by the Parkinson's disease mutation R258Q. Synaptojanin drives synaptic endocytosis by dephosphorylating PI(4,5)P2, but this function appears normal in SynaptojaninRQ knock-in flies. Instead, R258Q affects the synaptojanin SAC1 domain that dephosphorylates PI(3)P and PI(3,5)P2, two lipids found in autophagosomal membranes. Using advanced imaging, we show that SynaptojaninRQ mutants accumulate the PI(3)P/PI(3,5)P2-binding protein Atg18a on nascent synaptic autophagosomes, blocking autophagosome maturation at fly synapses and in neurites of human patient induced pluripotent stem cell-derived neurons. Additionally, we observe neurodegeneration, including dopaminergic neuron loss, in SynaptojaninRQ flies. Thus, synaptojanin is essential for macroautophagy within presynaptic terminals, coupling protein turnover with synaptic vesicle cycling and linking presynaptic-specific autophagy defects to Parkinson's disease.


Asunto(s)
Autofagosomas/metabolismo , Autofagia , Proteínas del Tejido Nervioso/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Terminales Presinápticos/enzimología , Terminales Presinápticos/metabolismo , Sustitución de Aminoácidos , Animales , Proteínas Relacionadas con la Autofagia/análisis , Células Cultivadas , Drosophila , Humanos , Proteínas de la Membrana/análisis , Mutación Missense , Proteínas del Tejido Nervioso/genética , Enfermedad de Parkinson/patología , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolasas/genética
3.
Sci Rep ; 13(1): 7478, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37156800

RESUMEN

Muscle-specific kinase (MuSK) is crucial for acetylcholine receptor (AChR) clustering and thereby neuromuscular junction (NMJ) function. NMJ dysfunction is a hallmark of several neuromuscular diseases, including MuSK myasthenia gravis. Aiming to restore NMJ function, we generated several agonist monoclonal antibodies targeting the MuSK Ig-like 1 domain. These activated MuSK and induced AChR clustering in cultured myotubes. The most potent agonists partially rescued myasthenic effects of MuSK myasthenia gravis patient IgG autoantibodies in vitro. In an IgG4 passive transfer MuSK myasthenia model in NOD/SCID mice, MuSK agonists caused accelerated weight loss and no rescue of myasthenic features. The MuSK Ig-like 1 domain agonists unexpectedly caused sudden death in a large proportion of male C57BL/6 mice (but not female or NOD/SCID mice), likely caused by a urologic syndrome. In conclusion, these agonists rescued pathogenic effects in myasthenia models in vitro, but not in vivo. The sudden death in male mice of one of the tested mouse strains revealed an unexpected and unexplained role for MuSK outside skeletal muscle, thereby hampering further (pre-) clinical development of these clones. Future research should investigate whether other Ig-like 1 domain MuSK antibodies, binding different epitopes, do hold a safe therapeutic promise.


Asunto(s)
Miastenia Gravis , Proteínas Tirosina Quinasas Receptoras , Masculino , Animales , Ratones , Ratones SCID , Proteínas Tirosina Quinasas Receptoras/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Miastenia Gravis/metabolismo , Receptores Colinérgicos/metabolismo , Autoanticuerpos , Debilidad Muscular , Acetilcolina
4.
Cell Rep ; 42(12): 113544, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38060381

RESUMEN

Dysregulated iron or Ca2+ homeostasis has been reported in Parkinson's disease (PD) models. Here, we discover a connection between these two metals at the mitochondria. Elevation of iron levels causes inward mitochondrial Ca2+ overflow, through an interaction of Fe2+ with mitochondrial calcium uniporter (MCU). In PD neurons, iron accumulation-triggered Ca2+ influx across the mitochondrial surface leads to spatially confined Ca2+ elevation at the outer mitochondrial membrane, which is subsequently sensed by Miro1, a Ca2+-binding protein. A Miro1 blood test distinguishes PD patients from controls and responds to drug treatment. Miro1-based drug screens in PD cells discover Food and Drug Administration-approved T-type Ca2+-channel blockers. Human genetic analysis reveals enrichment of rare variants in T-type Ca2+-channel subtypes associated with PD status. Our results identify a molecular mechanism in PD pathophysiology and drug targets and candidates coupled with a convenient stratification method.


Asunto(s)
Calcio , Enfermedad de Parkinson , Humanos , Calcio/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Preparaciones Farmacéuticas/metabolismo , Hierro/metabolismo , Mitocondrias/metabolismo
5.
Curr Opin Neurobiol ; 57: 87-93, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30784981

RESUMEN

Neurons need to allocate and sustain mitochondria to provide adequate energy and sufficient Ca2+-buffering capacity in each sub specialization of their extensive arborizations. Damaged mitochondria, which are highly deleterious to the neuron, must be rapidly repaired or eliminated, even when they are left at terminals extremely far away from the soma. The unique shape of neurons complicates the tasks of both transporting and clearing mitochondria. Errors in the underlying molecular regulations cause detrimental neurodegeneration. Here, we review the molecular machinery and regulatory mechanisms employed to transport, distribute, and clear mitochondria in neurons, and how these fundamental regulations are compromised in neurological disorders.


Asunto(s)
Mitocondrias , Neuronas , Calcio
6.
Cell Metab ; 30(6): 1131-1140.e7, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31564441

RESUMEN

The identification of molecular targets and pharmacodynamic markers for Parkinson's disease (PD) will empower more effective clinical management and experimental therapies. Miro1 is localized on the mitochondrial surface and mediates mitochondrial motility. Miro1 is removed from depolarized mitochondria to facilitate their clearance via mitophagy. Here, we explore the clinical utility of Miro1 for detecting PD and for gauging potential treatments. We measure the Miro1 response to mitochondrial depolarization using biochemical assays in skin fibroblasts from a broad spectrum of PD patients and discover that more than 94% of the patients' fibroblast cell lines fail to remove Miro1 following depolarization. We identify a small molecule that can repair this defect of Miro1 in PD fibroblasts. Treating patient-derived neurons and fly models with this compound rescues the locomotor deficits and dopaminergic neurodegeneration. Our results indicate that tracking this Miro1 marker and engaging in Miro1-based therapies could open new avenues to personalized medicine.


Asunto(s)
Antiparkinsonianos/farmacología , Proteínas de Drosophila , Proteínas Mitocondriales , Degeneración Nerviosa/tratamiento farmacológico , Neuronas/efectos de los fármacos , Enfermedad de Parkinson , Proteínas de Unión al GTP rho , Adulto , Anciano , Animales , Antiparkinsonianos/uso terapéutico , Biomarcadores/metabolismo , Drosophila , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/metabolismo , Femenino , Fibroblastos , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas , Masculino , Persona de Mediana Edad , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/metabolismo , Neuronas/patología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Proteínas de Unión al GTP rho/antagonistas & inhibidores , Proteínas de Unión al GTP rho/metabolismo
7.
Neuron ; 92(4): 829-844, 2016 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-27720484

RESUMEN

Synapses are often far from the soma and independently cope with proteopathic stress induced by intense neuronal activity. However, how presynaptic compartments turn over proteins is poorly understood. We show that the synapse-enriched protein EndophilinA, thus far studied for its role in endocytosis, induces macroautophagy at presynaptic terminals. We find that EndophilinA executes this unexpected function at least partly independent of its role in synaptic vesicle endocytosis. EndophilinA-induced macroautophagy is activated when the kinase LRRK2 phosphorylates the EndophilinA-BAR domain and is blocked in animals where EndophilinA cannot be phosphorylated. EndophilinA-phosphorylation promotes the formation of highly curved membranes, and reconstitution experiments show these curved membranes serve as docking stations for autophagic factors, including Atg3. Functionally, deregulation of the EndophilinA phosphorylation state accelerates activity-induced neurodegeneration. Given that EndophilinA is connected to at least three Parkinson's disease genes (LRRK2, Parkin and Synaptojanin), dysfunction of EndophilinA-dependent synaptic macroautophagy may be common in this disorder.


Asunto(s)
Aciltransferasas/metabolismo , Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia/genética , Neuronas Dopaminérgicas/metabolismo , Proteínas de Drosophila/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Terminales Presinápticos/metabolismo , Animales , Drosophila , Proteínas de Drosophila/metabolismo , Endocitosis , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Enfermedades Neurodegenerativas , Fosforilación/genética , Vesículas Sinápticas/metabolismo
8.
Exp Neurol ; 274(Pt A): 42-51, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25708988

RESUMEN

Parkinson's disease is an incurable neurodegenerative disease. Most cases of the disease are of sporadic origin, but about 10% of the cases are familial. The genes thus far identified in Parkinson's disease are well conserved. Drosophila is ideally suited to study the molecular neuronal cell biology of these genes and the pathogenic mutations in Parkinson's disease. Flies reproduce quickly, and their elaborate genetic tools in combination with their small size allow researchers to analyze identified cells and neurons in large numbers of animals. Furthermore, fruit flies recapitulate many of the cellular and molecular defects also seen in patients, and these defects often result in clear locomotor and behavioral phenotypes, facilitating genetic modifier screens. Hence, Drosophila has played a prominent role in Parkinson's disease research and has provided invaluable insight into the molecular mechanisms of this disease.


Asunto(s)
Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Animales , Drosophila , Humanos , alfa-Sinucleína/genética
9.
G3 (Bethesda) ; 4(12): 2381-7, 2014 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-25298537

RESUMEN

Modern molecular genetics studies necessitate the manipulation of genes in their endogenous locus, but most of the current methodologies require an inefficient donor-dependent homologous recombination step to locally modify the genome. Here we describe a methodology to efficiently generate Drosophila knock-in alleles by capitalizing on the availability of numerous genomic MiMIC transposon insertions carrying recombinogenic attP sites. Our methodology entails the efficient PhiC31-mediated integration of a recombination cassette flanked by unique I-SceI and/or I-CreI restriction enzyme sites into an attP-site. These restriction enzyme sites allow for double-strand break-mediated removal of unwanted flanking transposon sequences, while leaving the desired genomic modifications or recombination cassettes. As a proof-of-principle, we mutated LRRK, tau, and sky by using different MiMIC elements. We replaced 6 kb of genomic DNA encompassing the tau locus and 35 kb encompassing the sky locus with a recombination cassette that permits easy integration of DNA at these loci and we also generated a functional LRRK(HA) knock in allele. Given that ~92% of the Drosophila genes are located within the vicinity (<35 kb) of a MiMIC element, our methodology enables the efficient manipulation of nearly every locus in the fruit fly genome without the need for inefficient donor-dependent homologous recombination events.


Asunto(s)
Drosophila melanogaster/genética , Técnicas de Sustitución del Gen , Alelos , Animales , Elementos Transponibles de ADN/genética , Proteínas de Drosophila/genética , Recombinación Homóloga , Proteínas Serina-Treonina Quinasas/genética , Proteínas tau/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA