RESUMEN
PURPOSE: Predicting effects of genomic variants has become a real challenge in the diagnosis of rare human diseases. Holt-Oram syndrome is an autosomal condition characterized by the association of radial and heart defects, due to variants in TBX5. Most variants are predicted to be truncating and result in haploinsufficiency. The pathogenicity of missense or splice variants is harder to demonstrate. METHODS: Fourteen TBX5 variants of uncertain significance (5 missense, 9 splice) and 6 likely pathogenic missense variants were selected for functional testing, depending on the variant-type (immunolocalization, western blot, reporter assays, minigene splice assays, and reverse transcription-polymerase chain reaction). Results were compared with in silico predictions. RESULTS: Functional tests allowed to reclassify 9/14 variants of uncertain significance in TBX5 as likely pathogenic, confirming their role in Holt-Oram syndrome. We demonstrated loss of function (n = 8) or gain of function (n = 1) for 9 of the 11 missense variants, whereas no functional impact was shown for the 2 variants: p.(Gly195Ala) and p.(Ser261Cys), as suggested by contradictory predictions of in silico approaches. Of 9 splice variants predicted to affect splicing by SpliceAI, we observed partial or complete exon skipping (n = 6), intron retention (n = 2) or exon shortening (n = 1), inducing frame shifting with premature stop codons. CONCLUSION: Bioinformatic and biological approaches are complementary, together with a good knowledge of clinical conditions, for accurate American College of Medical Genetics and Genomics classification in human rare diseases.
RESUMEN
PURPOSE: Diamond-Blackfan anemia syndrome (DBS) is a rare congenital disorder originally characterized by bone marrow failure with or without various congenital anomalies. At least 24 genes are implicated, the vast majority encoding for ribosomal proteins. RPL26 (ribosomal protein L26) is an emerging candidate (DBA11, MIM#614900). We aim to further delineate this rare condition. METHODS: Patients carrying heterozygous RPL26 variants were recruited. In one of them, erythroid proliferation and differentiation from peripheral blood CD34+ cells were studied by flow cytometry, and RPL26 expression by quantitative reverse transcription polymerase chain reaction and immunoblotting. RESULTS: We report on 8 affected patients from 4 families. Detailed phenotyping reveals that RPL26 is mainly associated with multiple congenital anomalies (particularly radial ray anomalies), albeit with variable expression. Mandibulofacial dysostosis and neural tube defects are potential features in DBA11, expanding the growing list of DBS abnormalities. In 1 individual, we showed that RPL26 haploinsufficiency was responsible for subclinical impairment in erythroid proliferation and enucleation. The absence of hematological involvement in 4 adults from this series contributes to the mounting evidence that bone marrow failure is not universally central to all DBS genes. CONCLUSION: We confirm RPL26 as a DBS gene and expand the phenotypic spectrum of the gene and the disease.
RESUMEN
PURPOSE: DISP1 encodes a transmembrane protein that regulates the secretion of the morphogen, Sonic hedgehog, a deficiency of which is a major cause of holoprosencephaly (HPE). This disorder covers a spectrum of brain and midline craniofacial malformations. The objective of the present study was to better delineate the clinical phenotypes associated with division transporter dispatched-1 (DISP1) variants. METHODS: This study was based on the identification of at least 1 pathogenic variant of the DISP1 gene in individuals for whom detailed clinical data were available. RESULTS: A total of 23 DISP1 variants were identified in heterozygous, compound heterozygous or homozygous states in 25 individuals with midline craniofacial defects. Most cases were minor forms of HPE, with craniofacial features such as orofacial cleft, solitary median maxillary central incisor, and congenital nasal pyriform aperture stenosis. These individuals had either monoallelic loss-of-function variants or biallelic missense variants in DISP1. In individuals with severe HPE, the DISP1 variants were commonly found associated with a variant in another HPE-linked gene (ie, oligogenic inheritance). CONCLUSION: The genetic findings we have acquired demonstrate a significant involvement of DISP1 variants in the phenotypic spectrum of midline defects. This underlines its importance as a crucial element in the efficient secretion of Sonic hedgehog. We also demonstrated that the very rare solitary median maxillary central incisor and congenital nasal pyriform aperture stenosis combination is part of the DISP1-related phenotype. The present study highlights the clinical risks to be flagged up during genetic counseling after the discovery of a pathogenic DISP1 variant.
Asunto(s)
Alelos , Holoprosencefalia , Fenotipo , Adolescente , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Anodoncia , Labio Leporino/genética , Labio Leporino/patología , Fisura del Paladar/genética , Fisura del Paladar/patología , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/patología , Heterocigoto , Holoprosencefalia/genética , Holoprosencefalia/patología , Homocigoto , Incisivo/anomalías , Proteínas de la Membrana/genética , Mutación Missense/genéticaRESUMEN
Recent advances in the understanding of infantile developmental epileptic encephalopathies (IDEE) have revealed the association of biallelic pathogenic variants in UGDH. In this study, we report two novel combinations identified by exome sequencing: p.(Arg135Trp) with p.(Arg65*) and p.(Arg102Trp) with p.(Arg65*). Both combinations share a common pathogenic nonsense variant, with the missense variants strategically located in the NAD-binding domain of the UGDH protein, predicted in structural models to create new interactions with the central domain. The first patient exhibited the typical UGDH-related disease phenotype and progressive microcephaly, a rarely reported feature. In contrast, the second patient presented an atypical phenotype, including absence of seizure, severe intellectual disability, ataxic gait, and abnormal eye movements. This comprehensive analysis extends the phenotypic spectrum of UGDH syndrome beyond early infantile intractable encephalopathy to include intellectual disability without epilepsy.
RESUMEN
OBJECTIVE: Primary failure of eruption is characterized by a nonsyndromic defect in tooth eruption in the absence of mechanical obstruction. It is correlated to rare heterozygous variants in the parathyroid hormone receptor 1 gene. The management of primary failure of eruption is complex because many therapies are ineffective. The present study aimed to compare the clinical outcomes of our patients with the findings reported in the literature, and to propose a treatment guideline based on the literature and our experience. METHODS: Retrospective study of patients affected by primary dental eruption failure in the department and analyse of the results and compare with those of the litterature. RESULTS: Twelve patients belonging to 5 families (9 males, 3 females; 13-52 y old) diagnosed and treated in the maxillofacial surgery and stomatology department of the Lille University Hospital were included. All patients showed posterior tooth involvement, and most patients showed bilateral defects. None of the affected teeth had coronal alveolar bone, whereas 6 patients showed root resorption in the affected teeth. Genetic analyses, performed on 11 patients, identified a parathyroid hormone receptor 1 disease-causing variant in 7 of them (63%). Multidisciplinary treatment was required to rehabilitate these patients. Orthodontic interventions, even at an early age, are difficult in affected teeth, which are often blocked or have internal resorption. Moreover, retention of these affected teeth during growth leads to dentoskeletal malocclusions, requiring difficult surgical management in the long term. Therefore, early extraction of these teeth is frequently recommended once the diagnosis has been confirmed. An implant-borne prosthetic rehabilitation can then be achieved at the end of growth after correction of the jaw discrepancy. In case of a late diagnosis, other surgical or noninvasive techniques may be used depending on the clinical situation. Distraction osteogenesis or segmental osteotomy could be discussed for patients with mild phenotypes. CONCLUSIONS: Early diagnosis of primary eruption defects is crucial to offer appropriate management as early as possible, and so to avoid late complicated treatments.
Asunto(s)
Receptor de Hormona Paratiroídea Tipo 1 , Humanos , Femenino , Masculino , Estudios Retrospectivos , Persona de Mediana Edad , Adolescente , Adulto , Receptor de Hormona Paratiroídea Tipo 1/genética , Guías de Práctica Clínica como Asunto , Erupción Dental , Radiografía Panorámica , Adulto Joven , Diente no Erupcionado/genética , Diente no Erupcionado/terapia , Enfermedades DentalesRESUMEN
PURPOSE: Studies have previously implicated PRRX1 in craniofacial development, including demonstration of murine Prrx1 expression in the preosteogenic cells of the cranial sutures. We investigated the role of heterozygous missense and loss-of-function (LoF) variants in PRRX1 associated with craniosynostosis. METHODS: Trio-based genome, exome, or targeted sequencing were used to screen PRRX1 in patients with craniosynostosis; immunofluorescence analyses were used to assess nuclear localization of wild-type and mutant proteins. RESULTS: Genome sequencing identified 2 of 9 sporadically affected individuals with syndromic/multisuture craniosynostosis, who were heterozygous for rare/undescribed variants in PRRX1. Exome or targeted sequencing of PRRX1 revealed a further 9 of 1449 patients with craniosynostosis harboring deletions or rare heterozygous variants within the homeodomain. By collaboration, 7 additional individuals (4 families) were identified with putatively pathogenic PRRX1 variants. Immunofluorescence analyses showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localization. Of patients with variants considered likely pathogenic, bicoronal or other multisuture synostosis was present in 11 of 17 cases (65%). Pathogenic variants were inherited from unaffected relatives in many instances, yielding a 12.5% penetrance estimate for craniosynostosis. CONCLUSION: This work supports a key role for PRRX1 in cranial suture development and shows that haploinsufficiency of PRRX1 is a relatively frequent cause of craniosynostosis.
Asunto(s)
Craneosinostosis , Proteínas de Homeodominio , Animales , Humanos , Ratones , Secuencia de Bases , Suturas Craneales/patología , Craneosinostosis/genética , Genes Homeobox , Proteínas de Homeodominio/genética , PenetranciaRESUMEN
The PIK3CA-related overgrowth spectrum (PROS) encompasses various conditions caused by mosaic activating PIK3CA variants. PIK3CA somatic variants are also involved in various cancer types. Some generalized overgrowth syndromes are associated with an increased risk of Wilms tumor (WT). In PROS, abdominal ultrasound surveillance has been advocated to detect WT. We aimed to determine the risk of embryonic and other types of tumors in patients with PROS in order to evaluate surveillance relevance. We searched the clinical charts from 267 PROS patients for the diagnosis of cancer, and reviewed the medical literature for the risk of cancer. In our cohort, six patients developed a cancer (2.2%), and Kaplan Meier analyses estimated cumulative probabilities of cancer occurrence at 45 years of age was 5.6% (95% CI = 1.35%-21.8%). The presence of the PIK3CA variant was only confirmed in two out of four tumor samples. In the literature and our cohort, six cases of Wilms tumor/nephrogenic rests (0.12%) and four cases of other cancers have been reported out of 483 proven PIK3CA patients, in particular the p.(His1047Leu/Arg) variant. The risk of WT in PROS being lower than 5%, this is insufficient evidence to recommend routine abdominal imaging. Long-term follow-up studies are needed to evaluate the risk of other cancer types, as well as the relationship with the extent of tissue mosaicism and the presence or not of the variant in the tumor samples.
Asunto(s)
Neoplasias Renales , Tumor de Wilms , Humanos , Mutación , Detección Precoz del Cáncer , Trastornos del Crecimiento/diagnóstico , Tumor de Wilms/diagnóstico , Tumor de Wilms/epidemiología , Tumor de Wilms/genética , Fosfatidilinositol 3-Quinasa Clase I/genéticaRESUMEN
PURPOSE: LEF1 encodes a transcription factor acting downstream of the WNT-ß-catenin signaling pathway. It was recently suspected as a candidate for ectodermal dysplasia in 2 individuals carrying 4q35 microdeletions. We report on 12 individuals harboring LEF1 variants. METHODS: High-throughput sequencing was employed to delineate the genetic underpinnings of the disease. Cellular consequences were characterized by immunofluorescence, immunoblotting, pulldown assays, and/or RNA sequencing. RESULTS: Monoallelic variants in LEF1 were detected in 11 affected individuals from 4 unrelated families, and a biallelic variant was detected in an affected individual from a consanguineous family. The phenotypic spectrum includes various limb malformations, such as radial ray defects, polydactyly or split hand/foot, and ectodermal dysplasia. Depending on the type and location of LEF1 variants, the inheritance of this novel Mendelian condition can be either autosomal dominant or recessive. Our functional data indicate that 2 molecular mechanisms are at play: haploinsufficiency or loss of DNA binding are responsible for a mild to moderate phenotype, whereas loss of ß-catenin binding caused by biallelic variants is associated with a severe phenotype. Transcriptomic studies reveal an alteration of WNT signaling. CONCLUSION: Our findings establish mono- and biallelic variants in LEF1 as a cause for a novel syndrome comprising limb malformations and ectodermal dysplasia.
Asunto(s)
Displasia Ectodérmica , Factor de Unión 1 al Potenciador Linfoide/genética , Vía de Señalización Wnt , Consanguinidad , Displasia Ectodérmica/genética , Humanos , Deformidades Congénitas de las Extremidades , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Síndrome , beta Catenina/genética , beta Catenina/metabolismoRESUMEN
Peters' anomaly (PA) is a rare anterior segment dysgenesis characterized by central corneal opacity and irido-lenticulo-corneal adhesions. Several genes are involved in syndromic or isolated PA (B3GLCT, PAX6, PITX3, FOXE3, CYP1B1). Some copy number variations (CNVs) have also been occasionally reported. Despite this genetic heterogeneity, most of patients remain without genetic diagnosis. We retrieved a cohort of 95 individuals with PA and performed genotyping using a combination of comparative genomic hybridization, whole genome, exome and targeted sequencing of 119 genes associated with ocular development anomalies. Causative genetic defects involving 12 genes and CNVs were identified for 1/3 of patients. Unsurprisingly, B3GLCT and PAX6 were the most frequently implicated genes, respectively in syndromic and isolated PA. Unexpectedly, the third gene involved in our cohort was SOX2, the major gene of micro-anophthalmia. Four unrelated patients with PA (isolated or with microphthalmia) were carrying pathogenic variants in this gene that was never associated with PA before. Here we described the largest cohort of PA patients ever reported. The genetic bases of PA are still to be explored as genetic diagnosis was unavailable for 2/3 of patients. Nevertheless, we showed here for the first time the involvement of SOX2 in PA, offering new evidence for its role in corneal transparency and anterior segment development.
Asunto(s)
Opacidad de la Córnea , Anomalías del Ojo , Segmento Anterior del Ojo/anomalías , Hibridación Genómica Comparativa , Opacidad de la Córnea/diagnóstico , Opacidad de la Córnea/genética , Opacidad de la Córnea/patología , Variaciones en el Número de Copia de ADN/genética , Anomalías del Ojo/diagnóstico , Anomalías del Ojo/genética , Anomalías del Ojo/patología , Humanos , Mutación/genética , Factores de Transcripción SOXB1/genéticaRESUMEN
Esophageal atresia/tracheoesophageal fistula (EA/TEF) is a life-threatening birth defect that often occurs with other major birth defects (EA/TEF+). Despite advances in genetic testing, a molecular diagnosis can only be made in a minority of EA/TEF+ cases. Here, we analyzed clinical exome sequencing data and data from the DECIPHER database to determine the efficacy of exome sequencing in cases of EA/TEF+ and to identify phenotypic expansions involving EA/TEF. Among 67 individuals with EA/TEF+ referred for clinical exome sequencing, a definitive or probable diagnosis was made in 11 cases for an efficacy rate of 16% (11/67). This efficacy rate is significantly lower than that reported for other major birth defects, suggesting that polygenic, multifactorial, epigenetic, and/or environmental factors may play a particularly important role in EA/TEF pathogenesis. Our cohort included individuals with pathogenic or likely pathogenic variants that affect TCF4 and its downstream target NRXN1, and FANCA, FANCB, and FANCC, which are associated with Fanconi anemia. These cases, previously published case reports, and comparisons to other EA/TEF genes made using a machine learning algorithm, provide evidence in support of a potential pathogenic role for these genes in the development of EA/TEF.
Asunto(s)
Atresia Esofágica , Fístula Traqueoesofágica , Humanos , Fístula Traqueoesofágica/diagnóstico , Fístula Traqueoesofágica/genética , Fístula Traqueoesofágica/complicaciones , Atresia Esofágica/diagnóstico , Atresia Esofágica/genética , Atresia Esofágica/complicaciones , Exoma/genética , Secuenciación del ExomaRESUMEN
Unique or multiple congenital facial skin polyps are features of several rare syndromes, from the most well-known Pai syndrome (PS), to the less recognized oculoauriculofrontonasal syndrome (OAFNS), encephalocraniocutaneous lipomatosis (ECCL), or Sakoda complex (SC). We set up a research project aiming to identify the molecular bases of PS. We reviewed 27 individuals presenting with a syndromic frontonasal polyp and initially referred for PS. Based on strict clinical classification criteria, we could confirm only nine (33%) typical and two (7%) atypical PS individuals. The remaining ones were either OAFNS (11/27-41%) or presenting with an overlapping syndrome (5/27-19%). Because of the phenotypic overlap between these entities, OAFNS, ECCL, and SC can be either considered as differential diagnosis of PS or part of the same spectrum. Exome and/or genome sequencing from blood DNA in 12 patients and from affected tissue in one patient failed to identify any replication in candidate genes. Taken together, our data suggest that conventional approaches routinely utilized for the identification of molecular etiologies responsible for Mendelian disorders are inconclusive. Future studies on affected tissues and multiomics studies will thus be required in order to address either the contribution of mosaic or noncoding variation in these diseases.
Asunto(s)
Anomalías del Ojo , Lipomatosis , Síndromes Neurocutáneos , Agenesia del Cuerpo Calloso , Labio Leporino , Coloboma , Anomalías Craneofaciales , Diagnóstico Diferencial , Oído Externo/anomalías , Anomalías del Ojo/genética , Oftalmopatías , Cara/anomalías , Humanos , Lipoma , Lipomatosis/genética , Pólipos Nasales , Síndromes Neurocutáneos/genética , Anomalías del Sistema Respiratorio , Enfermedades de la Piel , Columna Vertebral/anomalíasRESUMEN
Disease-causing heterozygous variants in the ACTA2 gene cause an autosomal dominant heritable thoracic aortic disease (HTAD) with thoracic aortic aneurysm and dissection as main phenotype, and occasional extravascular abnormalities such as livedo reticularis. ACTA2-HTAD accounts for an important part of non-syndromic HTAD, with detection rates varying between 1.5-21% according to different studies. A consensus statement for the screening and management of patients with pathogenic ACTA2 variants has been recently published by the European reference network for rare vascular diseases (VASCERN). However, management of ACTA2 patients is often challenged by extremely variable inter- and intra-familial clinical courses of the disease. Here we report a family harboring a disease-causing ACTA2 variant. The proband and two siblings presented with acute type A aortic dissection and rupture involving nondilated aortic segments before the age of 30. Their mother died at 49 years-old from type B aortic dissection and rupture. Genetic testing revealed the heterozygous novel p.(Pro335Arg) variant in the ACTA2 gene in the proband and in the affected siblings. The clinical history of this family highlights the difficulty of adopting effective prevention strategies in ACTA2 patients.
Asunto(s)
Actinas/genética , Aneurisma de la Aorta Torácica/genética , Disección Aórtica/genética , Rotura de la Aorta/genética , Variación Genética , Adulto , Disección Aórtica/diagnóstico por imagen , Disección Aórtica/cirugía , Aneurisma de la Aorta Torácica/diagnóstico por imagen , Aneurisma de la Aorta Torácica/cirugía , Rotura de la Aorta/diagnóstico por imagen , Progresión de la Enfermedad , Femenino , Predisposición Genética a la Enfermedad , Herencia , Heterocigoto , Humanos , Linaje , FenotipoRESUMEN
Congenital limb malformations (CLM) comprise many conditions affecting limbs and more than 150 associated genes have been reported. Due to this large heterogeneity, a high proportion of patients remains without a molecular diagnosis. In the last two decades, advances in high throughput sequencing have allowed new methodological strategies in clinical practice. Herein, we report the screening of 52 genes/regulatory sequences by multiplex high-throughput targeted sequencing, in a series of 352 patients affected with various CLM, over a 3-year period of time. Patients underwent a clinical triage by expert geneticists in CLM. A definitive diagnosis was achieved in 35.2% of patients, the yield varying considerably, depending on the phenotype. We identified 112 single nucleotide variants and 26 copy-number variations, of which 52 are novel pathogenic or likely pathogenic variants. In 6% of patients, variants of uncertain significance have been found in good candidate genes. We showed that multiplex targeted high-throughput sequencing works as an efficient and cost-effective tool in clinical practice for molecular diagnosis of congenital limb malformations. Careful clinical evaluation of patients may maximize the yield of CLM panel testing.
Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Deformidades Congénitas de las Extremidades/diagnóstico , Deformidades Congénitas de las Extremidades/genética , Alelos , Variaciones en el Número de Copia de ADN , Análisis Mutacional de ADN , Femenino , Estudios de Asociación Genética/métodos , Humanos , Masculino , Mutación , Fenotipo , Radiografía , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
Disease-causing variants in TGFB3 cause an autosomal dominant connective tissue disorder which is hard to phenotypically delineate because of the small number of identified cases. The purpose of this retrospective cross-sectional multicenter study is to elucidate the genotype and phenotype in an international cohort of TGFB3 patients. Eleven (eight novel) TGFB3 disease-causing variants were identified in 32 patients (17 families). Aortic root dilatation and mitral valve disease represented the most common cardiovascular findings, reported in 29% and 32% of patients, respectively. Dissection involving distal aortic segments occurred in two patients at age 50 and 52 years. A high frequency of systemic features (65% high-arched palate, 63% arachnodactyly, 57% pectus deformity, 52% joint hypermobility) was observed. In familial cases, incomplete penetrance and variable clinical expressivity were noted. Our cohort included the first described homozygous patient, who presented with a more severe phenotype compared to her heterozygous relatives. In conclusion, TGFB3 variants were associated with a high percentage of systemic features and aortic disease (dilatation/dissection) in 35% of patients. No deaths occurred from cardiovascular events or pregnancy-related complications. Nevertheless, homozygosity may be driving a more severe phenotype.
Asunto(s)
Aracnodactilia/genética , Enfermedades del Tejido Conjuntivo/genética , Síndrome de Loeys-Dietz/genética , Factor de Crecimiento Transformador beta3/genética , Adolescente , Adulto , Aracnodactilia/patología , Niño , Preescolar , Enfermedades del Tejido Conjuntivo/patología , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Heterocigoto , Homocigoto , Humanos , Síndrome de Loeys-Dietz/patología , Masculino , Persona de Mediana Edad , Mutación/genética , Linaje , Fenotipo , Factor de Crecimiento Transformador beta3/deficiencia , Adulto JovenRESUMEN
Recurrent deletions and duplications at the 2q13 locus have been associated with developmental delay (DD) and dysmorphisms. We aimed to undertake detailed clinical characterization of individuals with 2q13 copy number variations (CNVs), with a focus on behavioral and psychiatric phenotypes. Participants were recruited via the Unique chromosomal disorder support group, U.K. National Health Service Regional Genetics Centres, and the DatabasE of genomiC varIation and Phenotype in Humans using Ensembl Resources (DECIPHER) database. A review of published 2q13 patient case reports was undertaken to enable combined phenotypic analysis. We present a new case series of 2q13 CNV carriers (21 deletion, 4 duplication) and the largest ever combined analysis with data from published studies, making a total of 54 deletion and 23 duplication carriers. DD/intellectual disabilities was identified in the majority of carriers (79% deletion, 70% duplication), although in the new cases 52% had an IQ in the borderline or normal range. Despite the median age of the new cases being only 9 years, 64% had a clinical psychiatric diagnosis. Combined analysis found attention deficit hyperactivity disorder (ADHD) to be the most frequent diagnosis (48% deletion, 60% duplication), followed by autism spectrum disorders (33% deletion, 17% duplication). Aggressive (33%) and self-injurious behaviors (33%) were also identified in the new cases. CNVs at 2q13 are typically associated with DD with mildly impaired intelligence, and a high rate of childhood psychiatric diagnoses-particularly ADHD. We have further characterized the clinical phenotype related to imbalances of the 2q13 region and identified it as a region of interest for the neurobiological investigation of ADHD.
Asunto(s)
Cromosomas Humanos Par 2/genética , Discapacidades del Desarrollo/genética , Trastornos Mentales/genética , Adolescente , Adulto , Niño , Preescolar , Aberraciones Cromosómicas , Deleción Cromosómica , Duplicación Cromosómica , Variaciones en el Número de Copia de ADN/genética , Femenino , Duplicación de Gen/genética , Humanos , Discapacidad Intelectual/genética , Masculino , Fenotipo , Reino UnidoRESUMEN
PURPOSE: Blepharocheilodontic (BCD) syndrome is a rare autosomal dominant condition characterized by eyelid malformations, cleft lip/palate, and ectodermal dysplasia. The molecular basis of BCD syndrome remains unknown. METHODS: We recruited 11 patients from 8 families and performed exome sequencing for 5 families with de novo BCD syndrome cases and targeted Sanger sequencing in the 3 remaining families. RESULTS: We identified five CDH1 heterozygous missense mutations and three CTNND1 heterozygous truncating mutations leading to loss-of-function or haploinsufficiency. Establishment of detailed genotype-phenotype correlations was not possible because of the size of the cohort; however, the phenotype seems to appear more severe in case of CDH1 mutations. Functional analysis of CDH1 mutations confirmed their deleterious impact and suggested accelerated E-cadherin degradation. CONCLUSION: Mutations in CDH1 encoding the E-cadherin were previously reported in hereditary diffuse gastric cancer as well as in nonsyndromic cleft lip/palate. Mutations in CTNND1 have never been reported before. The encoded protein, p120ctn, prevents E-cadherin endocytosis and stabilizes its localization at the cell surface. Conditional deletion of Cdh1 and Ctnnd1 in various animal models induces features reminiscent of BCD syndrome and underlines critical role of the E-cadherin-p120ctn interaction in eyelid, craniofacial, and tooth development. Our data assert BCD syndrome as a CDH1 pathway-related disorder due to mutations in CDH1 and CTNND1 and widen the phenotypic spectrum of E-cadherin anomalies.Genet Med advance online publication 09 March 2017.
Asunto(s)
Cadherinas/genética , Cateninas/genética , Labio Leporino/diagnóstico , Labio Leporino/genética , Fisura del Paladar/diagnóstico , Fisura del Paladar/genética , Ectropión/diagnóstico , Ectropión/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Mutación , Anomalías Dentarias/diagnóstico , Anomalías Dentarias/genética , Antígenos CD , Cadherinas/química , Cadherinas/metabolismo , Cateninas/química , Cateninas/metabolismo , Línea Celular , Labio Leporino/metabolismo , Fisura del Paladar/metabolismo , Biología Computacional , Análisis Mutacional de ADN , Ectropión/metabolismo , Exones , Facies , Femenino , Expresión Génica , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Modelos Moleculares , Linaje , Fenotipo , Conformación Proteica , Transporte de Proteínas , Anomalías Dentarias/metabolismo , Catenina deltaRESUMEN
Introduction: Hearing parents of deaf or hard of hearing (DHH) children may experience parenting stress and social support could be a buffer to this stress. Differences in levels of these two indicators may exist between mothers and fathers. This study focuses on the parenting stress and social support needs of mothers and fathers of DHH children. Methods: Twenty-seven French parental couples of DHH children completed the Parenting Stress Index and the Family Needs Survey, a questionnaire on social support needs. Results: Their overall stress scores showed no difference, but subdomain scores show that mothers and fathers are more stressed by the child's hyperactivity, and fathers by the child's adaptability, than parents of children with normal hearing. Mothers are more stressed than fathers by role restriction; they feel less free because of their parenting role. Fathers have a lower quality of attachment to their child than mothers. Parents have a high social support need, especially for obtaining information about their child's individual characteristics and health situation. The ranking of mothers and fathers in the top 10 needs reveals different needs profiles. Parenting stress profiles show that mothers and fathers with higher-than-normal stress levels have a greater overall need for social support than mothers and fathers with lower than normal stress levels. Discussion: This study highlights the value of assessing parenting stress and social support needs in parents of DHH children for a better understanding of their situation in research and its clinical implications, as well as the importance of differentiating outcomes for mothers and fathers.
RESUMEN
Holt-Oram syndrome (HOS) is an autosomal dominant condition characterised by the association of congenital heart defect (CHD), with or without rhythm disturbances and radial defects, due to TBX5 variants. The diagnosis is challenged by the variability of expression and the large phenotypic overlap with other conditions, like Okihiro syndrome, TAR syndrome or Fanconi disease. We retrospectively reviewed 212 patients referred for suspicion of HOS between 2002 and 2014, who underwent TBX5 screening. A TBX5 variant has been identified in 78 patients, representing the largest molecular series ever described. In the cohort, 61 met the previously described diagnostic criteria and 17 have been considered with an uncertain HOS diagnosis. A CHD was present in 91% of the patients with a TBX5 variant, atrial septal defects being the most common (61.5%). The genotype-phenotype study highlights the importance of some critical features in HOS: the septal characteristic of the CHD, the bilateral and asymmetric characteristics of the radial defect and the presence of shoulder or elbow mobility defect. Besides, 21 patients presented with an overlapping condition. Among them, 13 had a typical HOS presentation. We discuss the strategies that could be adopted to improve the molecular delineation of the remaining typical patients.
Asunto(s)
Anomalías Múltiples/genética , Cardiopatías Congénitas/genética , Defectos del Tabique Interatrial/genética , Deformidades Congénitas de las Extremidades Inferiores/genética , Fenotipo , Proteínas de Dominio T Box/genética , Deformidades Congénitas de las Extremidades Superiores/genética , Anomalías Múltiples/patología , Diagnóstico Diferencial , Cardiopatías Congénitas/patología , Defectos del Tabique Interatrial/patología , Humanos , Lactante , Deformidades Congénitas de las Extremidades Inferiores/patología , Mutación , Deformidades Congénitas de las Extremidades Superiores/patologíaRESUMEN
Syndromes caused by copy number variations are described as reciprocal when they result from deletions or duplications of the same chromosomal region. When comparing the phenotypes of these syndromes, various clinical features could be described as reversed, probably due to the opposite effect of these imbalances on the expression of genes located at this locus. The NFIX gene codes for a transcription factor implicated in neurogenesis and chondrocyte differentiation. Microdeletions and loss of function variants of NFIX are responsible for Sotos syndrome-2 (also described as Malan syndrome), a syndromic form of intellectual disability associated with overgrowth and macrocephaly. Here, we report a cohort of nine patients harboring microduplications encompassing NFIX. These patients exhibit variable intellectual disability, short stature and small head circumference, which can be described as a reversed Sotos syndrome-2 phenotype. Strikingly, such a reversed phenotype has already been described in patients harboring microduplications encompassing NSD1, the gene whose deletions and loss-of-function variants are responsible for classical Sotos syndrome. Even though the type/contre-type concept has been criticized, this model seems to give a plausible explanation for the pathogenicity of 19p13 microduplications, and the common phenotype observed in our cohort.
Asunto(s)
Anomalías Múltiples/genética , Duplicación Cromosómica , Cromosomas Humanos Par 19/genética , Discapacidad Intelectual/genética , Factores de Transcripción NFI/genética , Anomalías Múltiples/patología , Adolescente , Niño , Preescolar , Femenino , Humanos , Lactante , Discapacidad Intelectual/patología , Masculino , SíndromeRESUMEN
CHES (cerebellar hypoplasia with endosteal sclerosis) syndrome (OMIM#213002) associates hypomyelination, cerebellar atrophy, hypogonadism and hypodontia. So far, only five patients have been described. The condition is of neonatal onset. Patients have severe psychomotor delay and moderate to severe intellectual disability. Inheritance is assumed to be autosomal recessive due to recurrence in sibs, consanguinity of parents and absence of vertical transmission. CHES syndrome is reminiscent of 4H-leukodystrophy, a recessive-inherited affection due to variations in genes encoding subunits of the RNA polymerase III (POLR3A-POLR3B-POLR1C). POLR3B variants have been identified in one CHES patient. Here we report on a novel CHES patient, carrying compound heterozygous variations in POLR3B. This report confirms affiliation of CHES to POLR3-related disorders and suggests that CHES syndrome represents a severe form of 4H-leukodystrophy.