Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36769018

RESUMEN

Myotonic dystrophy type 1 (DM1) is one of the most common muscular dystrophies and can be potentially treated with antisense therapy decreasing mutant DMPK, targeting miRNAs or their binding sites or via a blocking mechanism for MBNL1 displacement from the repeats. Unconjugated antisense molecules are able to correct the disease phenotype in mouse models, but they show poor muscle penetration upon systemic delivery in DM1 patients. In order to overcome this challenge, research has focused on the improvement of the therapeutic window and biodistribution of antisense therapy using bioconjugation to lipids, cell penetrating peptides or antibodies. Antisense conjugates are able to induce the long-lasting correction of DM1 pathology at both molecular and functional levels and also efficiently penetrate hard-to-reach tissues such as cardiac muscle. Delivery to the CNS at clinically relevant levels remains challenging and the use of alternative administration routes may be necessary to ameliorate some of the symptoms experienced by DM1 patients. With several antisense therapies currently in clinical trials, the outlook for achieving a clinically approved treatment for patients has never looked more promising.


Asunto(s)
Distrofias Musculares , Distrofia Miotónica , Ratones , Animales , Distrofia Miotónica/tratamiento farmacológico , Distrofia Miotónica/genética , Distribución Tisular , Distrofias Musculares/metabolismo , Oligonucleótidos Antisentido/farmacología , Miocardio/metabolismo
2.
Mol Ther ; 28(12): 2527-2539, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33171139

RESUMEN

Myotonic dystrophy type 1 (DM1) is a debilitating multisystemic disorder, caused by expansion of a CTG microsatellite repeat in the 3' untranslated region of the DMPK (dystrophia myotonica protein kinase) gene. To date, novel therapeutic approaches have focused on transient suppression of the mutant, repeat-expanded RNA. However, recent developments in the field of genome editing have raised the exciting possibility of inducing permanent correction of the DM1 genetic defect. Specifically, repurposing of the prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated protein 9) system has enabled programmable, site-specific, and multiplex genome editing. CRISPR-based strategies for the treatment of DM1 can be applied either directly to patients, or indirectly through the ex vivo modification of patient-derived cells, and they include excision of the repeat expansion, insertion of synthetic polyadenylation signals upstream of the repeat, steric interference with RNA polymerase II procession through the repeat leading to transcriptional downregulation of DMPK, and direct RNA targeting of the mutant RNA species. Potential obstacles to such therapies are discussed, including the major challenge of Cas9 and guide RNA transgene/ribonuclear protein delivery, off-target gene editing, vector genome insertion at cut sites, on-target unintended mutagenesis (e.g., repeat inversion), pre-existing immunity to Cas9 or AAV antigens, immunogenicity, and Cas9 persistence.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Edición Génica/métodos , Terapia Genética/métodos , Distrofia Miotónica/terapia , Animales , Dependovirus/genética , Modelos Animales de Enfermedad , Vectores Genéticos/administración & dosificación , Humanos , Ratones , Distrofia Miotónica/genética , Proteína Quinasa de Distrofia Miotónica/genética , ARN Guía de Kinetoplastida/genética , Resultado del Tratamiento , Expansión de Repetición de Trinucleótido/genética
3.
Nucleic Acids Res ; 45(13): 7870-7885, 2017 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-28575281

RESUMEN

We evaluate a knockdown-replacement strategy mediated by mirtrons as an alternative to allele-specific silencing using spinocerebellar ataxia 7 (SCA7) as a model. Mirtrons are introns that form pre-microRNA hairpins after splicing, producing RNAi effectors not processed by Drosha. Mirtron mimics may therefore avoid saturation of the canonical processing pathway. This method combines gene silencing mediated by an artificial mirtron with delivery of a functional copy of the gene such that both elements of the therapy are always expressed concurrently, minimizing the potential for undesirable effects and preserving wild-type function. This mutation- and single nucleotide polymorphism-independent method could be crucial in dominant diseases that feature both gain- and loss-of-function pathologies or have a heterogeneous genetic background. Here we develop mirtrons against ataxin 7 with silencing efficacy comparable to shRNAs, and introduce silent mutations into an ataxin 7 transgene such that it is resistant to their effect. We successfully express the transgene and one mirtron together from a single construct. Hence, we show that this method can be used to silence the endogenous allele of ataxin 7 and replace it with an exogenous copy of the gene, highlighting the efficacy and transferability across patient genotypes of this approach.


Asunto(s)
Terapia Genética/métodos , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/terapia , Ataxina-7/antagonistas & inhibidores , Ataxina-7/genética , Línea Celular , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Intrones , MicroARNs/genética , MicroARNs/metabolismo , Modelos Genéticos , Interferencia de ARN , Precursores del ARN/genética , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , Empalme del ARN , Ataxias Espinocerebelosas/metabolismo , Transfección
4.
Brain ; 140(4): 887-897, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28334866

RESUMEN

A non-coding hexanucleotide repeat expansion in intron 1 of the C9orf72 gene is the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD), however, the precise molecular mechanism by which the C9orf72 hexanucleotide repeat expansion directs C9ALS/FTD pathogenesis remains unclear. Here, we report a novel disease mechanism arising due to the interaction of C9ORF72 with the RAB7L1 GTPase to regulate vesicle trafficking. Endogenous interaction between C9ORF72 and RAB7L1 was confirmed in human SH-SY5Y neuroblastoma cells. The C9orf72 hexanucleotide repeat expansion led to haploinsufficiency resulting in severely defective intracellular and extracellular vesicle trafficking and a dysfunctional trans-Golgi network phenotype in patient-derived fibroblasts and induced pluripotent stem cell-derived motor neurons. Genetic ablation of RAB7L1or C9orf72 in SH-SY5Y cells recapitulated the findings in C9ALS/FTD fibroblasts and induced pluripotent stem cell neurons. When C9ORF72 was overexpressed or antisense oligonucleotides were targeted to the C9orf72 hexanucleotide repeat expansion to upregulate normal variant 1 transcript levels, the defective vesicle trafficking and dysfunctional trans-Golgi network phenotypes were reversed, suggesting that both loss- and gain-of-function mechanisms play a role in disease pathogenesis. In conclusion, we have identified a novel mechanism for C9ALS/FTD pathogenesis highlighting the molecular regulation of intracellular and extracellular vesicle trafficking as an important pathway in C9ALS/FTD pathogenesis.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Demencia Frontotemporal/metabolismo , Proteínas/metabolismo , Proteínas de Unión al GTP rab1/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Transporte Biológico , Proteína C9orf72 , Células COS , Línea Celular , Chlorocebus aethiops , Expansión de las Repeticiones de ADN , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Humanos , Intrones , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , Neuronas/efectos de los fármacos , Neuronas/patología , Oligonucleótidos Antisentido/farmacología , Linaje , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/patología , Proteínas/genética , Proteínas de Unión al GTP rab , Proteínas de Unión al GTP rab1/genética
5.
Mol Ther ; 25(7): 1580-1587, 2017 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-28392161

RESUMEN

Extracellular vesicles (EVs) are cell-derived, membranous nanoparticles that mediate intercellular communication by transferring biomolecules, including proteins and RNA, between cells. As a result of their suggested natural capability to functionally deliver RNA, EVs may be harnessed as therapeutic RNA carriers. One major limitation for their translation to therapeutic use is the lack of an efficient, robust, and scalable method to load EVs with RNA molecules of interest. Here, we evaluated and optimized methods to load EVs with cholesterol-conjugated small interfering RNAs (cc-siRNAs) by systematic evaluation of the influence of key parameters, including incubation time, volume, temperature, and EV:cc-siRNA ratio. EV loading under conditions that resulted in the highest siRNA retention percentage, incubating 15 molecules of cc-siRNA per EV at 37°C for 1 hr in 100 µL, facilitated concentration-dependent silencing of human antigen R (HuR), a therapeutic target in cancer, in EV-treated cells. These results may accelerate the development of EV-based therapeutics.


Asunto(s)
Colesterol/química , Sistemas de Liberación de Medicamentos , Proteína 1 Similar a ELAV/antagonistas & inhibidores , Vesículas Extracelulares/metabolismo , Proteínas de Neoplasias/antagonistas & inhibidores , ARN Interferente Pequeño/metabolismo , Animales , Secuencia de Bases , Transporte Biológico , Línea Celular , Línea Celular Tumoral , Colesterol/metabolismo , Proteína 1 Similar a ELAV/genética , Proteína 1 Similar a ELAV/metabolismo , Vesículas Extracelulares/química , Fibroblastos/citología , Fibroblastos/metabolismo , Expresión Génica , Células HEK293 , Humanos , Ratones , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neuronas/metabolismo , Neuronas/patología , Permeabilidad , ARN Interferente Pequeño/genética , Temperatura
6.
Methods Mol Biol ; 2587: 209-237, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36401033

RESUMEN

Antisense oligonucleotides (ASOs) have shown great therapeutic potential in the treatment of many neuromuscular diseases including myotonic dystrophy 1 (DM1). However, systemically delivered ASOs display poor biodistribution and display limited penetration into skeletal muscle. The conjugation of cell-penetrating peptides (CPPs) to phosphorodiamidate morpholino oligonucleotides (PMOs), a class of ASOs with a modified backbone, can be used to enhance ASO skeletal muscle penetration. Peptide-PMOs (P-PMOs) have been shown to be highly effective in correcting the DM1 skeletal muscle phenotype in both murine and cellular models of DM1 and at a molecular and functional level. Here we describe the synthesis and conjugation of P-PMOs and methods for analyzing their biodistribution and toxicity in the HSA-LR DM1 mouse model and their efficacy both in vitro and in vivo using FISH and RT-PCR splicing analysis.


Asunto(s)
Péptidos de Penetración Celular , Distrofia Miotónica , Ratones , Animales , Morfolinos/genética , Morfolinos/uso terapéutico , Morfolinos/química , Distrofia Miotónica/genética , Distrofia Miotónica/terapia , Distribución Tisular , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/uso terapéutico , Péptidos de Penetración Celular/química
7.
Nanoscale Adv ; 5(11): 2941-2949, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37260495

RESUMEN

Nucleic acid therapeutics require delivery systems to reach their targets. Key challenges to be overcome include avoidance of accumulation in cells of the mononuclear phagocyte system and escape from the endosomal pathway. Spherical nucleic acids (SNAs), in which a gold nanoparticle supports a corona of oligonucleotides, are promising carriers for nucleic acids with valuable properties including nuclease resistance, sequence-specific loading and control of receptor-mediated endocytosis. However, SNAs accumulate in the endosomal pathway and are thus vulnerable to lysosomal degradation or recycling exocytosis. Here, an alternative SNA core based on diblock copolymer PMPC25-PDPA72 is investigated. This pH-sensitive polymer self-assembles into vesicles with an intrinsic ability to escape endosomes via osmotic shock triggered by acidification-induced disassembly. DNA oligos conjugated to PMPC25-PDPA72 molecules form vesicles, or polymersomes, with DNA coronae on luminal and external surfaces. Nucleic acid cargoes or nucleic acid-tagged targeting moieties can be attached by hybridization to the coronal DNA. These polymeric SNAs are used to deliver siRNA duplexes against C9orf72, a genetic target with therapeutic potential for amyotrophic lateral sclerosis, to motor neuron-like cells. By attaching a neuron-specific targeting peptide to the PSNA corona, effective knock-down is achieved at doses of 2 particles per cell.

8.
Mol Ther Nucleic Acids ; 34: 102024, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37744174

RESUMEN

Myotonic dystrophy type 1 (DM1) is a rare neuromuscular disease caused by a CTG repeat expansion in the DMPK gene that generates toxic RNA with a myriad of downstream alterations in RNA metabolism. A key consequence is the sequestration of alternative splicing regulatory proteins MBNL1/2 by expanded transcripts in the affected tissues. MBNL1/2 depletion interferes with a developmental alternative splicing switch that causes the expression of fetal isoforms in adults. Boosting the endogenous expression of MBNL proteins by inhibiting the natural translational repressors miR-23b and miR-218 has previously been shown to be a promising therapeutic approach. We designed antimiRs against both miRNAs with a phosphorodiamidate morpholino oligonucleotide (PMO) chemistry conjugated to cell-penetrating peptides (CPPs) to improve delivery to affected tissues. In DM1 cells, CPP-PMOs significantly increased MBNL1 levels. In some candidates, this was achieved using concentrations less than two orders of magnitude below the median toxic concentration, with up to 5.38-fold better therapeutic window than previous antagomiRs. In HSALR mice, intravenous injections of CPP-PMOs improve molecular, histopathological, and functional phenotypes, without signs of toxicity. Our findings place CPP-PMOs as promising antimiR candidates to overcome the treatment delivery challenge in DM1 therapy.

9.
Mol Ther Nucleic Acids ; 27: 1146-1155, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35282418

RESUMEN

Myotonic dystrophy type 1 is a debilitating neuromuscular disease causing muscle weakness, myotonia, and cardiac dysfunction. The phenotypes are caused by muscleblind-like (MBNL) protein sequestration by toxic RNA in the DM1 protein kinase (DMPK) gene. DM1 patients exhibit a pathogenic number of repetitions in DMPK, which leads to downstream symptoms. Another disease characteristic is altered microRNA (miRNA) expression. It was previously shown that miR-23b regulates the translation of MBNL1 into protein. Antisense oligonucleotide (AON) treatment targeting this miRNA can improve disease symptoms. Here, we present a refinement of this strategy targeting a miR-23b binding site on the MBNL1 3' UTR in DM1 model cells and mice by using AONs called blockmiRs. BlockmiRs linked to novel cell-penetrating peptide chemistry showed an increase in MBNL1 protein in DM1 model cells and HSALR mice. They also showed an increase in muscle strength and significant rescue of downstream splicing and histological phenotypes in mice without disturbing the endogenous levels of other miR-23b target transcripts.

10.
Genomics ; 95(3): 151-9, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20026267

RESUMEN

Understanding the forces that govern the distribution of single nucleotide polymorphisms is vital for many of their applications. Here we conducted a systematic search to quantify how both SNP density and human-chimpanzee divergence vary around different repetitive sequences. We uncovered a highly complicated picture in which these quantities often differ significantly from the genome-wide average in regions extending more than 20 kb, the direction of the deviation varying with repeat number and motif. AT microsatellites in particular are potent predictors of SNP density, long (AT)(n) repeat tracts tending to be found in regions of significantly reduced SNP density and low GC content. Although the causal relationships remain difficult to determine, our results indicate a strong relationship between microsatellites and the DNA that flanks them. Our results help to explain the mixed picture that emerges from other studies and have important implications for the way in which genetic diversity is distributed in our genomes.


Asunto(s)
Variación Genética , Genoma Humano/genética , Repeticiones de Microsatélite/genética , Polimorfismo de Nucleótido Simple/genética , Animales , Humanos , Pan troglodytes/genética
11.
Mol Ther Nucleic Acids ; 26: 174-191, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34513303

RESUMEN

Myotonic dystrophy type 1 (DM1) is a rare neuromuscular disease caused by expansion of unstable CTG repeats in a non-coding region of the DMPK gene. CUG expansions in mutant DMPK transcripts sequester MBNL1 proteins in ribonuclear foci. Depletion of this protein is a primary contributor to disease symptoms such as muscle weakness and atrophy and myotonia, yet upregulation of endogenous MBNL1 levels may compensate for this sequestration. Having previously demonstrated that antisense oligonucleotides against miR-218 boost MBNL1 expression and rescue phenotypes in disease models, here we provide preclinical characterization of an antagomiR-218 molecule using the HSALR mouse model and patient-derived myotubes. In HSALR, antagomiR-218 reached 40-60 pM 2 weeks after injection, rescued molecular and functional phenotypes in a dose- and time-dependent manner, and showed a good toxicity profile after a single subcutaneous administration. In muscle tissue, antagomiR rescued the normal subcellular distribution of Mbnl1 and did not alter the proportion of myonuclei containing CUG foci. In patient-derived cells, antagomiR-218 improved defective fusion and differentiation and rescued up to 34% of the gene expression alterations found in the transcriptome of patient cells. Importantly, miR-218 was found to be upregulated in DM1 muscle biopsies, pinpointing this microRNA (miRNA) as a relevant therapeutic target.

12.
Methods Mol Biol ; 2176: 185-208, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32865792

RESUMEN

Several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), have a complex genetic background, in addition to cases where the disease appears to manifest sporadically. The recent discovery of the hexanucleotide repeat expansion in the C9orf72 gene as the causative agent of ALS (C9ALS) gives rise to the opportunity to develop new therapies directed at this mutation , which is responsible for a large proportion of ALS and/or frontotemporal dementia cases. Mammalian models conscientiously replicating the late-onset motor defects and cellular pathologies seen in human patients do not exist. In this context, patient-derived cells give us a platform to test potential antisense oligonucleotide therapies, which could be the key to treat this subtype of motor neuron disease. Recently, we described that locked nucleic acid gapmer oligonucleotide-based treatment targeting C9orf72 repeat expanded transcripts resulted in recovery from the disease-related phenotypes in patient-derived fibroblasts. Our findings highlight the therapeutic potential of C9ALS using this gapmer oligonucleotide-based approach.


Asunto(s)
Proteína C9orf72/genética , Técnicas de Cultivo de Célula/métodos , Expansión de las Repeticiones de ADN , Terapia Genética/métodos , Oligonucleótidos/genética , Transfección/métodos , Esclerosis Amiotrófica Lateral/genética , Células Cultivadas , Vesículas Extracelulares , Fibroblastos , Congelación , Demencia Frontotemporal/genética , Humanos , Immunoblotting , Plásmidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Piel/citología
13.
Cells ; 9(11)2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33153033

RESUMEN

Spinal Muscular Atrophy (SMA) is a neuromuscular disease caused by decreased levels of the survival of motoneuron (SMN) protein. Post-translational mechanisms for regulation of its stability are still elusive. Thus, we aimed to identify regulatory phosphorylation sites that modulate function and stability. Our results show that SMN residues S290 and S292 are phosphorylated, of which SMN pS290 has a detrimental effect on protein stability and nuclear localization. Furthermore, we propose that phosphatase and tensin homolog (PTEN), a novel phosphatase for SMN, counteracts this effect. In light of recent advancements in SMA therapies, a significant need for additional approaches has become apparent. Our study demonstrates S290 as a novel molecular target site to increase the stability of SMN. Characterization of relevant kinases and phosphatases provides not only a new understanding of SMN function, but also constitutes a novel strategy for combinatorial therapeutic approaches to increase the level of SMN in SMA.


Asunto(s)
Aminoácidos/metabolismo , Fosfohidrolasa PTEN/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/química , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans , Línea Celular Tumoral , Núcleo Celular/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fosforilación , Fosfoserina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Estabilidad Proteica , Proteolisis , Relación Estructura-Actividad
14.
J Mol Evol ; 68(2): 160-70, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19184164

RESUMEN

Microsatellites are short tandem repeats that evolve predominantly through a stepwise mutation model. Despite intensive study, many aspects of their evolution remain unresolved, particularly the question of how compound microsatellites containing two different motifs evolve. Previous work described profound asymmetries in the probability that any given second motif lies either 3' or 5' of an AC repeat tract. Here we confirm and extend this analysis to examine the length dependence of these asymmetries. We then use the differences in length between homologous human and chimpanzee microsatellites as a surrogate measure of the slippage-based mutation rate to explore factors that influence this process. We find that the dominant predictor of mutation rate is the length of the tract being considered, which is a stronger predictor than the length of the two tracts combined, but other factors also have a significant impact, including the length of the second tract and which of the two tracts lies upstream. We conclude that compound microsatellites rarely arise through random point mutations generating a second motif within a previously pure tract. Instead, our analyses point toward a model in which poorly understood mutation biases, probably affecting both slippage and point mutations and often showing 3'-5' polarity, promote the formation of compound microsatellites. The result is convergent evolution. We suggest that, although their exact nature remains unclear, these biases are likely attributable to structural features, such as the propensity of AC tracts to form Z-DNA.


Asunto(s)
Evolución Molecular , Genoma Humano , Repeticiones de Microsatélite/genética , Conformación de Ácido Nucleico , Animales , Composición de Base , Humanos , Modelos Genéticos , Mutación , Pan troglodytes/genética
15.
J Clin Invest ; 129(11): 4739-4744, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31479430

RESUMEN

Antisense oligonucleotides (ASOs) targeting pathologic RNAs have shown promising therapeutic corrections for many genetic diseases including myotonic dystrophy (DM1). Thus, ASO strategies for DM1 can abolish the toxic RNA gain-of-function mechanism caused by nucleus-retained mutant DMPK (DM1 protein kinase) transcripts containing CUG expansions (CUGexps). However, systemic use of ASOs for this muscular disease remains challenging due to poor drug distribution to skeletal muscle. To overcome this limitation, we test an arginine-rich Pip6a cell-penetrating peptide and show that Pip6a-conjugated morpholino phosphorodiamidate oligomer (PMO) dramatically enhanced ASO delivery into striated muscles of DM1 mice following systemic administration in comparison with unconjugated PMO and other ASO strategies. Thus, low-dose treatment with Pip6a-PMO-CAG targeting pathologic expansions is sufficient to reverse both splicing defects and myotonia in DM1 mice and normalizes the overall disease transcriptome. Moreover, treated DM1 patient-derived muscle cells showed that Pip6a-PMO-CAG specifically targets mutant CUGexp-DMPK transcripts to abrogate the detrimental sequestration of MBNL1 splicing factor by nuclear RNA foci and consequently MBNL1 functional loss, responsible for splicing defects and muscle dysfunction. Our results demonstrate that Pip6a-PMO-CAG induces long-lasting correction with high efficacy of DM1-associated phenotypes at both molecular and functional levels, and strongly support the use of advanced peptide conjugates for systemic corrective therapy in DM1.


Asunto(s)
Péptidos de Penetración Celular/farmacología , Músculo Esquelético/metabolismo , Distrofia Miotónica , Proteína Quinasa de Distrofia Miotónica , Oligodesoxirribonucleótidos Antisentido , Animales , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Músculo Esquelético/patología , Distrofia Miotónica/tratamiento farmacológico , Distrofia Miotónica/genética , Distrofia Miotónica/metabolismo , Distrofia Miotónica/patología , Proteína Quinasa de Distrofia Miotónica/genética , Proteína Quinasa de Distrofia Miotónica/metabolismo , Oligodesoxirribonucleótidos Antisentido/genética , Oligodesoxirribonucleótidos Antisentido/farmacología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
16.
Eur J Hum Genet ; 24(2): 271-6, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25990798

RESUMEN

Allele-specific gene therapy aims to silence expression of mutant alleles through targeting of disease-linked single-nucleotide polymorphisms (SNPs). However, SNP linkage to disease varies between populations, making such molecular therapies applicable only to a subset of patients. Moreover, not all SNPs have the molecular features necessary for potent gene silencing. Here we provide knowledge to allow the maximisation of patient coverage by building a comprehensive understanding of SNPs ranked according to their predicted suitability toward allele-specific silencing in 14 repeat expansion diseases: amyotrophic lateral sclerosis and frontotemporal dementia, dentatorubral-pallidoluysian atrophy, myotonic dystrophy 1, myotonic dystrophy 2, Huntington's disease and several spinocerebellar ataxias. Our systematic analysis of DNA sequence variation shows that most annotated SNPs are not suitable for potent allele-specific silencing across populations because of suboptimal sequence features and low variability (>97% in HD). We suggest maximising patient coverage by selecting SNPs with high heterozygosity across populations, and preferentially targeting SNPs that lead to purine:purine mismatches in wild-type alleles to obtain potent allele-specific silencing. We therefore provide fundamental knowledge on strategies for optimising patient coverage of therapeutics for microsatellite expansion disorders by linking analysis of population genetic variation to the selection of molecular targets.


Asunto(s)
Expansión de las Repeticiones de ADN/genética , Enfermedades Genéticas Congénitas/genética , Terapia Genética , Terapia Molecular Dirigida , Alelos , Silenciador del Gen , Enfermedades Genéticas Congénitas/terapia , Genética de Población , Heterocigoto , Humanos , Polimorfismo de Nucleótido Simple/genética
17.
Sci Rep ; 5: 8986, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25758104

RESUMEN

Duchenne muscular dystrophy (DMD) is a fatal neuromuscular disorder caused by mutations in the Dmd gene. In addition to skeletal muscle wasting, DMD patients develop cardiomyopathy, which significantly contributes to mortality. Antisense oligonucleotides (AOs) are a promising DMD therapy, restoring functional dystrophin protein by exon skipping. However, a major limitation with current AOs is the absence of dystrophin correction in heart. Pip peptide-AOs demonstrate high activity in cardiac muscle. To determine their therapeutic value, dystrophic mdx mice were subject to forced exercise to model the DMD cardiac phenotype. Repeated peptide-AO treatments resulted in high levels of cardiac dystrophin protein, which prevented the exercised induced progression of cardiomyopathy, normalising heart size as well as stabilising other cardiac parameters. Treated mice also exhibited significantly reduced cardiac fibrosis and improved sarcolemmal integrity. This work demonstrates that high levels of cardiac dystrophin restored by Pip peptide-AOs prevents further deterioration of cardiomyopathy and pathology following exercise in dystrophic DMD mice.


Asunto(s)
Cardiomiopatías/etiología , Distrofina/genética , Morfolinos/administración & dosificación , Distrofia Muscular de Duchenne/complicaciones , Condicionamiento Físico Animal/efectos adversos , Animales , Biomarcadores , Cardiomiopatías/diagnóstico , Cardiomiopatías/metabolismo , Cardiomiopatías/prevención & control , Cardiomiopatías/terapia , Cardiomiopatía Dilatada/diagnóstico , Cardiomiopatía Dilatada/etiología , Cardiomiopatía Dilatada/prevención & control , Cardiomiopatía Dilatada/terapia , Modelos Animales de Enfermedad , Distrofina/metabolismo , Fibrosis , Expresión Génica , Humanos , Imagen por Resonancia Cinemagnética , Ratones , Ratones Endogámicos mdx , Miocardio/metabolismo , Miocardio/patología , Fenotipo
18.
Mol Ther Nucleic Acids ; 3: e212, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25423116

RESUMEN

Splice switching oligonucleotides (SSOs) induce alternative splicing of pre-mRNA and typically employ chemical modifications to increase nuclease resistance and binding affinity to target pre-mRNA. Here we describe a new SSO non-base modifier (a naphthyl-azo group, "ZEN™") to direct exon exclusion in mutant dystrophin pre-mRNA to generate functional dystrophin protein. The ZEN modifier is placed near the ends of a 2'-O-methyl (2'OMe) oligonucleotide, increasing melting temperature and potency over unmodified 2'OMe oligonucleotides. In cultured H2K cells, a ZEN-modified 2'OMe phosphorothioate (PS) oligonucleotide delivered by lipid transfection greatly enhanced dystrophin exon skipping over the same 2'OMePS SSO lacking ZEN. However, when tested using free gymnotic uptake in vitro and following systemic delivery in vivo in dystrophin deficient mdx mice, the same ZEN-modified SSO failed to enhance potency. Importantly, we show for the first time that in vivo activity of anionic SSOs is modelled in vitro only when using gymnotic delivery. ZEN is thus a novel modifier that enhances activity of SSOs in vitro but will require improved delivery methods before its in vivo clinical potential can be realized.

19.
Nat Struct Mol Biol ; 21(11): 955-961, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25306109

RESUMEN

What causes the tissue-specific pathology of diseases resulting from mutations in housekeeping genes? Specifically, in spinocerebellar ataxia type 7 (SCA7), a neurodegenerative disorder caused by a CAG-repeat expansion in ATXN7 (which encodes an essential component of the mammalian transcription coactivation complex, STAGA), the factors underlying the characteristic progressive cerebellar and retinal degeneration in patients were unknown. We found that STAGA is required for the transcription initiation of miR-124, which in turn mediates the post-transcriptional cross-talk between lnc-SCA7, a conserved long noncoding RNA, and ATXN7 mRNA. In SCA7, mutations in ATXN7 disrupt these regulatory interactions and result in a neuron-specific increase in ATXN7 expression. Strikingly, in mice this increase is most prominent in the SCA7 disease-relevant tissues, namely the retina and cerebellum. Our results illustrate how noncoding RNA-mediated feedback regulation of a ubiquitously expressed housekeeping gene may contribute to specific neurodegeneration.


Asunto(s)
Cerebelo/metabolismo , MicroARNs/genética , Proteínas del Tejido Nervioso/genética , ARN Largo no Codificante/genética , Retina/metabolismo , Ataxias Espinocerebelosas/genética , Animales , Ataxina-7 , Línea Celular Tumoral , Cerebelo/patología , Retroalimentación Fisiológica , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Masculino , Ratones , MicroARNs/metabolismo , Mutación , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Neuronas/patología , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Retina/patología , Transducción de Señal , Ataxias Espinocerebelosas/metabolismo , Ataxias Espinocerebelosas/patología , Iniciación de la Transcripción Genética
20.
Neurotherapeutics ; 10(4): 621-31, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24068583

RESUMEN

The most fundamental roles of non-coding RNAs (ncRNAs) and epigenetic mechanisms are the guidance of cellular differentiation in development and the regulation of gene expression in adult tissues. In brain, both ncRNAs and the various epigenetic gene regulatory mechanisms play a fundamental role in neurogenesis and normal neuronal function. Thus, epigenetic chromatin remodelling can render coding sites transcriptionally inactive by DNA methylation, histone modifications or antisense RNA interactions. On the other hand, microRNAs (miRNAs) are ncRNA molecules that can regulate the expression of hundreds of genes post-transcriptionally, typically recognising binding sites in the 3' untranslated region (UTR) of mRNA transcripts. Furthermore, there are a myriad of interactions in the interface of miRNAs and epigenetics. For example, epigenetic mechanisms can silence miRNA coding sites, and miRNAs can be the effectors of transcriptional gene silencing, targeting complementary promoters or silencing the expression of epigenetic modifier genes like MECP2 and EZH2 leading to global changes in the epigenome. Alterations in this regulatory machinery play a key role in the pathology of complex disorders including cancer and neurological diseases. For example, miRNA genes are frequently inactivated by epimutations in gliomas. Here we describe the interactions between epigenetic and ncRNA regulatory systems and discuss therapeutic potential, with an emphasis on tumors, cognitive disorders and neurodegenerative diseases.


Asunto(s)
Encéfalo/metabolismo , Epigénesis Genética , Enfermedades del Sistema Nervioso/metabolismo , ARN no Traducido/metabolismo , Metilación de ADN , Humanos , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/terapia , Regiones Promotoras Genéticas , ARN no Traducido/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA