Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 21(6): e3002133, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37390046

RESUMEN

Characterizing cellular diversity at different levels of biological organization and across data modalities is a prerequisite to understanding the function of cell types in the brain. Classification of neurons is also essential to manipulate cell types in controlled ways and to understand their variation and vulnerability in brain disorders. The BRAIN Initiative Cell Census Network (BICCN) is an integrated network of data-generating centers, data archives, and data standards developers, with the goal of systematic multimodal brain cell type profiling and characterization. Emphasis of the BICCN is on the whole mouse brain with demonstration of prototype feasibility for human and nonhuman primate (NHP) brains. Here, we provide a guide to the cellular and spatial approaches employed by the BICCN, and to accessing and using these data and extensive resources, including the BRAIN Cell Data Center (BCDC), which serves to manage and integrate data across the ecosystem. We illustrate the power of the BICCN data ecosystem through vignettes highlighting several BICCN analysis and visualization tools. Finally, we present emerging standards that have been developed or adopted toward Findable, Accessible, Interoperable, and Reusable (FAIR) neuroscience. The combined BICCN ecosystem provides a comprehensive resource for the exploration and analysis of cell types in the brain.


Asunto(s)
Encéfalo , Neurociencias , Animales , Humanos , Ratones , Ecosistema , Neuronas
2.
Mol Psychiatry ; 28(9): 3943-3954, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37914840

RESUMEN

Functional output of the hippocampus, a brain region subserving memory function, depends on highly orchestrated cellular and molecular processes that regulate synaptic plasticity throughout life. The structural requirements of such plasticity and molecular events involved in this regulation are poorly understood. Specific molecules, including tissue inhibitor of metalloproteinases-2 (TIMP2) have been implicated in plasticity processes in the hippocampus, a role that decreases with brain aging as expression is lost. Here, we report that TIMP2 is highly expressed by neurons within the hippocampus and its loss drives changes in cellular programs related to adult neurogenesis and dendritic spine turnover with corresponding impairments in hippocampus-dependent memory. Consistent with the accumulation of extracellular matrix (ECM) in the hippocampus we observe with aging, we find that TIMP2 acts to reduce accumulation of ECM around synapses in the hippocampus. Moreover, its deletion results in hindrance of newborn neuron migration through a denser ECM network. A novel conditional TIMP2 knockout (KO) model reveals that neuronal TIMP2 regulates adult neurogenesis, accumulation of ECM, and ultimately hippocampus-dependent memory. Our results define a mechanism whereby hippocampus-dependent function is regulated by TIMP2 and its interactions with the ECM to regulate diverse processes associated with synaptic plasticity.


Asunto(s)
Encéfalo , Plasticidad Neuronal , Recién Nacido , Humanos , Plasticidad Neuronal/fisiología , Encéfalo/metabolismo , Neuronas/metabolismo , Hipocampo/metabolismo , Matriz Extracelular/metabolismo , Sinapsis/metabolismo , Inhibidor Tisular de Metaloproteinasa-2/genética , Inhibidor Tisular de Metaloproteinasa-2/metabolismo
3.
Cereb Cortex ; 33(10): 6449-6464, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36646459

RESUMEN

Prematurely born infants are deprived of maternal hormones and cared for in the stressful environment of Neonatal Intensive Care Units (NICUs). They suffer from long-lasting deficits in learning and memory. Here, we show that prematurity and associated neonatal stress disrupt dentate gyrus (DG) development and induce long-term cognitive deficits and that these effects are mediated by insulin growth factor-1 (IGF1). Nonmaternal care of premature rabbits increased the number of granule cells and interneurons and reduced neurogenesis, suggesting accelerated premature maturation of DG. However, the density of glutamatergic synapses, mature dendritic spines, and synaptic transmission were reduced in preterm kits compared with full-term controls, indicating that premature synaptic maturation was abnormal. These findings were consistent with cognitive deficits observed in premature rabbits and appeared to be driven by transcriptomic changes in the granule cells. Preterm kits displayed reduced weight, elevated serum cortisol and growth hormone, and higher IGF1 expression in the liver and DG relative to full-term controls. Importantly, blocking IGF-1 receptor in premature kits restored cognitive deficits, increased the density of glutamatergic puncta, and rescued NR2B and PSD95 levels in the DG. Hence, IGF1 inhibition alleviates prematurity-induced cognitive dysfunction and synaptic changes in the DG through modulation of NR2B and PSD95. The study identifies a novel strategy to potentially rescue DG maldevelopment and cognitive dysfunction in premature infants under stress in NICUs.


Asunto(s)
Disfunción Cognitiva , Insulinas , Animales , Conejos , Giro Dentado/metabolismo , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo , Factores de Transcripción/metabolismo , Cognición , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Insulinas/metabolismo
4.
Appetite ; 180: 106363, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36356910

RESUMEN

Parent perceived stress has been associated with child obesogenic eating, as parents who are stressed may be less responsive to their children during mealtimes (Gemmill et al., 2013). More recently, mindfulness-based interventions have successfully reduced people's stress levels. However, less is known regarding the role of mindfulness in the child feeding context. In this study, 249 parents of children between the ages of 3 and 12 completed a 20-minute online study to examine the associations among COVID-19 related parent stress (hereby referred to as parent stress), mindful feeding, and child obesogenic eating (i.e., food responsiveness, enjoyment of food, emotional overeating, and desire to drink). As hypothesized, we found that greater parent stress was associated with lower mindful feeding and greater child obesogenic eating. Furthermore, findings showed that parent stress interacted with mindful feeding to predict certain child obesogenic eating (i.e., food responsiveness, emotional overeating). Emotional overeating and food responsiveness were higher in children among parents with higher stress levels and lower levels of mindful feeding when compared to children of parents with greater mindful feeding. Taken together, these findings suggest the potential of mindful feeding in buffering the association between parent stress and child obesogenic eating.


Asunto(s)
COVID-19 , Niño , Humanos , Preescolar , Padres , Conducta Alimentaria
5.
Acta Neuropathol ; 144(1): 5-26, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35579705

RESUMEN

Traumatic brain injury (TBI) is a leading cause of neurologic impairment and death that remains poorly understood. Rodent models have yet to produce clinical therapies, and the exploration of larger and more diverse models remains relatively scarce. We investigated the potential for brain injury after headbutting in two combative bovid species by assessing neuromorphology and neuropathology through immunohistochemistry and stereological quantification. Postmortem brains of muskoxen (Ovibos moschatus, n = 3) and bighorn sheep (Ovis canadensis, n = 4) were analyzed by high-resolution MRI and processed histologically for evidence of TBI. Exploratory histological protocols investigated potential abnormalities in neurons, microglia, and astrocytes in the prefrontal and parietal cortex. Phosphorylated tau protein, a TBI biomarker found in the cerebrospinal fluid and in neurodegenerative lesions, was used to detect possible cellular consequences of chronic or acute TBI. MRI revealed no abnormal neuropathological changes; however, high amounts of tau-immunoreactive neuritic thread clusters, neurites, and neurons were concentrated in the superficial layers of the neocortex, preferentially at the bottom of the sulci in the muskoxen and occasionally around blood vessels. Tau-immunoreactive lesions were rare in the bighorn sheep. Additionally, microglia and astrocytes showed no grouping around tau-immunoreactive cells in either species. Our preliminary findings indicate that muskoxen and possibly other headbutting bovids suffer from chronic or acute brain trauma and that the males' thicker skulls may protect them to a certain extent.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Encefalopatía Traumática Crónica , Animales , Encéfalo/patología , Lesiones Encefálicas/patología , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/patología , Bovinos , Encefalopatía Traumática Crónica/patología , Masculino , Neuropatología , Proteínas tau/metabolismo
6.
J Neurosci Res ; 99(10): 2463-2477, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34255876

RESUMEN

Traumatic brain injury (TBI) is one of the main causes of death worldwide. It is a complex injury that influences cellular physiology, causes neuronal cell death, and affects molecular pathways in the brain. This in turn can result in sensory, motor, and behavioral alterations that deeply impact the quality of life. Repetitive mild TBI can progress into chronic traumatic encephalopathy (CTE), a neurodegenerative condition linked to severe behavioral changes. While current animal models of TBI and CTE such as rodents, are useful to explore affected pathways, clinical findings therein have rarely translated into clinical applications, possibly because of the many morphofunctional differences between the model animals and humans. It is therefore important to complement these studies with alternative animal models that may better replicate the individuality of human TBI. Comparative studies in animals with naturally evolved brain protection such as bighorn sheep, woodpeckers, and whales, may provide preventive applications in humans. The advantages of an in-depth study of these unconventional animals are threefold. First, to increase knowledge of the often-understudied species in question; second, to improve common animal models based on the study of their extreme counterparts; and finally, to tap into a source of biological inspiration for comparative studies and translational applications in humans.


Asunto(s)
Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/patología , Encéfalo/patología , Encefalopatía Traumática Crónica/genética , Encefalopatía Traumática Crónica/patología , Modelos Animales de Enfermedad , Animales , Aves , Encéfalo/anatomía & histología , Caenorhabditis elegans , Cetáceos , Drosophila , Humanos , Ratones , Ratas , Ovinos , Porcinos
7.
Am J Primatol ; 83(11): e23271, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34018622

RESUMEN

Age-related cognitive decline has been extensively studied in humans, but the majority of research designs are cross-sectional and compare across younger and older adults. Longitudinal studies are necessary to capture variability in cognitive aging trajectories but are difficult to carry out in humans and long-lived nonhuman primates. Marmosets are an ideal primate model for neurocognitive aging as their naturally short lifespan facilitates longitudinal designs. In a longitudinal study of marmosets tested on reversal learning starting in middle-age, we found that, on average, the group of marmosets declined in cognitive performance around 8 years of age. However, we found highly variable patterns of cognitive aging trajectories across individuals. Preliminary analyses of brain tissues from this cohort also show highly variable degrees of neuropathology. Future work will tie together behavioral trajectories with brain pathology and provide a window into the factors that predict age-related cognitive decline.


Asunto(s)
Envejecimiento , Callithrix , Animales , Estudios Transversales , Longevidad , Estudios Longitudinales
8.
Am J Primatol ; 83(11): e23299, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34255875

RESUMEN

While humans exhibit a significant degree of neuropathological changes associated with deficits in cognitive and memory functions during aging, non-human primates (NHP) present with more variable expressions of pathological alterations among individuals and species. As such, NHP with long life expectancy in captivity offer an opportunity to study brain senescence in the absence of the typical cellular pathology caused by age-related neurodegenerative illnesses commonly seen in humans. Age-related changes at neuronal population, single cell, and synaptic levels have been well documented in macaques and marmosets, while age-related and Alzheimer's disease-like neuropathology has been characterized in additional species including lemurs as well as great apes. We present a comparative overview of existing neuropathologic observations across the primate order, including classic age-related changes such as cell loss, amyloid deposition, amyloid angiopathy, and tau accumulation. We also review existing cellular and ultrastructural data on neuronal changes, such as dendritic attrition and spine alterations, synaptic loss and pathology, and axonal and myelin pathology, and discuss their repercussions on cellular and systems function and cognition.


Asunto(s)
Envejecimiento , Encéfalo/patología , Primates , Enfermedad de Alzheimer , Animales , Angiopatía Amiloide Cerebral
9.
Cereb Cortex ; 29(12): 4932-4947, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30877788

RESUMEN

Preterm-born children suffer from neurological and behavioral disorders. Herein, we hypothesized that premature birth and non-maternal care of preterm newborns might disrupt neurobehavioral function, hippocampal dendritic arborization, and dendritic spine density. Additionally, we assessed whether 17ß-estradiol (E2) replacement or the TrkB receptor agonist, 7,8-dihydroxyflavone (DHF), would reverse compromised dendritic development and cognitive function in preterm newborns. These hypotheses were tested by comparing preterm (E28.5) rabbit kits cared and gavage-fed by laboratory personnel and term-kits reared and breast-fed by their mother doe at an equivalent postconceptional age. Neurobehavioral tests showed that both premature-birth and formula-feeding with non-maternal care led to increased anxiety behavior, poor social interaction, and lack of novelty preference compared with term-kits. Dendritic branching and number of total or mushroom dendritic spines were reduced in the CA1 field of preterm-kits compared with term controls. While CDC42 and Rac1/2/3 expression levels were lower, RhoA-activity was higher in preterm-kits compared with term controls. Both E2 and DHF treatment reversed prematurity-induced reduction in spine density, reduced total RhoA-GTPase levels, and enhanced cognitive function. Hence, prematurity and non-maternal care result in cognitive deficits, and reduced dendritic arbors and spines in CA1. E2 replacement or DHF treatment might reverse changes in dendritic spines and improve neurodevelopment in premature infants.


Asunto(s)
Cognición/fisiología , Espinas Dendríticas/patología , Estradiol/farmacología , Hipocampo/patología , Nacimiento Prematuro/fisiopatología , Receptor trkB/agonistas , Animales , Cognición/efectos de los fármacos , Espinas Dendríticas/efectos de los fármacos , Estrógenos/farmacología , Femenino , Flavonas/farmacología , Hipocampo/efectos de los fármacos , Privación Materna , Embarazo , Nacimiento Prematuro/patología , Conejos , Receptor trkB/efectos de los fármacos
10.
Acta Neuropathol ; 134(4): 537-566, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28584888

RESUMEN

Autism spectrum disorder (ASD) has a major impact on the development and social integration of affected individuals and is the most heritable of psychiatric disorders. An increase in the incidence of ASD cases has prompted a surge in research efforts on the underlying neuropathologic processes. We present an overview of current findings in neuropathology studies of ASD using two investigational approaches, postmortem human brains and ASD animal models, and discuss the overlap, limitations, and significance of each. Postmortem examination of ASD brains has revealed global changes including disorganized gray and white matter, increased number of neurons, decreased volume of neuronal soma, and increased neuropil, the last reflecting changes in densities of dendritic spines, cerebral vasculature and glia. Both cortical and non-cortical areas show region-specific abnormalities in neuronal morphology and cytoarchitectural organization, with consistent findings reported from the prefrontal cortex, fusiform gyrus, frontoinsular cortex, cingulate cortex, hippocampus, amygdala, cerebellum and brainstem. The paucity of postmortem human studies linking neuropathology to the underlying etiology has been partly addressed using animal models to explore the impact of genetic and non-genetic factors clinically relevant for the ASD phenotype. Genetically modified models include those based on well-studied monogenic ASD genes (NLGN3, NLGN4, NRXN1, CNTNAP2, SHANK3, MECP2, FMR1, TSC1/2), emerging risk genes (CHD8, SCN2A, SYNGAP1, ARID1B, GRIN2B, DSCAM, TBR1), and copy number variants (15q11-q13 deletion, 15q13.3 microdeletion, 15q11-13 duplication, 16p11.2 deletion and duplication, 22q11.2 deletion). Models of idiopathic ASD include inbred rodent strains that mimic ASD behaviors as well as models developed by environmental interventions such as prenatal exposure to sodium valproate, maternal autoantibodies, and maternal immune activation. In addition to replicating some of the neuropathologic features seen in postmortem studies, a common finding in several animal models of ASD is altered density of dendritic spines, with the direction of the change depending on the specific genetic modification, age and brain region. Overall, postmortem neuropathologic studies with larger sample sizes representative of the various ASD risk genes and diverse clinical phenotypes are warranted to clarify putative etiopathogenic pathways further and to promote the emergence of clinically relevant diagnostic and therapeutic tools. In addition, as genetic alterations may render certain individuals more vulnerable to developing the pathological changes at the synapse underlying the behavioral manifestations of ASD, neuropathologic investigation using genetically modified animal models will help to improve our understanding of the disease mechanisms and enhance the development of targeted treatments.


Asunto(s)
Trastorno del Espectro Autista/patología , Encéfalo/patología , Animales , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Humanos , Neuronas/metabolismo , Neuronas/patología
12.
Brain ; 137(Pt 8): 2271-86, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24893707

RESUMEN

Axonal damage is a prominent cause of disability and yet its pathogenesis is incompletely understood. Using a xenogeneic system, here we define the bioenergetic changes induced in rat neurons by exposure to cerebrospinal fluid samples from patients with multiple sclerosis compared to control subjects. A first discovery cohort of cerebrospinal fluid from 13 patients with multiple sclerosis and 10 control subjects showed that acute exposure to cerebrospinal fluid from patients with multiple sclerosis induced oxidative stress and decreased expression of neuroprotective genes, while increasing expression of genes involved in lipid signalling and in the response to oxidative stress. Protracted exposure of neurons to stress led to neurotoxicity and bioenergetics failure after cerebrospinal fluid exposure and positively correlated with the levels of neurofilament light chain. These findings were validated using a second independent cohort of cerebrospinal fluid samples (eight patients with multiple sclerosis and eight control subjects), collected at a different centre. The toxic effect of cerebrospinal fluid on neurons was not attributable to differences in IgG content, glucose, lactate or glutamate levels or differences in cytokine levels. A lipidomic profiling approach led to the identification of increased levels of ceramide C16:0 and C24:0 in the cerebrospinal fluid from patients with multiple sclerosis. Exposure of cultured neurons to micelles composed of these ceramide species was sufficient to recapitulate the bioenergetic dysfunction and oxidative damage induced by exposure to cerebrospinal fluid from patients with multiple sclerosis. Therefore, our data suggest that C16:0 and C24:0 ceramides are enriched in the cerebrospinal fluid of patients with multiple sclerosis and are sufficient to induce neuronal mitochondrial dysfunction and axonal damage.


Asunto(s)
Ceramidas/líquido cefalorraquídeo , Ceramidas/toxicidad , Metabolismo Energético/fisiología , Esclerosis Múltiple/líquido cefalorraquídeo , Neuronas/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Células Cultivadas , Estudios de Cohortes , Humanos , Persona de Mediana Edad , Neuronas/patología , Ratas , Ratas Sprague-Dawley , Adulto Joven
13.
Brain Struct Funct ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943018

RESUMEN

In this novel large-scale multiplexed immunofluorescence study we comprehensively characterized and compared layer-specific proteomic features within regions of interest of the widely divergent dorsolateral prefrontal cortex (A46) and primary visual cortex (A17) of adult rhesus monkeys. Twenty-eight markers were imaged in rounds of sequential staining, and their spatial distribution precisely quantified within gray matter layers and superficial white matter. Cells were classified as neurons, astrocytes, oligodendrocytes, microglia, or endothelial cells. The distribution of fibers and blood vessels were assessed by quantification of staining intensity across regions of interest. This method revealed multivariate similarities and differences between layers and areas. Protein expression in neurons was the strongest determinant of both laminar and regional differences, whereas protein expression in glia was more important for intra-areal laminar distinctions. Among specific results, we observed a lower glia-to-neuron ratio in A17 than in A46 and the pan-neuronal markers HuD and NeuN were differentially distributed in both brain areas with a lower intensity of NeuN in layers 4 and 5 of A17 compared to A46 and other A17 layers. Astrocytes and oligodendrocytes exhibited distinct marker-specific laminar distributions that differed between regions; notably, there was a high proportion of ALDH1L1-expressing astrocytes and of oligodendrocyte markers in layer 4 of A17. The many nuanced differences in protein expression between layers and regions observed here highlight the need for direct assessment of proteins, in addition to RNA expression, and set the stage for future protein-focused studies of these and other brain regions in normal and pathological conditions.

14.
J Biol Chem ; 287(24): 20522-33, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22496370

RESUMEN

Abnormal folding of tau protein leads to the generation of paired helical filaments (PHFs) and neurofibrillary tangles, a key neuropathological feature in Alzheimer disease and tauopathies. A specific anatomical pattern of pathological changes developing in the brain suggests that once tau pathology is initiated it propagates between neighboring neuronal cells, possibly spreading along the axonal network. We studied whether PHFs released from degenerating neurons could be taken up by surrounding cells and promote spreading of tau pathology. Neuronal and non-neuronal cells overexpressing green fluorescent protein-tagged tau (GFP-Tau) were treated with isolated fractions of human Alzheimer disease-derived PHFs for 24 h. We found that cells internalized PHFs through an endocytic mechanism and developed intracellular GFP-Tau aggregates with attributes of aggresomes. This was particularly evident by the perinuclear localization of aggregates and redistribution of the vimentin intermediate filament network and retrograde motor protein dynein. Furthermore, the content of Sarkosyl-insoluble tau, a measure of abnormal tau aggregation, increased 3-fold in PHF-treated cells. An exosome-related mechanism did not appear to be involved in the release of GFP-Tau from untreated cells. The evidence that cells can internalize PHFs, leading to formation of aggresome-like bodies, opens new therapeutic avenues to prevent propagation and spreading of tau pathology.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Axones/metabolismo , Encéfalo/metabolismo , Pliegue de Proteína , Proteínas tau/química , Proteínas tau/metabolismo , Enfermedad de Alzheimer/patología , Encéfalo/patología , Química Encefálica , Dineínas/química , Dineínas/metabolismo , Endocitosis , Humanos , Vimentina/química , Vimentina/metabolismo
15.
Neurobiol Aging ; 123: 49-62, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36638681

RESUMEN

The investigation of neurobiological and neuropathological changes that affect synaptic integrity and function with aging is key to understanding why the aging brain is vulnerable to Alzheimer's disease. We investigated the cellular characteristics in the cerebral cortex of behaviorally characterized marmosets, based on their trajectories of cognitive learning as they transitioned to old age. We found increased astrogliosis, increased phagocytic activity of microglial cells and differences in resting and reactive microglial cell phenotypes in cognitively impaired compared to nonimpaired marmosets. Differences in amyloid beta deposition were not related to cognitive trajectory. However, we found age-related changes in density and morphology of dendritic spines in pyramidal neurons of layer 3 in the dorsolateral prefrontal cortex and the CA1 field of the hippocampus between cohorts. Overall, our data suggest that an accelerated aging process, accompanied by neurodegeneration, that takes place in cognitively impaired aged marmosets and affects the plasticity of dendritic spines in cortical areas involved in cognition and points to mechanisms of neuronal vulnerability to aging.


Asunto(s)
Péptidos beta-Amiloides , Callithrix , Animales , Encéfalo , Neuronas , Envejecimiento/fisiología
16.
Sci Rep ; 13(1): 13079, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37567897

RESUMEN

The interplay between AMPA-type glutamate receptors (AMPARs) and major histocompatibility complex class I (MHC-I) proteins in regulating synaptic signaling is a crucial aspect of central nervous system (CNS) function. In this study, we investigate the significance of the cytoplasmic tail of MHC-I in synaptic signaling within the CNS and its impact on the modulation of synaptic glutamate receptor expression. Specifically, we focus on the Y321 to F substitution (Y321F) within the conserved cytoplasmic tyrosine YXXΦ motif, known for its dual role in endocytosis and cellular signaling of MHC-I. Our findings reveal that the Y321F substitution influences the expression of AMPAR subunits GluA2/3 and leads to alterations in the phosphorylation of key kinases, including Fyn, Lyn, p38, ERK1/2, JNK1/2/3, and p70 S6 kinase. These data illuminate the crucial role of MHC-I in AMPAR function and present a novel mechanism by which MHC-I integrates extracellular cues to modulate synaptic plasticity in neurons, which ultimately underpins learning and memory.


Asunto(s)
Ácido Glutámico , Transducción de Señal , Ácido Glutámico/metabolismo , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Neuronas/metabolismo , Receptores AMPA/metabolismo , Complejo Mayor de Histocompatibilidad
17.
Sci Rep ; 13(1): 6448, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37081001

RESUMEN

Major histocompatibility complex class I (MHC-I) proteins are expressed in neurons, where they regulate synaptic plasticity. However, the mechanisms by which MHC-I functions in the CNS remains unknown. Here we describe the first structural analysis of a MHC-I protein, to resolve underlying mechanisms that explains its function in the brain. We demonstrate that Y321F mutation of the conserved cytoplasmic tyrosine-based endocytosis motif YXXΦ in MHC-I affects spine density and synaptic structure without affecting neuronal complexity in the hippocampus, a region of the brain intimately involved in learning and memory. Furthermore, the impact of the Y321F substitution phenocopies MHC-I knock-out (null) animals, demonstrating that reverse, outside-in signalling events sensing the external environment is the major mechanism that conveys this information to the neuron and this has a previously undescribed yet essential role in the regulation of synaptic plasticity.


Asunto(s)
Encéfalo , Neuronas , Animales , Encéfalo/metabolismo , Neuronas/metabolismo , Plasticidad Neuronal/fisiología , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Transducción de Señal , Hipocampo/metabolismo
18.
Acta Neuropathol Commun ; 11(1): 81, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173747

RESUMEN

In the course of military operations in modern war theaters, blast exposures are associated with the development of a variety of mental health disorders associated with a post-traumatic stress disorder-related features, including anxiety, impulsivity, insomnia, suicidality, depression, and cognitive decline. Several lines of evidence indicate that acute and chronic cerebral vascular alterations are involved in the development of these blast-induced neuropsychiatric changes. In the present study, we investigated late occurring neuropathological events associated with cerebrovascular alterations in a rat model of repetitive low-level blast-exposures (3 × 74.5 kPa). The observed events included hippocampal hypoperfusion associated with late-onset inflammation, vascular extracellular matrix degeneration, synaptic structural changes and neuronal loss. We also demonstrate that arteriovenous malformations in exposed animals are a direct consequence of blast-induced tissue tears. Overall, our results further identify the cerebral vasculature as a main target for blast-induced damage and support the urgent need to develop early therapeutic approaches for the prevention of blast-induced late-onset neurovascular degenerative processes.


Asunto(s)
Malformaciones Arteriovenosas , Traumatismos por Explosión , Ratas , Masculino , Animales , Remodelación Vascular , Traumatismos por Explosión/complicaciones , Traumatismos por Explosión/patología , Encéfalo/patología , Inflamación/patología , Malformaciones Arteriovenosas/complicaciones , Malformaciones Arteriovenosas/patología , Modelos Animales de Enfermedad
19.
Sci Adv ; 9(41): eadg3844, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37824623

RESUMEN

Brain cells are arranged in laminar, nuclear, or columnar structures, spanning a range of scales. Here, we construct a reliable cell census in the frontal lobe of human cerebral cortex at micrometer resolution in a magnetic resonance imaging (MRI)-referenced system using innovative imaging and analysis methodologies. MRI establishes a macroscopic reference coordinate system of laminar and cytoarchitectural boundaries. Cell counting is obtained with a digital stereological approach on the 3D reconstruction at cellular resolution from a custom-made inverted confocal light-sheet fluorescence microscope (LSFM). Mesoscale optical coherence tomography enables the registration of the distorted histological cell typing obtained with LSFM to the MRI-based atlas coordinate system. The outcome is an integrated high-resolution cellular census of Broca's area in a human postmortem specimen, within a whole-brain reference space atlas.


Asunto(s)
Área de Broca , Corteza Cerebral , Humanos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Mapeo Encefálico
20.
Nutr Neurosci ; 15(1): 37-45, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22305652

RESUMEN

OBJECTIVES: There is accumulating evidence that coffee consumption may reduce risk for type 2 diabetes, a known risk factor for Alzheimer's and other neurological diseases. Coffee consumption is also associated with reduced risk for Alzheimer's disease and non-Alzheimer's dementias. However, preventive and therapeutic development of coffee is complicated by the cardiovascular side effects of caffeine intake. As coffee is also a rich source of chlorogenic acids and many bioactive compounds other than caffeine, we hypothesized that decaffeinated coffee drinks may exert beneficial effects on the brain. METHODS: We have investigated whether dietary supplementation with a standardized decaffeinated green coffee preparation, Svetol®, might modulate diet-induced insulin resistance and brain energy metabolism dysfunction in a high-fat diet mouse model. RESULTS: As expected, dietary supplementation with Svetol® significantly attenuated the development of high-fat diet-induced deficits in glucose-tolerance response. We have also found that Svetol®) treatment improved brain mitochondrial energy metabolism as determined by oxygen consumption rate. Consistent with this evidence, follow-up gene expression profiling with Agilent whole-genome microarray revealed that the decaffeinated coffee treatment modulated a number of genes in the brain that are implicated in cellular energy metabolism. DISCUSSION: Our evidence is the first demonstration that dietary supplementation with a decaffeinated green coffee preparation may beneficially influence the brain, in particular promoting brain energy metabolic processes.


Asunto(s)
Cafeína , Café/química , Dieta Alta en Grasa , Suplementos Dietéticos , Metabolismo Energético/efectos de los fármacos , Resistencia a la Insulina , Animales , Bebidas , Glucemia , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Ácido Clorogénico/análisis , Ácido Clorogénico/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Femenino , Estudios de Seguimiento , Perfilación de la Expresión Génica/métodos , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA