Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(D1): D723-D732, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36382399

RESUMEN

The Integrated Microbial Genomes & Microbiomes system (IMG/M: https://img.jgi.doe.gov/m/) at the Department of Energy (DOE) Joint Genome Institute (JGI) continues to provide support for users to perform comparative analysis of isolate and single cell genomes, metagenomes, and metatranscriptomes. In addition to datasets produced by the JGI, IMG v.7 also includes datasets imported from public sources such as NCBI Genbank, SRA, and the DOE National Microbiome Data Collaborative (NMDC), or submitted by external users. In the past couple years, we have continued our effort to help the user community by improving the annotation pipeline, upgrading the contents with new reference database versions, and adding new analysis functionalities such as advanced scaffold search, Average Nucleotide Identity (ANI) for high-quality metagenome bins, new cassette search, improved gene neighborhood display, and improvements to metatranscriptome data display and analysis. We also extended the collaboration and integration efforts with other DOE-funded projects such as NMDC and DOE Biology Knowledgebase (KBase).


Asunto(s)
Manejo de Datos , Genómica , Genoma Bacteriano , Programas Informáticos , Genoma Arqueal , Bases de Datos Genéticas , Metagenoma
2.
Nucleic Acids Res ; 43(14): 6761-71, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26150420

RESUMEN

Increased sequencing of microbial genomes has revealed that prevailing prokaryotic species assignments can be inconsistent with whole genome information for a significant number of species. The long-standing need for a systematic and scalable species assignment technique can be met by the genome-wide Average Nucleotide Identity (gANI) metric, which is widely acknowledged as a robust measure of genomic relatedness. In this work, we demonstrate that the combination of gANI and the alignment fraction (AF) between two genomes accurately reflects their genomic relatedness. We introduce an efficient implementation of AF,gANI and discuss its successful application to 86.5M genome pairs between 13,151 prokaryotic genomes assigned to 3032 species. Subsequently, by comparing the genome clusters obtained from complete linkage clustering of these pairs to existing taxonomy, we observed that nearly 18% of all prokaryotic species suffer from anomalies in species definition. Our results can be used to explore central questions such as whether microorganisms form a continuum of genetic diversity or distinct species represented by distinct genetic signatures. We propose that this precise and objective AF,gANI-based species definition: the MiSI (Microbial Species Identifier) method, be used to address previous inconsistencies in species classification and as the primary guide for new taxonomic species assignment, supplemented by the traditional polyphasic approach, as required.


Asunto(s)
Archaea/clasificación , Bacterias/clasificación , Genoma Arqueal , Genoma Bacteriano , Genómica/métodos , Algoritmos , Archaea/genética , Bacterias/genética , Clasificación/métodos , Análisis por Conglomerados , Listeria monocytogenes/clasificación , Listeria monocytogenes/genética , Filogenia
3.
Microbiol Spectr ; 11(4): e0020023, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37310219

RESUMEN

Petabases of environmental metagenomic data are publicly available, presenting an opportunity to characterize complex environments and discover novel lineages of life. Metagenome coassembly, in which many metagenomic samples from an environment are simultaneously analyzed to infer the underlying genomes' sequences, is an essential tool for achieving this goal. We applied MetaHipMer2, a distributed metagenome assembler that runs on supercomputing clusters, to coassemble 3.4 terabases (Tbp) of metagenome data from a tropical soil in the Luquillo Experimental Forest (LEF), Puerto Rico. The resulting coassembly yielded 39 high-quality (>90% complete, <5% contaminated, with predicted 23S, 16S, and 5S rRNA genes and ≥18 tRNAs) metagenome-assembled genomes (MAGs), including two from the candidate phylum Eremiobacterota. Another 268 medium-quality (≥50% complete, <10% contaminated) MAGs were extracted, including the candidate phyla Dependentiae, Dormibacterota, and Methylomirabilota. In total, 307 medium- or higher-quality MAGs were assigned to 23 phyla, compared to 294 MAGs assigned to nine phyla in the same samples individually assembled. The low-quality (<50% complete, <10% contaminated) MAGs from the coassembly revealed a 49% complete rare biosphere microbe from the candidate phylum FCPU426 among other low-abundance microbes, an 81% complete fungal genome from the phylum Ascomycota, and 30 partial eukaryotic MAGs with ≥10% completeness, possibly representing protist lineages. A total of 22,254 viruses, many of them low abundance, were identified. Estimation of metagenome coverage and diversity indicates that we may have characterized ≥87.5% of the sequence diversity in this humid tropical soil and indicates the value of future terabase-scale sequencing and coassembly of complex environments. IMPORTANCE Petabases of reads are being produced by environmental metagenome sequencing. An essential step in analyzing these data is metagenome assembly, the computational reconstruction of genome sequences from microbial communities. "Coassembly" of metagenomic sequence data, in which multiple samples are assembled together, enables more complete detection of microbial genomes in an environment than "multiassembly," in which samples are assembled individually. To demonstrate the potential for coassembling terabases of metagenome data to drive biological discovery, we applied MetaHipMer2, a distributed metagenome assembler that runs on supercomputing clusters, to coassemble 3.4 Tbp of reads from a humid tropical soil environment. The resulting coassembly, its functional annotation, and analysis are presented here. The coassembly yielded more, and phylogenetically more diverse, microbial, eukaryotic, and viral genomes than the multiassembly of the same data. Our resource may facilitate the discovery of novel microbial biology in tropical soils and demonstrates the value of terabase-scale metagenome sequencing.


Asunto(s)
Microbiota , Suelo , Microbiota/genética , Bacterias/genética , Metagenoma , Genoma Viral , Metagenómica/métodos
4.
Cell Host Microbe ; 30(3): 314-328.e11, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35240043

RESUMEN

Humans harbor numerous species of colonic bacteria that digest fiber polysaccharides in commonly consumed terrestrial plants. More recently in history, regional populations have consumed edible macroalgae seaweeds containing unique polysaccharides. It remains unclear how extensively gut bacteria have adapted to digest these nutrients. Here, we show that the ability of gut bacteria to digest seaweed polysaccharides is more pervasive than previously appreciated. Enrichment-cultured Bacteroides harbor previously discovered genes for seaweed degradation, which have mobilized into several members of this genus. Additionally, other examples of marine bacteria-derived genes, and their mobile DNA elements, are involved in gut microbial degradation of seaweed polysaccharides, including genes in gut-resident Firmicutes. Collectively, these results uncover multiple separate events that have mobilized the genes encoding seaweed-degrading-enzymes into gut bacteria. This work further underscores the metabolic plasticity of the human gut microbiome and global exchange of genes in the context of dietary selective pressures.


Asunto(s)
Microbioma Gastrointestinal , Algas Marinas , Bacterias/genética , Bacterias/metabolismo , Bacteroides/metabolismo , Digestión , Microbioma Gastrointestinal/genética , Humanos , Polisacáridos/metabolismo , Algas Marinas/metabolismo
5.
Nat Microbiol ; 7(4): 556-569, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35365790

RESUMEN

Processed foods often include food additives such as xanthan gum, a complex polysaccharide with unique rheological properties, that has established widespread use as a stabilizer and thickening agent. Xanthan gum's chemical structure is distinct from those of host and dietary polysaccharides that are more commonly expected to transit the gastrointestinal tract, and little is known about its direct interaction with the gut microbiota, which plays a central role in digestion of other dietary fibre polysaccharides. Here we show that the ability to digest xanthan gum is common in human gut microbiomes from industrialized countries and appears contingent on a single uncultured bacterium in the family Ruminococcaceae. Our data reveal that this primary degrader cleaves the xanthan gum backbone before processing the released oligosaccharides using additional enzymes. Some individuals harbour Bacteroides intestinalis that is incapable of consuming polymeric xanthan gum but grows on oligosaccharide products generated by the Ruminococcaceae. Feeding xanthan gum to germfree mice colonized with a human microbiota containing the uncultured Ruminococcaceae supports the idea that the additive xanthan gum can drive expansion of the primary degrader Ruminococcaceae, along with exogenously introduced B. intestinalis. Our work demonstrates the existence of a potential xanthan gum food chain involving at least two members of different phyla of gut bacteria and provides an initial framework for understanding how widespread consumption of a recently introduced food additive influences human microbiomes.


Asunto(s)
Microbioma Gastrointestinal , Animales , Fibras de la Dieta , Aditivos Alimentarios , Humanos , Ratones , Polisacáridos Bacterianos
6.
Cell Genom ; 2(12): 100213, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36778052

RESUMEN

The phylum Actinobacteria includes important human pathogens like Mycobacterium tuberculosis and Corynebacterium diphtheriae and renowned producers of secondary metabolites of commercial interest, yet only a small part of its diversity is represented by sequenced genomes. Here, we present 824 actinobacterial isolate genomes in the context of a phylum-wide analysis of 6,700 genomes including public isolates and metagenome-assembled genomes (MAGs). We estimate that only 30%-50% of projected actinobacterial phylogenetic diversity possesses genomic representation via isolates and MAGs. A comparison of gene functions reveals novel determinants of host-microbe interaction as well as environment-specific adaptations such as potential antimicrobial peptides. We identify plasmids and prophages across isolates and uncover extensive prophage diversity structured mainly by host taxonomy. Analysis of >80,000 biosynthetic gene clusters reveals that horizontal gene transfer and gene loss shape secondary metabolite repertoire across taxa. Our observations illustrate the essential role of and need for high-quality isolate genome sequences.

7.
J Bacteriol ; 193(20): 5879-80, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21952546

RESUMEN

We report the first whole-genome sequences for five strains, two carried and three pathogenic, of the emerging pathogen Haemophilus haemolyticus. Preliminary analyses indicate that these genome sequences encode markers that distinguish H. haemolyticus from its closest Haemophilus relatives and provide clues to the identity of its virulence factors.


Asunto(s)
Genoma Bacteriano , Infecciones por Haemophilus/microbiología , Haemophilus/genética , Haemophilus/aislamiento & purificación , Secuencia de Bases , Haemophilus/clasificación , Humanos , Datos de Secuencia Molecular
8.
Nat Biotechnol ; 36(4): 359-367, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29553575

RESUMEN

Productivity of ruminant livestock depends on the rumen microbiota, which ferment indigestible plant polysaccharides into nutrients used for growth. Understanding the functions carried out by the rumen microbiota is important for reducing greenhouse gas production by ruminants and for developing biofuels from lignocellulose. We present 410 cultured bacteria and archaea, together with their reference genomes, representing every cultivated rumen-associated archaeal and bacterial family. We evaluate polysaccharide degradation, short-chain fatty acid production and methanogenesis pathways, and assign specific taxa to functions. A total of 336 organisms were present in available rumen metagenomic data sets, and 134 were present in human gut microbiome data sets. Comparison with the human microbiome revealed rumen-specific enrichment for genes encoding de novo synthesis of vitamin B12, ongoing evolution by gene loss and potential vertical inheritance of the rumen microbiome based on underrepresentation of markers of environmental stress. We estimate that our Hungate genome resource represents ∼75% of the genus-level bacterial and archaeal taxa present in the rumen.


Asunto(s)
Archaea/genética , Bacterias/genética , Microbioma Gastrointestinal/genética , Rumen/microbiología , Animales , Archaea/clasificación , Archaea/metabolismo , Bacterias/clasificación , Bacterias/metabolismo , Biocombustibles , Humanos , Lignina/química , Lignina/genética , Microbiota/genética
9.
Nat Biotechnol ; 35(7): 676-683, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28604660

RESUMEN

We present 1,003 reference genomes that were sequenced as part of the Genomic Encyclopedia of Bacteria and Archaea (GEBA) initiative, selected to maximize sequence coverage of phylogenetic space. These genomes double the number of existing type strains and expand their overall phylogenetic diversity by 25%. Comparative analyses with previously available finished and draft genomes reveal a 10.5% increase in novel protein families as a function of phylogenetic diversity. The GEBA genomes recruit 25 million previously unassigned metagenomic proteins from 4,650 samples, improving their phylogenetic and functional interpretation. We identify numerous biosynthetic clusters and experimentally validate a divergent phenazine cluster with potential new chemical structure and antimicrobial activity. This Resource is the largest single release of reference genomes to date. Bacterial and archaeal isolate sequence space is still far from saturated, and future endeavors in this direction will continue to be a valuable resource for scientific discovery.


Asunto(s)
Mapeo Cromosómico/normas , Bases de Datos Genéticas , Genoma Arqueal/genética , Genoma Bacteriano/genética , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Bases del Conocimiento , Sistemas de Administración de Bases de Datos , Conjuntos de Datos como Asunto , Enciclopedias como Asunto , Valores de Referencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA