Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Nutr ; 150(10): 2673-2686, 2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-32886125

RESUMEN

BACKGROUND: Recent meta-analyses suggest that the consumption of fermented dairy products reduces type 2 diabetes and cardiovascular disease (CVD) risk, although the underlying mechanisms remain unclear. OBJECTIVE: We evaluated whether dairy protein products modulated gut microbiota and cardiometabolic features in mouse models of diet-induced obesity and CVD. METHODS: Eight-week-old C57BL/6J wild-type (WT) and LDLr-/-ApoB100/100 (LRKO) male mice were fed for 12 and 24 wk, respectively, with a high-fat/high-sucrose diet [66% kcal lipids, 22% kcal carbohydrates (100% sucrose), 12% kcal proteins]. The protein sources of the 4 diets were 100% nondairy protein (NDP), or 50% of the NDP energy replaced by milk (MP), milk fermented by Lactobacillus helveticus (FMP), or Greek-style yogurt (YP) protein. Fecal 16S rRNA gene-based amplicon sequencing, intestinal gene expression, and glucose tolerance test were conducted. Hepatic inflammation and circulating adhesion molecules were measured by multiplex assays. RESULTS: Feeding WT mice for 12 wk led to a 74% increase in body weight, whereas after 24 wk the LRKO mice had a 101.5% increase compared with initial body weight. Compared with NDP and MP, the consumption of FMP and YP modulated the gut microbiota composition in a similar clustering pattern, upregulating the Streptococcus genus in both genotypes. In WT mice, feeding YP compared with NDP increased the expression of genes involved in jejunal (Reg3b, 7.3-fold, P = 0.049) and ileal (Ocln, 1.7-fold, P = 0.047; Il1-ß,1.7-fold, P = 0.038; Nos2, 3.8-fold, P = 0.018) immunity and integrity. In LRKO mice, feeding YP compared with MP improved insulin sensitivity by 65% (P = 0.039). In LRKO mice, feeding with FMP versus NDP attenuated hepatic inflammation (monocyte chemoattractant protein 1, 2.1-fold, P ˂ 0.0001; IL1-ß, 5.7-fold, P = 0.0003; INF-γ, 1.7-fold, P = 0.002) whereas both FMP [vascular adhesion molecule 1 (VCAM1), 1.3-fold, P = 0.0003] and YP (VCAM1, 1.04-fold, P = 0.013; intracellular adhesion molecule 1, 1.4-fold, P = 0.028) decreased circulating adhesion molecules. CONCLUSION: Both fermented dairy protein products reduce cardiometabolic risk factors in diet-induced obese mice, possibly by modulating the gut microbiota.


Asunto(s)
Enfermedades Cardiovasculares/prevención & control , Productos Lácteos Cultivados/análisis , Microbioma Gastrointestinal/efectos de los fármacos , Enfermedades Metabólicas/prevención & control , Proteínas de la Leche/farmacología , Obesidad/inducido químicamente , Animales , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo , Bacterias/clasificación , Bacterias/efectos de los fármacos , Biomarcadores/sangre , Dieta , Dieta Alta en Grasa , Sacarosa en la Dieta/administración & dosificación , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Leche/química , Proteínas de la Leche/química , Receptores de LDL/genética , Receptores de LDL/metabolismo
2.
Nat Commun ; 13(1): 1343, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35292630

RESUMEN

Meta-analyses suggest that yogurt consumption reduces type 2 diabetes incidence in humans, but the molecular basis of these observations remains unknown. Here we show that dietary yogurt intake preserves whole-body glucose homeostasis and prevents hepatic insulin resistance and liver steatosis in a dietary mouse model of obesity-linked type 2 diabetes. Fecal microbiota transplantation studies reveal that these effects are partly linked to the gut microbiota. We further show that yogurt intake impacts the hepatic metabolome, notably maintaining the levels of branched chain hydroxy acids (BCHA) which correlate with improved metabolic parameters. These metabolites are generated upon milk fermentation and concentrated in yogurt. Remarkably, diet-induced obesity reduces plasma and tissue BCHA levels, and this is partly prevented by dietary yogurt intake. We further show that BCHA improve insulin action on glucose metabolism in liver and muscle cells, identifying BCHA as cell-autonomous metabolic regulators and potential mediators of yogurt's health effects.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/prevención & control , Fermentación , Hidroxiácidos/farmacología , Ratones , Ratones Obesos , Yogur
3.
Gut Microbes ; 13(1): 2004070, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34812123

RESUMEN

The Developmental Origins of Health and Disease (DOHaD) concept has been proposed to explain the influence of environmental conditions during critical developmental stages on the risk of diseases in adulthood. The aim of this study was to compare the impact of the prenatal vs. postnatal environment on the gut microbiota in dams during the preconception, gestation and lactation periods and their consequences on metabolic outcomes in offspring. Here we used the cross-fostering technique, e.g. the exchange of pups following birth to a foster dam, to decipher the metabolic effects of the intrauterine versus postnatal environmental exposures to a polyphenol-rich cranberry extract (CE). CE administration to high-fat high-sucrose (HFHS)-fed dams improved glucose homeostasis and reduced liver steatosis in association with a shift in the maternal gut microbiota composition. Unexpectedly, we observed that the postnatal environment contributed to metabolic outcomes in female offspring, as revealed by adverse effects on adiposity and glucose metabolism, while no effect was observed in male offspring. In addition to the strong sexual dimorphism, we found a significant influence of the nursing mother on the community structure of the gut microbiota based on α-diversity and ß-diversity indices in offspring. Gut microbiota transplantation (GMT) experiments partly reproduced the observed phenotype in female offspring. Our data support the concept that the postnatal environment represents a critical window to influence future sex-dependent metabolic outcomes in offspring that are causally but partly linked with gut microbiome alterations.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Glucosa/metabolismo , Caracteres Sexuales , Adiposidad/efectos de los fármacos , Animales , Dieta Alta en Grasa/efectos adversos , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Intolerancia a la Glucosa/metabolismo , Masculino , Fenómenos Fisiologicos Nutricionales Maternos/fisiología , Ratones , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Obesidad/microbiología , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacología , Embarazo , Vaccinium macrocarpon/química , Aumento de Peso/efectos de los fármacos
4.
Food Chem Toxicol ; 146: 111832, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33129933

RESUMEN

The dramatic rise in the global occurrence of obesity and associated diseases calls for new strategies to promote weight loss. However, while the beneficial effects of weight loss are well known, rapid loss of fat mass can also lead to the endogenous release of liposoluble molecules with potential harmful effects, such as persistent organic pollutants (POP). The aim of this study was to evaluate the impact of a polyphenol-rich cranberry extract (CE) on POP release and their potential deleterious effects during weight loss of obese mice. C57BL/6 J mice were fed an obesogenic diet with or without a mixture of POP for 12 weeks and then changed to a low-fat diet to induce weight loss and endogenous POP release. The POP-exposed mice were then separated in two groups during weight loss, receiving either CE or the vehicle. Unexpectedly, despite the higher fat loss in the CE-treated group, the circulating levels of POP were not enhanced in these mice. Moreover, glucose homeostasis was further improved during CE-induced weight loss, as revealed by lower fasting glycemia and improved glucose tolerance as compared to vehicle-treated mice. Interestingly, the CE extract also induced changes in the gut microbiota after weight loss in POP-exposed mice, including blooming of Parvibacter, a member of the Coriobacteriaceae family which has been predicted to play a role in xenobiotic metabolism. Our data thus suggests that the gut microbiota can be targeted by polyphenol-rich extracts to protect from increased POP exposure and their detrimental metabolic effects during rapid weight loss.


Asunto(s)
Obesidad/inducido químicamente , Compuestos Orgánicos/toxicidad , Extractos Vegetales/farmacología , Polifenoles/farmacología , Vaccinium macrocarpon/química , Pérdida de Peso , Animales , Bacterias/genética , Grasas de la Dieta/administración & dosificación , Contaminantes Ambientales , Contaminación de Alimentos , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Ratones , Extractos Vegetales/química , Polifenoles/química , ARN Bacteriano/genética , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA