RESUMEN
Flat panel reactors, coated with photocatalytic materials, offer a sustainable approach for the commercial production of hydrogen (H2) with zero carbon footprint. Despite this, achieving high solar-to-hydrogen (STH) conversion efficiency with these reactors is still a significant challenge due to the low utilization efficiency of solar light and rapid charge recombination. Herein, hybrid gold nano-islands (HGNIs) are developed on transparent glass support to improve the STH efficiency. Plasmonic HGNIs are grown on an in-house developed active glass sheet composed of sodium aluminum phosphosilicate oxide glass (H-glass) using the thermal dewetting method at 550 °C under an ambient atmosphere. HGNIs with various oxidation states (Au0, Au+, and Au-) and multiple interfaces are obtained due to the diffusion of the elements from the glass structure, which also facilitates the lifetime of the hot electron to be ≈2.94 ps. H-glass-supported HGNIs demonstrate significant STH conversion efficiency of 0.6%, without any sacrificial agents, via water dissociation. This study unveils the specific role of H-glass-supported HGNIs in facilitating light-driven chemical conversions, offering new avenues for the development of high-performance photocatalysts in various chemical conversion reactions for large-scale commercial applications.
RESUMEN
Ultra-thin channel materials with excellent tunability of their electronic properties are necessary for the scaling of electronic devices. Two-dimensional materials such as transition metal dichalcogenides (TMDs) are ideal candidates for this due to their layered nature and great electrostatic control. Ternary alloys of these TMDs show composition-dependent electronic structure, promising excellent tunability of their properties. Here, we systematically compare molybdenum sulphoselenide (MoS2(1-x)Se2x) alloys, MoS1Se1and MoS0.4Se1.6. We observe variations in strain and carrier concentration with their composition. Using them, we demonstrate n-channel field-effect transistors (FETs) with SiO2and high-kHfO2as gate dielectrics, and show tunability in threshold voltage, subthreshold slope (SS), drain current, and mobility. MoS1Se1shows better promise for low-power FETs with a minimum SS of 70 mV dec-1, whereas MoS0.4Se1.6, with its higher mobility, is suitable for faster operations. Using HfO2as gate dielectric, there is an order of magnitude reduction in interface traps and 2× improvement in mobility and drain current, compared to SiO2. In contrast to MoS2, the FETs on HfO2also display enhancement-mode operation, making them better suited for CMOS applications.
RESUMEN
Vertically aligned nanowires (NWs) of single crystal semiconductors have attracted a great deal of interest in the past few years. They have strong potential to be used in device structures with high density and with intriguing optoelectronic properties. However, fabricating such nanowire structures using organic semiconducting materials remains technically challenging. Here we report a simple procedure for the synthesis of crystalline 9,10-bis(phenylethynyl) anthracene (BPEA) NWs on a graphene surface utilizing a solution-phase van der Waals (vdW) epitaxial strategy. The wires are found to grow preferentially in a vertical direction on the surface of graphene. Structural characterization and first-principles ab initio simulations were performed to investigate the epitaxial growth and the molecular orientation of the BPEA molecules on graphene was studied, revealing the role of interactions at the graphene-BPEA interface in determining the molecular orientation. These free-standing NWs showed not only efficient optical waveguiding with low loss along the NW but also confinement of light between the two end facets of the NW forming a microcavity Fabry-Pérot resonator. From an analysis of the optical dispersion within such NW microcavities, we observed strong slowing of the waveguided light with a group velocity reduced to one-tenth the speed of light. Applications of the vertical single-crystalline organic NWs grown on graphene will benefit from a combination of the unique electronic properties and flexibility of graphene and the tunable optical and electronic properties of organic NWs. Therefore, these vertical organic NW arrays on graphene offer the potential for realizing future on-chip light sources.
RESUMEN
To progress from the laboratory to commercial applications, it will be necessary to develop industrially scalable methods to produce large quantities of defect-free graphene. Here we show that high-shear mixing of graphite in suitable stabilizing liquids results in large-scale exfoliation to give dispersions of graphene nanosheets. X-ray photoelectron spectroscopy and Raman spectroscopy show the exfoliated flakes to be unoxidized and free of basal-plane defects. We have developed a simple model that shows exfoliation to occur once the local shear rate exceeds 10(4) s(-1). By fully characterizing the scaling behaviour of the graphene production rate, we show that exfoliation can be achieved in liquid volumes from hundreds of millilitres up to hundreds of litres and beyond. The graphene produced by this method performs well in applications from composites to conductive coatings. This method can be applied to exfoliate BN, MoS2 and a range of other layered crystals.
RESUMEN
The rising concern over the usage of electronic devices and the operating environment requires efficient thermal interface materials (TIMs) to take away the excess heat generated from hotspots. TIMs are crucial in dissipating undesired heat by transferring energy from the source to the heat sink. Silicone oil (SO)-based composites are the most used TIMs due to their strong bonding and oxidation resistance. However, thermal grease performance is unreliable due to aging effects, toxic chemicals, and a higher percentage of fillers. In this work, TIMs are prepared using exfoliated hexagonal boron nitride nanosheets (h-BNNS) as a nanofiller, and they were functionalized by ecofriendly natural biopolymer soy protein isolate (SPI). The exfoliated h-BNNS has an average lateral size of â¼266 nm. The functionalized h-BNNS/SPI are used as fillers in the SO matrix, and composites are prepared using solution mixing. Hydrogen bonding is present between the organic chain/oxygen in silicone polymer, and the functionalized h-BNNS are evident from the FTIR measurements. The thermal conductivity of h-BNNS/SPI/SO was measured using the modified transient plane source (MTPS) method. At room temperature, the maximum thermal conductivity is 1.162 Wm-1K-1 (833% enhancement) at 50 wt % of 3:1 ratio of h-BNNS:SPI, and the thermal resistance (TR) of the composite is 5.249 × 106 K/W which is calculated using the Foygel nonlinear model. The heat management application was demonstrated by applying TIM on a 10 W LED bulb. It was found that during heating, the 50 wt % TIM decreases the surface temperature of LED by â¼6 °C compared with the pure SO-based TIM after 10 min of ON condition. During cooling, the modified TIM reduces the surface temperature by â¼8 °C under OFF conditions within 1 min. The results indicate that natural polymers can effectively stabilize and link layered materials, enhancing the efficiency of TIMs for cooling electronics and LEDs.
RESUMEN
Conventional fire-retardant composite coatings are typically made of organic-based materials that reduce flame spread rates. However, the associated chemical reactions and starting precursors produce toxic and hazardous gases, affecting the environment and contributing to climate change. Wood is one of the most common materials used in construction and households, and thin-film fire-retardant coatings are needed to protect it from fire. Here, we derive high-performance nanocomposite paint-based coatings from naturally occurring and highly insulating layered vermiculite. The coatings are made using different weight percentages of shear-exfoliated vermiculite nanosheets in an epoxy matrix and are brush-coated onto teak wood. A series of tests using coated wooden rods and standard fire retardancy tests confirm a reduction in flame spread and combustion velocity with minimal toxic smoke release. Samples coated with the vermiculite/epoxy nanocomposite paint resist fire propagation, and post-combustion analysis indicates their resistance to thermal degradation. Our results offer a novel and eco-efficient solution to minimize the flame propagation rate, enhancing char development, and expand the scope of applications of ultra-thin vermiculite in nanocomposite coatings as a fire retardant, exploiting its low thermal conductivity in thermal insulation systems.
RESUMEN
To facilitate progression from the lab to commercial applications, it will be necessary to develop simple, scalable methods to produce high quality graphene. Here we demonstrate the production of large quantities of defect-free graphene using a kitchen blender and household detergent. We have characterised the scaling of both graphene concentration and production rate with the mixing parameters: mixing time, initial graphite concentration, rotor speed and liquid volume. We find the production rate to be invariant with mixing time and to increase strongly with mixing volume, results which are important for scale-up. Even in this simple system, concentrations of up to 1 mg ml(-1) and graphene masses of >500 mg can be achieved after a few hours mixing. The maximum production rate was â¼0.15 g h(-1), much higher than for standard sonication-based exfoliation methods. We demonstrate that graphene production occurs because the mean turbulent shear rate in the blender exceeds the critical shear rate for exfoliation.