Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 507(7490): 78-80, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24522533

RESUMEN

IRAS 04368+2557 is a solar-type (low-mass) protostar embedded in a protostellar core (L1527) in the Taurus molecular cloud, which is only 140 parsecs away from Earth, making it the closest large star-forming region. The protostellar envelope has a flattened shape with a diameter of a thousand astronomical units (1 AU is the distance from Earth to the Sun), and is infalling and rotating. It also has a protostellar disk with a radius of 90 AU (ref. 6), from which a planetary system is expected to form. The interstellar gas, mainly consisting of hydrogen molecules, undergoes a change in density of about three orders of magnitude as it collapses from the envelope into the disk, while being heated from 10 kelvin to over 100 kelvin in the mid-plane, but it has hitherto not been possible to explore changes in chemical composition associated with this collapse. Here we report that the unsaturated hydrocarbon molecule cyclic-C3H2 resides in the infalling rotating envelope, whereas sulphur monoxide (SO) is enhanced in the transition zone at the radius of the centrifugal barrier (100 ± 20 AU), which is the radius at which the kinetic energy of the infalling gas is converted to rotational energy. Such a drastic change in chemistry at the centrifugal barrier was not anticipated, but is probably caused by the discontinuous infalling motion at the centrifugal barrier and local heating processes there.

2.
Astrophys J Lett ; 830(1)2016 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-27733899

RESUMEN

The detection of complex organic molecules (COMs) toward cold sources such as pre-stellar cores (with T<10 K), has challenged our understanding of the formation processes of COMs in the interstellar medium. Recent modelling on COM chemistry at low temperatures has provided new insight into these processes predicting that COM formation depends strongly on parameters such as visual extinction and the level of CO freeze out. We report deep observations of COMs toward two positions in the L1544 pre-stellar core: the dense, highly-extinguished continuum peak with A V ≥30 mag within the inner 2700 au; and a low-density shell with average A V ~7.5-8 mag located at 4000 au from the core's center and bright in CH3OH. Our observations show that CH3O, CH3OCH3 and CH3CHO are more abundant (by factors ~2-10) toward the low-density shell than toward the continuum peak. Other COMs such as CH3OCHO, c-C3H2O, HCCCHO, CH2CHCN and HCCNC show slight enhancements (by factors ≤3) but the associated uncertainties are large. This suggests that COMs are actively formed and already present in the low-density shells of pre-stellar cores. The modelling of the chemistry of O-bearing COMs in L1544 indicates that these species are enhanced in this shell because i) CO starts freezing out onto dust grains driving an active surface chemistry; ii) the visual extinction is sufficiently high to prevent the UV photo-dissociation of COMs by the external interstellar radiation field; and iii) the density is still moderate to prevent severe depletion of COMs onto grains.

3.
Philos Trans A Math Phys Eng Sci ; 364(1848): 3081-90, 2006 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-17015376

RESUMEN

Deuterium enhancement of monodeuterated species has been recognized for more than 30 years as a result of chemical fractionation that results from the difference in zero-point energies of deuterated and hydrogenated molecules. The key reaction is the deuteron exchange in the reaction between HD, the reservoir of deuterium in dark interstellar clouds, and the H3+ molecular ion, leading to the production of H2D+ molecule, and the low temperature in dark interstellar clouds favours this production. Furthermore, the presence of multiply deuterated species have incited our group to proceed further and consider the subsequent reaction of H2D+ with HD, leading to D2H+, which can further react with HD to produce D3+. In pre-stellar cores, where CO was found to be depleted, this production should be increased as CO would normally destroy H3+. The first model including D2H+ and D3+ predicted that these molecules should be as abundant as H2D+. The first detection of the D2H+ was made possible by the recent laboratory measurement for the frequency of the fundamental line of para-D2H+. Here, we present observations of H2D+ and D2H+ towards a sample of dark clouds and pre-stellar cores and show how the distribution of ortho-H2D+ (1(1,0)-1(1,1)) can trace the deuterium factory in pre-stellar cores. We also present how future instrumentation will improve our knowledge concerning the deuterium enhancement of H3+.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA