Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(15)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35955711

RESUMEN

Nanotechnology is a fast-evolving field focused on fabricating nanoscale objects for industrial, cosmetic, and therapeutic applications. Virus-like particles (VLPs) are self-assembled nanoparticles whose intrinsic properties, such as heterogeneity, and highly ordered structural organization are exploited to prepare vaccines; imaging agents; construct nanobioreactors; cancer treatment approaches; or deliver drugs, genes, and enzymes. However, depending upon the intrinsic features of the native virus from which they are produced, the therapeutic performance of VLPs can vary. This review compiles the recent scientific literature about the fundamentals of VLPs with biomedical applications. We consulted different databases to present a general scenario about viruses and how VLPs are produced in eukaryotic and prokaryotic cell lines to entrap therapeutic cargo. Moreover, the structural classification, morphology, and methods to functionalize the surface of VLPs are discussed. Finally, different characterization techniques required to examine the size, charge, aggregation, and composition of VLPs are described.


Asunto(s)
Nanopartículas , Virus , Nanotecnología
2.
Fungal Genet Biol ; 157: 103634, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34634482

RESUMEN

Agmatinase is a metallohydrolase involved in the hydrolysis of agmatine to produce urea and putrescine. Although its role in organisms is still under study, there are no reports of this family of enzymes in filamentous fungi. Recently, a protein showing agmatinase activity was reported in Neurospora crassa. Therefore, the aim of this work is to determine if the protein (AGM-1) found in the filamentous fungus N. crassa is a true agmatinase. The protein AGM-1was purified directly from N. crassa cultures, and its enzymatic characterization was carried out. The catalytic parameters such as optimum pH, thermostability, transformation kinetics, and activity in the presence of a cofactor were determined. The results show that AGM-1 can use manganese as a cofactor for its enzymatic activity, showing a transformation rate constant (kcat) of 77 s-1 and an affinity constant (KM) of 50.5 mM. The protein loses 50% of its activity when incubated 15 min at 30 °C and reaches maximal enzymatic activity at a pH range of 8-8.5. Our results indicate that the AGM-1 from N. crassa shows similar characteristics to true agmatinases already reported in other organisms. Thus, our findings strongly support that the protein annotated as hypothetical agmatinase in N. crassa is a true agmatinase.


Asunto(s)
Agmatina , Neurospora crassa , Catálisis , Neurospora crassa/genética , Ureohidrolasas
3.
Nanotechnology ; 32(8): 085602, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33166942

RESUMEN

Functionalized carbon nanospheres have been synthesized in situ via a facile chemical vapor deposition strategy, fabricated by the pyrolysis of toluene/ethanol mixtures at different percentages (0, 1, 2, 3, 4, and 5 wt% of ethanol). The as-grown nanospheres have been characterized using transmission electron microscopy, scanning electron microscopy, Raman and Fourier transform infrared spectroscopy, x-ray diffraction, nitrogen adsorption, zeta potential measurements and x-ray photoelectron spectroscopy. Results indicate that the incorporation of ethanol in the precursor solution reflected in the presence of oxygen and hydrogen functional groups, the highest functionalized nanospheres without compromising the morphology of the sample were yielded at 3 wt% concentration. These in situ added functional groups rendered the carbon nanostructures enhancedly dispersible and stable in water, avoiding post-synthesis and harsh chemicals processing; envisaging thus applications of the nanospheres in the biomedical field where hydrophilicity of the nanomaterials is mandatory.

4.
Fungal Genet Biol ; 132: 103264, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31465847

RESUMEN

Agmatinase is known as a metalloenzyme which hydrolyzes agmatine to produce urea and putrescine, being crucial in the alternative pathway to produce polyamines. In this study, an agmatinase-like protein (AGM-1) (NCU 01348) in the filamentous fungus Neurospora crassa is reported. Purified AGM-1 from N. crassa displays enzymatic activity hydrolyzing agmatine; therefore, it can be considered as an agmatinase-like protein. However, its role in the alternative pathway to produce polyamines apparently is not its main function since only a slight reduction of polyamines concentration was detected in the Δagm-1 het strain. Moreover, the null mutant Δagm-1 (homokaryon strain) was unable to grow and the deficiency of agm-1 in the heterokaryon strain provoked a decrease in elongation rate, conidia and biomass production, despite of having de constitutive pathway via the ornithine decarboxylase (ODC). Additionally, mature hyphae of the Δagm-1 het strain presented unusual apical branching and a disorganized Spitzenkörper (Spk). Trying to reveal the role of AGM-1in N. crassa, the protein was tagged with GFP and interestingly the dynamics and intracellular localization of AGM-1 closely resembles the F-actin population. This finding was further examined in order to elucidate if AGM-1is in a close association with F-actin. Since polyamines, among them agmatine, have been reported to act as stabilizers of actin filaments, we evaluated in vitro G-actin polymerization in the presence of agmatine and the effect of purified AGM-1 from N. crassa on these polymerized actin filaments. It was found that polymerization of actin filaments increases in the presence of agmatine and the addition of purified AGM-1 from N. crassa depolymerizes these actin filaments. Also, it was determined that an intact substrate binding site of the enzyme is necessary for the localization pattern of the native AGM-1. These results suggest that in N. crassa AGM-1 has a close association with the F-actin population via its substrate agmatine, playing an essential role during cell development.


Asunto(s)
Agmatina/metabolismo , Proteínas Fúngicas/metabolismo , Neurospora crassa/enzimología , Ureohidrolasas/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Proteínas Fúngicas/genética , Hidrólisis , Hifa/metabolismo , Neurospora crassa/genética , Neurospora crassa/fisiología , Ureohidrolasas/genética
5.
J Nanobiotechnology ; 16(1): 17, 2018 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-29463260

RESUMEN

BACKGROUND: Tamoxifen is the standard endocrine therapy for breast cancers, which require metabolic activation by cytochrome P450 enzymes (CYP). However, the lower and variable concentrations of CYP activity at the tumor remain major bottlenecks for the efficient treatment, causing severe side-effects. Combination nanotherapy has gained much recent attention for cancer treatment as it reduces the drug-associated toxicity without affecting the therapeutic response. RESULTS: Here we show the modular design of P22 bacteriophage virus-like particles for nanoscale integration of virus-driven enzyme prodrug therapy and photodynamic therapy. These virus capsids carrying CYP activity at the core are decorated with photosensitizer and targeting moiety at the surface for effective combinatory treatment. The estradiol-functionalized nanoparticles are recognized and internalized into ER+ breast tumor cells increasing the intracellular CYP activity and showing the ability to produce reactive oxygen species (ROS) upon UV365 nm irradiation. The generated ROS in synergy with enzymatic activity drastically enhanced the tamoxifen sensitivity in vitro, strongly inhibiting tumor cells. CONCLUSIONS: This work clearly demonstrated that the targeted combinatory treatment using multifunctional biocatalytic P22 represents the effective nanotherapeutics for ER+ breast cancer.


Asunto(s)
Antineoplásicos Hormonales/administración & dosificación , Bacteriófago P22/enzimología , Neoplasias de la Mama/tratamiento farmacológico , Sistema Enzimático del Citocromo P-450/administración & dosificación , Fármacos Fotosensibilizantes/administración & dosificación , Tamoxifeno/administración & dosificación , Antineoplásicos Hormonales/farmacología , Bacteriófago P22/química , Biocatálisis , Neoplasias de la Mama/metabolismo , Supervivencia Celular/efectos de los fármacos , Sistema Enzimático del Citocromo P-450/farmacología , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Terapia Enzimática , Femenino , Humanos , Células MCF-7 , Modelos Moleculares , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Especies Reactivas de Oxígeno/metabolismo , Receptores de Estrógenos/metabolismo , Tamoxifeno/farmacología
6.
J Nanobiotechnology ; 13: 66, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26452461

RESUMEN

BACKGROUND: The intracellular delivery of enzymes for therapeutic use has a promising future for the treatment of several diseases such as genetic disorders and cancer. Virus-like particles offer an interesting platform for enzymatic delivery to targeted cells because of their great cargo capacity and the enhancement of the biocatalyst stability towards several factors important in the practical application of these nanoparticles. RESULTS: We have designed a nano-bioreactor based on the encapsulation of a cytochrome P450 (CYP) inside the capsid derived from the bacteriophage P22. An enhanced peroxigenase, CYPBM3, was selected as a model enzyme because of its potential in enzyme prodrug therapy. A total of 109 enzymes per capsid were encapsulated with a 70 % retention of activity for cytochromes with the correct incorporation of the heme cofactor. Upon encapsulation, the stability of the enzyme towards protease degradation and acidic pH was increased. Cytochrome P450 activity was delivered into Human cervix carcinoma cells via transfecting P22-CYP nanoparticles with lipofectamine. CONCLUSION: This work provides a clear demonstration of the potential of biocatalytic virus-like particles as medical relevant enzymatic delivery vehicles for clinical applications.


Asunto(s)
Bacteriófago P22/química , Cápside/química , Sistema Enzimático del Citocromo P-450/administración & dosificación , Portadores de Fármacos/química , Proteínas de la Cápside/química , Línea Celular Tumoral , Sistema Enzimático del Citocromo P-450/uso terapéutico , Terapia Enzimática , Femenino , Células HeLa , Humanos , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/enzimología
7.
Chemistry ; 20(10): 2866-71, 2014 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-24500996

RESUMEN

The first example of a self-propelled tubular motor that releases an enzyme for the efficient biocatalytic degradation of chemical pollutants is demonstrated. How the motors are self-propelled by the Marangoni effect, involving simultaneous release of SDS surfactant and the enzyme remediation agent (laccase) in the polluted sample, is illustrated. The movement induces fluid convection and leads to the rapid dispersion of laccase into the contaminated solution and to a dramatically accelerated biocatalytic decontamination process. The greatly improved degradation efficiency, compared to quiescent solutions containing excess levels of the free enzyme, is illustrated for the efficient biocatalytic degradation of phenolic and azo-type pollutants. The high efficiency of the motor-based decontamination approach makes it extremely attractive for a wide-range of remediation processes in the environmental, defense and public health fields.


Asunto(s)
Compuestos Azo/química , Contaminantes Ambientales/análisis , Contaminantes Ambientales/química , Sustancias Peligrosas/análisis , Sustancias Peligrosas/química , Tensoactivos/análisis , Tensoactivos/química , Biocatálisis , Restauración y Remediación Ambiental
8.
Langmuir ; 30(18): 5082-7, 2014 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-24754608

RESUMEN

Fluid convection and mixing induced by bubble-propelled tubular microengines are characterized using passive microsphere tracers. Enhanced transport of the passive tracers by bubble-propelled micromotors, indicated by their mean squared displacement (MSD), is dramatically larger than that observed in the presence of catalytic nanowires and Janus particle motors. Bubble generation is shown to play a dominant role in the effective fluid transport observed in the presence of tubular microengines. These findings further support the potential of using bubble-propelled microengines for mixing reagents and accelerating reaction rates. The study offers useful insights toward understanding the role of the motion of multiple micromotors, bubble generation, and additional factors (e.g., motor density and fuel concentration) upon the observed motor-induced fluid transport.


Asunto(s)
Microesferas
9.
Biomacromolecules ; 15(5): 1896-903, 2014 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-24720524

RESUMEN

Carrier-free immobilization of Candida rugosa lipase (CRL) and polymers containing primary amino groups were cross-linked using carbodiimide. To accomplish this, the free carboxyl groups of the enzyme were activated with carbodiimide-succinimide in organic medium, and then the activated proteins were cross-linked with different polyethylenimines (PEIs). The effect of the cross-linker chain length, the amount of added bovine serum albumin (BSA), and carbodiimide concentration on the catalytic properties of resulting cross-linked enzyme aggregates (CLEAs) was investigated. The CLEAs' size, shape, specific activity, activity recovery, thermostability and enantioselectivity significantly varied according to the preparation procedure. The highest thermostable CRL-CLEA preparation was obtained with 1.3 kDa polyethyleneimine as cross-linker, 10 mg of BSA and 28 mM of carbodiimide. This preparation is 1.3-fold more active and thermostable than CLEAs prepared by the traditional method of amino cross-linking with glutaraldehyde, and retains 60% of residual activity after 22 h at 50 °C. Additionally, the CRL-CLEA preparation showed an enantioselectivity of 91% enantiomeric excess (ee). This immobilization procedure provides an alternative strategy for CLEA production, particularly for enzymes where the traditional method of cross-linking via lysine residues leads to enzyme inactivation.


Asunto(s)
Candida/enzimología , Carbodiimidas/química , Reactivos de Enlaces Cruzados/metabolismo , Enzimas Inmovilizadas/metabolismo , Lipasa/metabolismo , Polietileneimina/metabolismo , Animales , Bovinos , Reactivos de Enlaces Cruzados/química , Estabilidad de Enzimas , Enzimas Inmovilizadas/química , Lipasa/química , Estructura Molecular , Tamaño de la Partícula , Polietileneimina/química , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo , Propiedades de Superficie , Temperatura
10.
Biol Methods Protoc ; 8(1): bpad036, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38090674

RESUMEN

Chitosan is a biopolymer obtained from chitin, one of the most abundant biopolymers in nature. Numerous applications of chitosan are well known in the biomedical, environmental, and industrial fields, and the potential applications are considerable. This work reports a new spectrophotometric method to determine chitosan concentration accurately. The method is based on the deamination of chitosan by nitrite in acidic conditions, followed by a carbohydrate determination by the anthrone reagent.

11.
Biotechnol J ; 18(10): e2300199, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37417791

RESUMEN

BACKGROUND: Breast cancer is the most common malignant tumor disease and the leading cause of female mortality. The evolution of nanomaterials science opens the opportunity to improve traditional cancer therapies, enhancing therapy efficiency and reducing side effects. METHODS AND MAJOR RESULTS: Herein, protein cages conceived as enzymatic nanoreactors were designed and produced by using virus-like nanoparticles (VLPs) from Brome mosaic virus (BMV) and containing the catalytic activity of glucose oxidase (GOx) enzyme. The GOx enzyme was encapsulated into the BMV capsid (VLP-GOx), and the resulting enzymatic nanoreactors were coated with human serum albumin (VLP-GOx@HSA) for breast tumor cell targeting. The effect of the synthesized GOx nanoreactors on breast tumor cell lines was studied in vitro. Both nanoreactor preparations VLP-GOx and VLP-GOx@HSA showed to be highly cytotoxic for breast tumor cell cultures. Cytotoxicity for human embryonic kidney cells was also found. The monitoring of nanoreactor treatment on triple-negative breast cancer cells showed an evident production of oxygen by the catalase antioxidant enzyme induced by the high production of hydrogen peroxide from GOx activity. CONCLUSIONS AND IMPLICATIONS: The nanoreactors containing GOx activity are entirely suitable for cytotoxicity generation in tumor cells. The HSA functionalization of the VLP-GOx nanoreactors, a strategy designed for selective cancer targeting, showed no improvement in the cytotoxic effect. The GOx containing enzymatic nanoreactors seems to be an interesting alternative to improve the current cancer therapy. In vivo studies are ongoing to reinforce the effectiveness of this treatment strategy.

12.
ChemistryOpen ; 12(5): e202200241, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37226371

RESUMEN

Copper oxide nanoparticles (CuO-NPs) were functionalized with specific antibodies to target their antibacterial activity against Gram-positive or Gram-negative bacteria. The CuO-NPs were covalently functionalized to cover their surface with specific antibodies. The differently prepared CuO-NPs were characterized by X-ray diffraction, transmission electron microscopy and dynamic light scattering. The antibacterial activities of the unmodified CuO-NPs and the antibody-functionalized nanoparticles (CuO-NP-AbGram- and CuO-NP-AbGram+ ) were determined for both Gram-negative Escherichia coli and Gram-positive Bacillus subtilis bacteria. The antibody-functionalized NPs showed a differential increase of their antibacterial activity according to the specific antibody. The CuO-NP-AbGram- in E. coli showed reduced half maximal inhibitory concentration (IC50 ) and minimum inhibitory concentration (MIC) values when compared with unfunctionalized CuO-NPs. On the other hand, the CuO-NP-AbGram+ also showed reduced IC50 and MIC values in B. subtilis, when compared with non-functionalized CuO-NPs. Thus, the functionalized CuO nanoparticles with specific antibodies showed enhanced specificity of their antibacterial activity. The advantages of "smart" antibiotic nanoparticles are discussed.


Asunto(s)
Cobre , Nanopartículas , Escherichia coli , Anticuerpos , Antibacterianos/farmacología , Óxidos
13.
Virology ; 580: 73-87, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36791560

RESUMEN

Enzyme replacement therapy (ERT) has been used to treat a few of the many existing diseases which are originated from the lack of, or low enzymatic activity. Exogenous enzymes are administered to contend with the enzymatic activity deficiency. Enzymatic nanoreactors based on the enzyme encapsulation inside of virus-like particles (VLPs) appear as an interesting alternative for ERT. VLPs are excellent delivery vehicles for therapeutic enzymes as they are biodegradable, uniformly organized, and porous nanostructures that transport and could protect the biocatalyst from the external environment without much affecting the bioactivity. Consequently, significant efforts have been made in the production processes of virus-based enzymatic nanoreactors and their functionalization, which are critically reviewed. The use of virus-based enzymatic nanoreactors for the treatment of lysosomal storage diseases such as Gaucher, Fabry, and Pompe diseases, as well as potential therapies for galactosemia, and Hurler and Hunter syndromes are discussed.


Asunto(s)
Enfermedades por Almacenamiento Lisosomal , Nanopartículas , Humanos , Terapia de Reemplazo Enzimático , Enfermedades por Almacenamiento Lisosomal/tratamiento farmacológico
14.
J Colloid Interface Sci ; 613: 747-763, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35066233

RESUMEN

HYPOTHESIS: We describe the deposition behavior of monodispersed silica nanoparticles on polystyrene spherical particles by using modified pairwise DLVO (Derjaguin-Landau-Verwey-Overbeek) interaction force profiles at pH values between two and twelve. Our modified model contains a new nonlinear charge regulation parameter that considers redistribution of ions, which allows us to realistically express the electrical double layer (EDL) interaction forces. EXPERIMENTS: Silanol-terminated silica nanoparticles (7.6 ± 0.4 nm), l-lysine-covered silica nanoparticles (7.8 ± 0.4 nm), and polyallylamine hydrochloride-covered polystyrene (PAH/PS) particles (348 ± 1 nm) were synthesized. Then, each type of silica nanoparticle was deposited on the PAH/PS particles at a range of pH values. FINDINGS: Our new regulation parameter describes the realistic redistribution of charges governed by pH, total salt concentration, ionic strength of solution, and separation distance of particles. We find that this regulation parameter can be roughly approximated from the absolute values of theoretically calculated surface charge density and potential distributions, as well as experimentally measured ζ-potentials. Morphological analysis using electron microscopy of the experimental systems shows that the modified pairwise DLVO interaction forces exceptionally describe the deposition behavior of the silica nanoparticles physically adsorbed on the PAH/PS particle substrates.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Iones , Concentración Osmolar , Poliestirenos
15.
Toxicol In Vitro ; 85: 105461, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36049398

RESUMEN

Two-dimensional (2D) cell culture monolayers are commonly used for toxicological assessments of nanomaterials. Despite their facile handling, they exhibit several constraints due to their structural and complexity differences with three-dimensional (3D) in vitro cell models, such as spheroids. Here, we conducted a comparative nanotoxicological study of fibroblasts (L929) and melanoma (B16-F10) cells, grown in 2D and 3D arrangements. The cytotoxicity, reactive oxygen species (ROS) production, genotoxicity, cell morphology complexity, and uptake of silver nanoparticles (AgNPs) and folic acid-functionalized upconversion nanoparticles (FA-UCNPs) were compared in the two culture arrangements. AgNPs cytotoxicity was higher in spheroids than in monolayer cultures. Furthermore, apoptotic cell percentages and ROS production were higher in 3D than in 2D cell cultures. More importantly, 2D cultures required twice the concentration of AgNPs than the 3D cell models to reach a considerable DNA damage index (c.a. 200). Therefore, spheroids are more sensitive to the genotoxic effects of AgNPs. FA-UCNPs exerted negligible cell toxicity in 2D and 3D cell models. Moreover, AgNPs induced disaggregation and downsizing of spheroids in a facile and concentration-dependent manner. Internalization of FA-UCNPs in spheroids was 20% higher than in the 2D cell arrangements. Collectively, our findings, demonstrated that spheroids are a more sensitive model than monolayers for the assessment of nanoparticle biocompatibility and internalization.


Asunto(s)
Nanopartículas del Metal , Esferoides Celulares , Técnicas de Cultivo de Célula/métodos , Ácido Fólico , Nanopartículas del Metal/toxicidad , Especies Reactivas de Oxígeno , Plata/toxicidad
16.
Animals (Basel) ; 12(4)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35203125

RESUMEN

The addition of the antioxidant α-lipoic acid (ALA) to a balanced diet might be crucial for the prevention of comorbidities such as cardiovascular diseases, diabetes, and obesity. Due to its low half-life and instability under stomach-like conditions, α-lipoic acid was encapsulated into chitosan nanoparticles (Ch-NPs). The resulting chitosan nanoparticles containing 20% w/w ALA (Ch-ALA-NPs) with an average diameter of 44 nm demonstrated antioxidant activity and stability under stomach-like conditions for up to 3 h. Furthermore, fluorescent Ch-ALA-NPs were effectively internalized into 3T3-L1 fibroblasts and were able to cross the intestinal barrier, as evidenced by everted intestine in vitro experiments. Thus, chitosan-based nanoparticles seem to be an attractive administration method for antioxidants, or other sensible additives, in food.

17.
ChemMedChem ; 17(19): e202200384, 2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-35918294

RESUMEN

Gaucher disease is a genetic disorder and the most common lysosomal disease caused by the deficiency of enzyme ß-glucocerebrosidase (GCase). Although enzyme replacement therapy (ERT) is successfully applied using mannose-exposed conjugated glucocerebrosidase, the lower stability of the enzyme in blood demands periodic intravenous administration that adds to the high cost of treatment. In this work, the enzyme ß-glucocerebrosidase was encapsulated inside virus-like nanoparticles (VLPs) from brome mosaic virus (BMV), and their surface was functionalized with mannose groups for targeting to macrophages. The VLP nanoreactors showed significant GCase catalytic activity. Moreover, the Michaelis-Menten constants for the free GCase enzyme (KM =0.29 mM) and the functionalized nanoreactors (KM =0.32 mM) were similar even after chemical modification. Importantly, the stability of enzymes under physiological conditions (pH 7.4, 37 °C) was enhanced by ≈11-fold after encapsulation; this is beneficial for obtaining a higher blood circulation half-life, which may decrease the cost of therapy by reducing the requirement of multiple intravenous injections. Finally, the mannose receptor targeted enzymatic nanoreactors showed enhanced internalization into macrophage cells. Thus, the catalytic activity and cell targeting suggest the potential of these nanoreactors in ERT of Gaucher's disease.


Asunto(s)
Enfermedad de Gaucher , Terapia de Reemplazo Enzimático , Enfermedad de Gaucher/tratamiento farmacológico , Enfermedad de Gaucher/genética , Glucosilceramidasa/genética , Humanos , Manosa , Nanotecnología
18.
J Biol Inorg Chem ; 16(1): 63-8, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20835876

RESUMEN

Heme peroxidases are subject to a mechanism-based oxidative inactivation. During the catalytic cycle, the heme group is activated to form highly oxidizing species, which may extract electrons from the protein itself. In this work, we analyze changes in residues prone to oxidation owing to their low redox potential during the peroxide-mediated inactivation of chloroperoxidase from Caldariomyces fumago under peroxidasic catalytic conditions. Surprisingly, we found only minor changes in the amino acid content of the fully inactivated enzyme. Our results show that tyrosine residues are not oxidized, whereas all tryptophan residues are partially oxidized in the inactive protein. The data suggest that the main process leading to enzyme inactivation is heme destruction. The molecular characterization of the peroxide-mediated inactivation process could provide specific targets for the protein engineering of this versatile peroxidase.


Asunto(s)
Ascomicetos/enzimología , Cloruro Peroxidasa/antagonistas & inhibidores , Hemo/química , Peróxido de Hidrógeno/farmacología , Cloruro Peroxidasa/química , Cloruro Peroxidasa/metabolismo , Cromatografía Líquida de Alta Presión , Dicroismo Circular , Activación Enzimática/efectos de los fármacos , Peróxido de Hidrógeno/química , Modelos Moleculares , Oxidación-Reducción , Ingeniería de Proteínas
19.
ChemMedChem ; 16(9): 1438-1445, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33595183

RESUMEN

Enzymatic nanoreactors were obtained by galactose-1-phosphate uridylyl-transferase (GALT) encapsulation into plant virus capsids by a molecular self-assembly strategy. The aim of this work was to produce virus-like nanoparticles containing GALT for an enzyme-replacement therapy for classic galactosemia. The encapsulation efficiency and the catalytic constants of bio-nanoreactors were determined by using different GALT and virus coat protein ratios. The substrate affinity of nanoreactors was slightly lower than that of the free enzyme; the activity rate was 16 % of the GALT free enzyme. The enzymatic nanoreactors without functionalization were internalized into different cell lines including fibroblast and kidney cells, but especially into hepatocytes. The enzymatic nanoreactors are an innovative enzyme preparation with potential use for the treatment of classic galactosemia.


Asunto(s)
Bromovirus/metabolismo , Proteínas de la Cápside/química , Composición de Medicamentos/métodos , UTP-Hexosa-1-Fosfato Uridililtransferasa/química , Animales , Proteínas de la Cápside/aislamiento & purificación , Línea Celular , Endocitosis , Fluoresceína-5-Isotiocianato/química , Galactosemias/tratamiento farmacológico , Galactosemias/patología , Humanos , Cinética , Ratones , Nanotecnología , UTP-Hexosa-1-Fosfato Uridililtransferasa/metabolismo , UTP-Hexosa-1-Fosfato Uridililtransferasa/uso terapéutico
20.
Adv Sci (Weinh) ; 8(14): e2100190, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34151527

RESUMEN

With the increased realization of the effect of oxygen (O2 ) deprivation (hypoxia) on cellular processes, recent efforts have focused on the development of engineered systems to control O2 concentrations and establish biomimetic O2 gradients to study and manipulate cellular behavior. Nonetheless, O2 gradients present in 3D engineered platforms result in diverse cell behavior across the O2 gradient, making it difficult to identify and study O2 sensitive signaling pathways. Using a layer-by-layer assembled O2 -controllable hydrogel, the authors precisely control O2 concentrations and study uniform cell behavior in discretized O2 gradients, then recapitulate the dynamics of cluster-based vasculogenesis, one mechanism for neovessel formation, and show distinctive gene expression patterns remarkably correlate to O2 concentrations. Using RNA sequencing, it is found that time-dependent regulation of cyclic adenosine monophosphate signaling enables cell survival and clustering in the high stress microenvironments. Various extracellular matrix modulators orchestrate hypoxia-driven endothelial cell clustering. Finally, clustering is facilitated by regulators of cell-cell interactions, mainly vascular cell adhesion molecule 1. Taken together, novel regulators of hypoxic cluster-based vasculogenesis are identified, and evidence for the utility of a unique platform is provided to study dynamic cellular responses to 3D hypoxic environments, with broad applicability in development, regeneration, and disease.


Asunto(s)
Materiales Biomiméticos/metabolismo , Comunicación Celular/fisiología , Ingeniería Celular/métodos , Microambiente Celular/fisiología , Hipoxia/metabolismo , Oxígeno/metabolismo , Supervivencia Celular , Matriz Extracelular/metabolismo , Humanos , Hidrogeles , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA