Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(7): e2320201121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38315836

RESUMEN

The growth rates of crystals are largely dictated by the chemical reaction between solute and kinks, in which a solute molecule severs its bonds with the solvent and establishes new bonds with the kink. Details on this sequence of bond breaking and rebuilding remain poorly understood. To elucidate the reaction at the kinks we employ four solvents with distinct functionalities as reporters on the microscopic structures and their dynamics along the pathway into a kink. We combine time-resolved in situ atomic force microscopy and x-ray and optical methods with molecular dynamics simulations. We demonstrate that in all four solvents the solute, etioporphyrin I, molecules reach the steps directly from the solution; this finding identifies the measured rate constant for step growth as the rate constant of the reaction between a solute molecule and a kink. We show that the binding of a solute molecule to a kink divides into two elementary reactions. First, the incoming solute molecule sheds a fraction of its solvent shell and attaches to molecules from the kink by bonds distinct from those in its fully incorporated state. In the second step, the solute breaks these initial bonds and relocates to the kink. The strength of the preliminary bonds with the kink determines the free energy barrier for incorporation into a kink. The presence of an intermediate state, whose stability is controlled by solvents and additives, may illuminate how minor solution components guide the construction of elaborate crystal architectures in nature and the search for solution compositions that suppress undesirable or accelerate favored crystallization in industry.

2.
Nature ; 577(7791): 497-501, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31942074

RESUMEN

Ubiquitous processes in nature and the industry exploit crystallization from multicomponent environments1-5; however, laboratory efforts have focused on the crystallization of pure solutes6,7 and the effects of single growth modifiers8,9. Here we examine the molecular mechanisms employed by pairs of inhibitors in blocking the crystallization of haematin, which is a model organic compound with relevance to the physiology of malaria parasites10,11. We use a combination of scanning probe microscopy and molecular modelling to demonstrate that inhibitor pairs, whose constituents adopt distinct mechanisms of haematin growth inhibition, kink blocking and step pinning12,13, exhibit both synergistic and antagonistic cooperativity depending on the inhibitor combination and applied concentrations. Synergism between two crystal growth modifiers is expected, but the antagonistic cooperativity of haematin inhibitors is not reflected in current crystal growth models. We demonstrate that kink blockers reduce the line tension of step edges, which facilitates both the nucleation of crystal layers and step propagation through the gates created by step pinners. The molecular viewpoint on cooperativity between crystallization modifiers provides guidance on the pairing of modifiers in the synthesis of crystalline materials. The proposed mechanisms indicate strategies to understand and control crystallization in both natural and engineered systems, which occurs in complex multicomponent media1-3,8,9. In a broader context, our results highlight the complexity of crystal-modifier interactions mediated by the structure and dynamics of the crystal interface.


Asunto(s)
Hemina/química , Cristalización , Cinética , Método de Montecarlo
3.
Soft Matter ; 20(11): 2575-2583, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38415982

RESUMEN

A fundamental assumption of the classical theories of crystal nucleation is that the individual molecules from the "old" phase associate to an emerging nucleus individually and sequentially. Numerous recent studies of crystal nucleation in solution have revealed nonclassical pathways, whereby crystal nuclei are hosted and fed by amorphous clusters pre-formed in the solution. A sizable knowledge gap has persisted, however, in the definition of the molecular-level parameters that direct a solute towards classical or nonclassical nucleation. Here we construct a suspension of colloid particles of hydrodynamic diameter 1.1 µm and monitor their individual motions towards a quasi-two-dimensional crystal by scanning confocal microscopy. We combine electrostatic repulsion and polymer-induced attraction to obtain a simple isotropic pair interaction potential with a single attractive minimum of tunable depth between 1.2kBT and 2.7kBT. We find that even the smallest aggregates that form in this system structure as hexagonal two-dimensional crystals and grow and maturate by the association and exchange of single particles from the solution, signature behaviors during classical nucleation. The particles in the suspension equilibrate with those in the clusters and the volume fractions of suspensions at equilibrium correspond to straightforward thermodynamic predictions based on depth of the interparticle attraction. These results demonstrate that classical nucleation is selected by particles interacting with a minimal potential and present a benchmark for future modifications of the molecular interactions that may induce nonclassical nucleation.

4.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34518234

RESUMEN

Amyloid fibrillization is an exceedingly complex process in which incoming peptide chains bind to the fibril while concertedly folding. The coupling between folding and binding is not fully understood. We explore the molecular pathways of association of Aß40 monomers to fibril tips by combining time-resolved in situ scanning probe microscopy with molecular modeling. The comparison between experimental and simulation results shows that a complex supported by nonnative contacts is present in the equilibrium structure of the fibril tip and impedes fibril growth in a supersaturated solution. The unraveling of this frustrated state determines the rate of fibril growth. The kinetics of growth of freshly cut fibrils, in which the bulk fibril structure persists at the tip, complemented by molecular simulations, indicate that this frustrated complex comprises three or four monomers in nonnative conformations and likely is contained on the top of a single stack of peptide chains in the fibril structure. This pathway of fibril growth strongly deviates from the common view that the conformational transformation of each captured peptide chain is templated by the previously arrived peptide. The insights into the ensemble structure of the frustrated complex may guide the search for suppressors of Aß fibrillization. The uncovered dynamics of coupled structuring and assembly during fibril growth are more complex than during the folding of most globular proteins, as they involve the collective motions of several peptide chains that are not guided by a funneled energy landscape.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Amiloide/metabolismo , Fragmentos de Péptidos/metabolismo , Cinética , Simulación de Dinámica Molecular , Pliegue de Proteína
5.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33653952

RESUMEN

The protein p53 is a crucial tumor suppressor, often called "the guardian of the genome"; however, mutations transform p53 into a powerful cancer promoter. The oncogenic capacity of mutant p53 has been ascribed to enhanced propensity to fibrillize and recruit other cancer fighting proteins in the fibrils, yet the pathways of fibril nucleation and growth remain obscure. Here, we combine immunofluorescence three-dimensional confocal microscopy of human breast cancer cells with light scattering and transmission electron microscopy of solutions of the purified protein and molecular simulations to illuminate the mechanisms of phase transformations across multiple length scales, from cellular to molecular. We report that the p53 mutant R248Q (R, arginine; Q, glutamine) forms, both in cancer cells and in solutions, a condensate with unique properties, mesoscopic protein-rich clusters. The clusters dramatically diverge from other protein condensates. The cluster sizes are decoupled from the total cluster population volume and independent of the p53 concentration and the solution concentration at equilibrium with the clusters varies. We demonstrate that the clusters carry out a crucial biological function: they host and facilitate the nucleation of amyloid fibrils. We demonstrate that the p53 clusters are driven by structural destabilization of the core domain and not by interactions of its extensive unstructured region, in contradistinction to the dense liquids typical of disordered and partially disordered proteins. Two-step nucleation of mutant p53 amyloids suggests means to control fibrillization and the associated pathologies through modifying the cluster characteristics. Our findings exemplify interactions between distinct protein phases that activate complex physicochemical mechanisms operating in biological systems.


Asunto(s)
Amiloide/química , Mutación Missense , Proteína p53 Supresora de Tumor/química , Sustitución de Aminoácidos , Amiloide/genética , Amiloide/metabolismo , Humanos , Células MCF-7 , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
6.
J Biol Chem ; 298(12): 102662, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36334629

RESUMEN

Fibrillization of the protein amyloid ß is assumed to trigger Alzheimer's pathology. Approaches that target amyloid plaques, however, have garnered limited clinical success, and their failures may relate to the scarce understanding of the impact of potential drugs on the intertwined stages of fibrillization. Here, we demonstrate that bexarotene, a T-cell lymphoma medication with known antiamyloid activity both in vitro and in vivo, suppresses amyloid fibrillization by promoting an alternative fibril structure. We employ time-resolved in situ atomic force microscopy to quantify the kinetics of growth of individual fibrils and supplement it with structure characterization by cryo-EM. We show that fibrils with structure engineered by the drug nucleate and grow substantially slower than "normal" fibrils; remarkably, growth remains stunted even in drug-free solutions. We find that the suppression of fibril growth by bexarotene is not because of the drug binding to the fibril tips or to the peptides in the solution. Kinetic analyses attribute the slow growth of drug-enforced fibril polymorph to the distinctive dynamics of peptide chain association to their tips. As an additional benefit, the bexarotene fibrils kill primary rat hippocampal neurons less efficiently than normal fibrils. In conclusion, the suggested drug-driven polymorph transformation presents a mode of action to irreversibly suppress toxic aggregates not only in Alzheimer's but also potentially in myriad diverse pathologies that originate with protein condensation.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Animales , Ratas , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Bexaroteno/farmacología , Amiloide/química , Placa Amiloide , Fragmentos de Péptidos/química
7.
J Biol Chem ; 296: 100123, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33239360

RESUMEN

Malaria is a pervasive disease that affects millions of lives each year in equatorial regions of the world. During the erythrocytic phase of the parasite life cycle, Plasmodium falciparum invades red blood cells, where it catabolizes hemoglobin and sequesters the released toxic heme as innocuous hemozoin crystals. Artemisinin (ART)-class drugs are activated in vivo by newly released heme, which creates a carbon-centered radical that markedly reduces parasite density. Radical damage to parasite lipids and proteins is perceived to be ARTs' dominant mechanism of action. By contrast, quinoline-class antimalarials inhibit the formation of hemozoin and in this way suppress heme detoxification. Here, we combine malaria parasite assays and scanning probe microscopy of growing ß-hematin crystals to elucidate an unexpected mechanism employed by two widely administered antimalarials, ART, and artesunate to subdue the erythrocytic phase of the parasite life cycle. We demonstrate that heme-drug adducts, produced after the radical activation of ARTs and largely believed to be benign bystanders, potently kills P. falciparum at low exogenous concentrations. We show that these adducts inhibit ß-hematin crystallization and heme detoxification, a pathway which complements the deleterious effect of radicals generated via parent drug activation. Our findings reveal an irreversible mechanism of heme-ART adduct inhibition of heme crystallization, unique among antimalarials and common crystal growth inhibitors, that opens new avenues for evaluating drug dosing regimens and understanding growing resistance of P. falciparum to ART.


Asunto(s)
Artemisininas/química , Artemisininas/farmacología , Hemoproteínas/metabolismo , Plasmodium falciparum/patogenicidad , Cristalización , Hemina , Humanos , Malaria/metabolismo , Microscopía de Fuerza Atómica , Plasmodium falciparum/efectos de los fármacos
8.
Faraday Discuss ; 235(0): 307-321, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35393981

RESUMEN

Solution crystallization is a part of the synthesis of materials ranging from geological and biological minerals to pharmaceuticals, fine chemicals, and advanced electronic components. Attempts to predict the structure, growth rates and properties of emerging crystals have been frustrated, in part, by the poor understanding of the correlations between the oligomeric state of the solute, the growth unit, and the crystal symmetry. To explore how a solute monomer or oligomer is selected as the unit that incorporates into kinks and how crystal symmetry impacts this selection, we combine scanning probe microscopy, optical spectroscopy, and all-atom molecular simulations using as examples two organic materials, olanzapine (OZPN) and etioporphyrin I (EtpI). The dominance of dimeric structures in OZPN crystals has spurred speculation that the dimers preform in the solution, where they capture the majority of the solute, and then assemble into crystals. By contrast, EtpI in crystals aligns in parallel stacks of flat EtpI monomers unrelated by point symmetry. Raman and absorption spectroscopies show that solute monomers are the majority solute species in solutions of both compounds. Surprisingly, the kinetics of incorporation of OZPN into kinks is bimolecular, indicating that the growth unit is a solute dimer, a minority solution component. The disconnection between the dominant solute species, the growth unit, and the crystal symmetry is even stronger with EtpI, for which the (010) face grows by incorporating monomers, whereas the growth unit of the (001) face is a dimer. Collectively, the crystallization kinetics results with OZPN and EtpI establish that the structures of the dominant solute species and of the incorporating solute complex do not correlate with the symmetry of the crystal lattice. In a broader context, these findings illuminate the immense complexity of crystallization scenarios that need to be explored on the road to the understanding and control of crystallization.


Asunto(s)
Minerales , Cristalización , Cinética , Minerales/química , Soluciones
9.
Analyst ; 145(14): 4942-4949, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32500871

RESUMEN

We have developed an immuno-PCR based diagnostic platform which couples detection antibodies to self-assembled, ultra-detectable DNA-avidin nanoparticles stabilized with poly(ethylene glycol) to link DNA amplification to target protein concentration. Electrostatic neutralization and cloaking of the PCR-amplifiable DNA labels by avidin and PEG coating reduces non-specific "stickiness" and enhances assay sensitivity. We further optimized the detectability of the nanoparticles by incorporating four repeats of a unique synthetic DNA PCR target into each nanoparticle. Using human chorionic gonadotropin hormone (hCG) as a model analyte, this platform was able to quantitate the target hCG protein in femtomolar concentrations using only standard laboratory equipment.


Asunto(s)
Avidina , Nanopartículas , Anticuerpos , ADN/genética , Humanos , Reacción en Cadena de la Polimerasa
10.
Nature ; 570(7762): 450-452, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31243381
11.
Proc Natl Acad Sci U S A ; 114(29): 7531-7536, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28559329

RESUMEN

In malaria pathophysiology, divergent hypotheses on the inhibition of hematin crystallization posit that drugs act either by the sequestration of soluble hematin or their interaction with crystal surfaces. We use physiologically relevant, time-resolved in situ surface observations and show that quinoline antimalarials inhibit ß-hematin crystal surfaces by three distinct modes of action: step pinning, kink blocking, and step bunch induction. Detailed experimental evidence of kink blocking validates classical theory and demonstrates that this mechanism is not the most effective inhibition pathway. Quinolines also form various complexes with soluble hematin, but complexation is insufficient to suppress heme detoxification and is a poor indicator of drug specificity. Collectively, our findings reveal the significance of drug-crystal interactions and open avenues for rationally designing antimalarial compounds.


Asunto(s)
Antimaláricos/química , Hemoproteínas/química , Quinolinas/química , Adsorción , Sitios de Unión , Cloroquina/química , Cristalización , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Hemo/química , Hemina/química , Plasmodium falciparum/efectos de los fármacos
12.
Proc Natl Acad Sci U S A ; 114(9): 2154-2159, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28193873

RESUMEN

Nucleation, the primary step in crystallization, dictates the number of crystals, the distribution of their sizes, the polymorph selection, and other crucial properties of the crystal population. We used time-resolved liquid-cell transmission electron microscopy (TEM) to perform an in situ examination of the nucleation of lysozyme crystals. Our TEM images revealed that mesoscopic clusters, which are similar to those previously assumed to consist of a dense liquid and serve as nucleation precursors, are actually amorphous solid particles (ASPs) and act only as heterogeneous nucleation sites. Crystalline phases never form inside them. We demonstrate that a crystal appears within a noncrystalline particle assembling lysozyme on an ASP or a container wall, highlighting the role of heterogeneous nucleation. These findings represent a significant departure from the existing formulation of the two-step nucleation mechanism while reaffirming the role of noncrystalline particles. The insights gained may have significant implications in areas that rely on the production of protein crystals, such as structural biology, pharmacy, and biophysics, and for the fundamental understanding of crystallization mechanisms.

13.
Proc Natl Acad Sci U S A ; 112(16): 4946-51, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25831526

RESUMEN

Hematin crystallization is the primary mechanism of heme detoxification in malaria parasites and the target of the quinoline class of antimalarials. Despite numerous studies of malaria pathophysiology, fundamental questions regarding hematin growth and inhibition remain. Among them are the identity of the crystallization medium in vivo, aqueous or organic; the mechanism of crystallization, classical or nonclassical; and whether quinoline antimalarials inhibit crystallization by sequestering hematin in the solution, or by blocking surface sites crucial for growth. Here we use time-resolved in situ atomic force microscopy (AFM) and show that the lipid subphase in the parasite may be a preferred growth medium. We provide, to our knowledge, the first evidence of the molecular mechanisms of hematin crystallization and inhibition by chloroquine, a common quinoline antimalarial drug. AFM observations demonstrate that crystallization strictly follows a classical mechanism wherein new crystal layers are generated by 2D nucleation and grow by the attachment of solute molecules. We identify four classes of surface sites available for binding of potential drugs and propose respective mechanisms of drug action. Further studies reveal that chloroquine inhibits hematin crystallization by binding to molecularly flat {100} surfaces. A 2-µM concentration of chloroquine fully arrests layer generation and step advancement, which is ∼10(4)× less than hematin's physiological concentration. Our results suggest that adsorption at specific growth sites may be a general mode of hemozoin growth inhibition for the quinoline antimalarials. Because the atomic structures of the identified sites are known, this insight could advance the future design and/or optimization of new antimalarials.


Asunto(s)
Antimaláricos/farmacología , Cloroquina/farmacología , Hemina/antagonistas & inhibidores , Hemina/química , Antimaláricos/química , Cloroquina/química , Cristalización , Microscopía de Fuerza Atómica , Solventes/química , Propiedades de Superficie , Vacuolas/efectos de los fármacos , Vacuolas/metabolismo , Agua
14.
Phys Rev Lett ; 119(19): 198101, 2017 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-29219496

RESUMEN

The structure of the interface of a growing crystal with its nutrient phase largely determines the growth dynamics. We demonstrate that hematin crystals, crucial for the survival of malaria parasites, transition from faceted to rough growth interfaces at increasing thermodynamic supersaturation Δµ. Contrary to theoretical predictions and previous observations, this transition occurs at moderate values of Δµ. Moreover, surface roughness varies nonmonotonically with Δµ, and the rate constant for rough growth is slower than that resulting from nucleation and spreading of layers. We attribute these unexpected behaviors to the dynamics of step growth dominated by surface diffusion and the loss of identity of nuclei separated by less than the step width w. We put forth a general criterion for the onset of kinetic roughening using w as a critical length scale.


Asunto(s)
Hemo/química , Hemina/química , Cristalización , Difusión , Cinética , Modelos Químicos , Propiedades de Superficie , Termodinámica
15.
Chemistry ; 23(55): 13638-13647, 2017 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-28833627

RESUMEN

A versatile approach to control crystallization involves the use of modifiers, which are additives that interact with crystal surfaces and alter their growth rates. Elucidating a modifier's binding specificity to anisotropic crystal surfaces is a ubiquitous challenge that is critical to their design. In this study, we select hematin, a byproduct of malaria parasites, as a model system to examine the complementarity of modifiers (i.e., antimalarial drugs) to ß-hematin crystal surfaces. We divide two antimalarials, chloroquine and amodiaquine, into segments consisting of a quinoline base, common to both drugs, and side chains that differentiate their modes of action. Using a combination of scanning probe microscopy, bulk crystallization, and analytical techniques, we show that the base and side chain work synergistically to reduce the rate of hematin crystallization. In contrast to general observations that modifiers retain their function upon segmentation, we show that the constituents do not act as modifiers. A systematic study of quinoline isomers and analogues shows how subtle rearrangement and removal of functional moieties can create effective constituents from previously ineffective modifiers, along with tuning their inhibitory modes of action. These findings highlight the importance of specific functional moieties in drug compounds, leading to an improved understanding of modifier-crystal interactions that could prove to be applicable to the design of new antimalarials.


Asunto(s)
Antimaláricos/metabolismo , Hemina/metabolismo , Quinolinas/metabolismo , Amodiaquina/química , Amodiaquina/metabolismo , Antimaláricos/química , Cloroquina/química , Cloroquina/metabolismo , Cristalización , Hemina/antagonistas & inhibidores , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Quinolinas/química , Espectrofotometría
20.
Biophys J ; 110(9): 2085-93, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27166816

RESUMEN

Polymerization of sickle hemoglobin (HbS) is the primary pathogenic event of sickle cell disease. For insight into the nature of the HbS polymer fiber formation, we develop a particle model-resembling a coarse-grained molecular model-constructed to match the intermolecular contacts between HbS molecules. We demonstrate that the particle model predicts the formation of HbS polymer fibers by attachment of monomers to rough fiber ends and the growth rate increases linearly with HbS concentration. We show that the characteristic 14-molecule fiber cross section is preserved during growth. We also correlate the asymmetry of the contact sites on the HbS molecular surface with the structure of the polymer fiber composed of seven helically twisted double strands. Finally, we show that the same asymmetry mediates the mechanical and structural properties of the HbS polymer fiber.


Asunto(s)
Hemoglobina Falciforme/química , Simulación de Dinámica Molecular , Multimerización de Proteína , Fenómenos Biomecánicos , Estructura Cuaternaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA