Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Conscious Cogn ; 100: 103317, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35364385

RESUMEN

AIM: This study investigated the bromazepam effects in male subjects during the time estimation performance and EEG alpha asymmetry in electrodes associated with the frontal and motor cortex. MATERIAL AND METHODS: This is a double-blind, crossover study with a sample of 32 healthy adults under control (placebo) vs. experimental (bromazepam) during visual time-estimation task in combination with electroencephalographic analysis. RESULTS: The results demonstrated that the bromazepam increased the relative error in the 4 s, 7 s, and 9 s intervals (p = 0.001). In addition, oral bromazepam modulated the EEG alpha asymmetry in cortical areas during the time judgment (p ≤ 0.025). CONCLUSION: The bromazepam decreases the precision of time estimation judgments and modulates the EEG alpha asymmetry, with greater left hemispheric dominance during time perception. Our findings suggest that bromazepam influences internal clock synchronization via the modulation of GABAergic receptors, strongly relating to attention, conscious perception, and behavioral performance.


Asunto(s)
Bromazepam , Percepción del Tiempo , Adulto , Bromazepam/farmacología , Estudios Cruzados , Método Doble Ciego , Electroencefalografía/métodos , Humanos , Juicio , Masculino
2.
Conscious Cogn ; 102: 103354, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35636352

RESUMEN

AIM: This study investigated the differences in frontoparietal EEG gamma coherence between expert meditators (EM) and naïve meditators (NM). MATERIAL AND METHODS: This is a cross-sectional study with a sample of twenty-one healthy adults divided under two groups (experts meditators vs. naive-meditators), with analyzing the intra-hemispheric coherence of frontoparietal gamma oscillations by electroencephalography during the study steps: EEG resting-state 1, during the open presence meditation practice, and EEG resting-state 2. RESULTS: The findings demonstrated greater frontoparietal EEG coherence in gamma for experts meditators in the Fp1-P3, F4-P4, F8-P4 electrode pairs during rest 1 and rest 2 (p ≤ 0.0083). In addition, we evidenced differences in the frontoparietal EEG coherence for expert meditators in F4-P4, F8-P4 during the meditation (p ≤ 0.0083). CONCLUSION: Our results can support evidence that the connectivity of the right frontoparietal network acts as a biomarker of the enhanced Open monitoring meditation training.


Asunto(s)
Meditación , Adulto , Estudios Transversales , Electroencefalografía , Humanos , Descanso
3.
Neurol Sci ; 42(9): 3781-3789, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33454832

RESUMEN

Average slow potentials (SPs) can be computed from any voluntary task, minimally involving attention to anticipated stimuli. Their topography when recorded by large electrode arrays even during simple tasks is complex, multifocal, and its generators appear to be equally multifocal and highly variable across subjects. Various sources of noise of course contaminate such averages and must contribute to the topographic complexity. Here, we report a study in which the non-averaged SP band (0 to 1 Hz) was analyzed by independent components (ICA), from 256 channel recordings of 18 subjects, during four task conditions (resting, visual attention, CPT, and Stroop). We intended to verify whether the replicable SP generators (between two separate day sessions) modeled as current density reconstruction on structural MRI sets were individual-specific, and if putative task-related differences were systematic across subjects. Typically, 3 ICA components (out of 10) explained SPs in each task and subject, and their combined generators were highly variable across subjects: although some occipito-temporal and medial temporal areas contained generators in most subjects; the overall patterns were obviously variable, with no single area common to all 18 subjects. Linear regression modeling to compare combined generators (from all ICA components) between tasks and sessions showed significantly higher correlations between the four tasks than between sessions for each task. Moreover, it was clear that no common task-specific areas could be seen across subjects. Those results represent one more instance in which individual case analyses favor the hypothesis of individual-specific patterns of cortical activity, regardless of task conditions. We discuss this hypothesis with respect to results from the beta band, from individual-case fMRI studies, and its corroboration by functional neurosurgery and the neuropsychology of focal lesions.


Asunto(s)
Mapeo Encefálico , Electroencefalografía , Corteza Cerebral , Humanos , Modelos Lineales , Imagen por Resonancia Magnética
4.
Neurol Sci ; 42(6): 2309-2316, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33037974

RESUMEN

BACKGROUND: The current study is a reanalysis in the time domain of EEG data collection in healthy adults during an oddball paradigm using levetiracetam (LEV) vs. placebo acute administration. Specifically, the event-related potential (ERP) technique provides a tool for exploring the EEG responses to a specific event/stimulus. One of the ERP components widely studied is the P300 component, which is associated with the last stage of information processing and a general measurement of "cognitive efficiency." METHODS: The sample was composed of thirteen healthy right-handed individuals randomized to participate under two conditions: LEV and placebo. Electrophysiological measures were collected before and after drug intake. We explored the oddball paradigm, which is commonly used with healthy individuals to investigate the stages of information processing. RESULTS: The electrophysiological results showed a main effect of condition on P300 amplitude for the frontal (F3, Fz, F4), central (C3, Cz, C4), and parietal electrodes (P3, Pz, P4). The post hoc comparisons (Scheffé's test) demonstrated the significant differences between electrodes. Regarding P300 latency, all regions represented a main effect of condition. A P300 latency reduction was observed during LEV condition compared with placebo. CONCLUSION: Our study observed the ERP component-P300-through the variation of its amplitude and latency to evaluate a supposed higher CNS efficiency when participants were under the LEV effect. Our findings sustain this premise, mainly due to reducing in P300 latency for the LEV condition, supporting the neural efficiency hypothesis.


Asunto(s)
Cognición/efectos de los fármacos , Electroencefalografía , Potenciales Evocados , Levetiracetam/farmacología , Adulto , Potenciales Relacionados con Evento P300 , Humanos , Tiempo de Reacción
5.
Int J Neurosci ; 130(10): 999-1014, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31928445

RESUMEN

AIM: This study investigated whether time-estimation task exposure influences the severity of Attention Deficit Hyperactivity Disorder (ADHD), as well as theta band activity in the dorsolateral prefrontal cortex and ventrolateral prefrontal cortex. MATERIAL AND METHODS: Twenty-two patients with ADHD participated in a crossover experiment with a visual time-estimation task under control conditions (without exposure to time estimation tasks) and experimental (thirty days exposure to time-estimation tasks) in association with electroencephalographic analysis of theta band. RESULTS: ADHD patients with thirty days of time-estimation task exposure presented a worse performance of the time-estimation task, as revealed by the measurements of the absolute error and relative error (p ≤ 0.05). However, our findings show the improvement of self-reported symptoms of attention, impulsivity, and emotional control in patients after the time-estimation task exposure (p = 0.0001). Moreover, the theta band oscillations in the right dorsolateral prefrontal cortex and in the ventrolateral prefrontal increased with thirty days of time-estimation task exposure (p ≤ 0.05). CONCLUSION: We propose that the decrease in EEG theta power may indicate an efficient accumulation of temporal pulses, which could be responsible for the improvement in the patient cognitive aspects as demonstrated by the current study. Time-estimation task improves ADHD cognitive symptoms, with a substantial increase in cortical areas activity related to attention and memory, suggesting its use as a tool for cognitive timing function management and non-invasive therapeutic aid in ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Trastorno por Déficit de Atención con Hiperactividad/rehabilitación , Remediación Cognitiva , Corteza Prefrontal/fisiopatología , Ritmo Teta/fisiología , Administración del Tiempo , Percepción del Tiempo/fisiología , Adulto , Estudios Cruzados , Femenino , Humanos , Masculino , Percepción Visual/fisiología
6.
Neurol Sci ; 40(6): 1183-1189, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30850896

RESUMEN

The low-frequency repetitive transcranial magnetic stimulation (rTMS) application has been associated with changes in cognitive processes embedded during time perception tasks. Although several studies have investigated the influence of neuromodulation on time perception, the effect of the 1-Hz rTMS application on the superior parietal cortex is not clearly understood. This study analyzes the effect of the low-frequency rTMS on time estimation when applied in the parietal medial longitudinal fissure. For the proposed study, 20 subjects were randomly selected for a crossover study with two conditions (sham and 1 Hz). Our findings reveal that participant underestimate 1-s time interval and overestimate 4-s and 9-s time intervals after 1-Hz rTMS (p ≤ 0.05). We conclude that the 1-Hz rTMS in the parietal medial longitudinal fissure delays short interval and speed up long time intervals. This could be due to the effect of parietal inhibition on the attentional level and working memory functions during time estimation.


Asunto(s)
Lóbulo Parietal/fisiología , Percepción del Tiempo/fisiología , Estimulación Magnética Transcraneal , Adulto , Estudios Cruzados , Femenino , Humanos , Masculino , Adulto Joven
7.
Neurol Sci ; 40(4): 829-837, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30693423

RESUMEN

Methylphenidate produces its effects via actions on cortical areas involved with attention and working memory, which have a direct role in time estimation judgment tasks. In particular, the prefrontal and parietal cortex has been the target of several studies to understand the effect of methylphenidate on executive functions and time interval perception. However, it has not yet been studied whether acute administration of methylphenidate influences performance in time estimation task and the changes in alpha band absolute power in the prefrontal and parietal cortex. The current study investigates the influence of the acute use of methylphenidate in both performance and judgment in the time estimation interpretation through the alpha band absolute power activity in the prefrontal and parietal cortex. This is a double-blind, crossover study with a sample of 32 subjects under control (placebo) and experimental (methylphenidate) conditions with absolute alpha band power analysis during a time estimation task. We observed that methylphenidate does not influence task performance (p > 0.05), but it increases the time interval underestimation by over 7 s (p < 0.001) with a concomitant decrease in absolute alpha band power in the ventrolateral prefrontal cortex and dorsolateral prefrontal cortex and parietal cortex (p < 0.001). Acute use of methylphenidate increases the time interval underestimation, consistent with reduced accuracy of the internal clock mechanisms. Furthermore, acute use of methylphenidate influences the absolute alpha band power over the dorsolateral prefrontal cortex, ventrolateral prefrontal cortex, and parietal cortex.


Asunto(s)
Ritmo alfa/efectos de los fármacos , Estimulantes del Sistema Nervioso Central/farmacología , Juicio/efectos de los fármacos , Metilfenidato/farmacología , Lóbulo Parietal/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Desempeño Psicomotor/efectos de los fármacos , Tiempo de Reacción/efectos de los fármacos , Percepción del Tiempo/efectos de los fármacos , Adulto , Estimulantes del Sistema Nervioso Central/administración & dosificación , Estimulantes del Sistema Nervioso Central/efectos adversos , Estudios Cruzados , Método Doble Ciego , Humanos , Masculino , Metilfenidato/administración & dosificación , Metilfenidato/efectos adversos , Adulto Joven
8.
Int J Neurosci ; 129(6): 523-533, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29914282

RESUMEN

AIM OF THE STUDY: Previous studies have shown that several cortical regions are involved in temporal tasks in multiple timescales. However, the hemispheric predominance of the dorsolateral prefrontal cortex (DLPFC) during time reproduction after repetitive low-frequency transcranial magnetic stimulation (rTMS) is relatively unexplored. Here, we study the effects of 1 Hz rTMS and sham stimulation applied medially over the superior parietal cortex (SPC) on the DLPFC alpha and beta band asymmetry and on time reproduction. MATERIALS AND METHODS: For this purpose, we have combined rTMS with electroencephalography in 20 healthy subjects who performed the time reproduction task in two conditions (sham and 1 Hz). RESULTS: The worst performance was observed in sham and 1Hz conditions for longer time intervals (p < .05), with the 1Hz condition subjects sub-reproducing the time interval, closer to the target interval (p < .05). The right DLPFC hemispheric predominance was found in both conditions, but after low-frequency rTMS, the right hemisphere predominance increased in the 1Hz condition (p < .05). CONCLUSIONS: Results of this study suggest that rTMS applied over the SPC influences time interval interpretation and the DLPFC functions. Future studies would explore the effects of the rTMS application to other cortical areas, and study how it influences time interval interpretation.


Asunto(s)
Dominancia Cerebral , Lóbulo Parietal/fisiología , Corteza Prefrontal/fisiología , Percepción del Tiempo/fisiología , Estimulación Magnética Transcraneal/métodos , Adulto , Ritmo alfa/fisiología , Ritmo beta/fisiología , Femenino , Humanos , Masculino , Pruebas Neuropsicológicas , Adulto Joven
9.
J Biomed Sci ; 25(1): 26, 2018 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-29554962

RESUMEN

BACKGROUND: Parkinson's disease is described as resulting from dopaminergic cells progressive degeneration, specifically in the substantia nigra pars compacta that influence the voluntary movements control, decision making and time perception. AIM: This review had a goal to update the relation between time perception and Parkinson's Disease. METHODOLOGY: We used the PRISMA methodology for this investigation built guided for subjects dopaminergic dysfunction in the time judgment, pharmacological models with levodopa and new studies on the time perception in Parkinson's Disease. We researched on databases Scielo, Pubmed / Medline and ISI Web of Knowledge on August 2017 and repeated in September 2017 and February 2018 using terms and associations relevant for obtaining articles in English about the aspects neurobiology incorporated in time perception. No publication status or restriction of publication date was imposed, but we used as exclusion criteria: dissertations, book reviews, conferences or editorial work. RESULTS/DISCUSSION: We have demonstrated that the time cognitive processes are underlying to performance in cognitive tasks and that many are the brain areas and functions involved and the modulators in the time perception performance. CONCLUSIONS: The influence of dopaminergic on Parkinson's Disease is an important research tool in Neuroscience while allowing for the search for clarifications regarding behavioral phenotypes of Parkinson's disease patients and to study the areas of the brain that are involved in the dopaminergic circuit and their integration with the time perception mechanisms.


Asunto(s)
Ganglios Basales/fisiopatología , Enfermedad de Parkinson/fisiopatología , Porción Compacta de la Sustancia Negra/fisiopatología , Percepción del Tiempo , Ganglios Basales/química , Porción Compacta de la Sustancia Negra/química , Transmisión Sináptica/fisiología
10.
J Biomed Sci ; 25(1): 61, 2018 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-30086746

RESUMEN

BACKGROUND: Studies at the molecular level aim to integrate genetic and neurobiological data to provide an increasingly detailed understanding of phenotypes related to the ability in time perception. MAIN TEXT: This study suggests that the polymorphisms genetic SLC6A4 5-HTTLPR, 5HTR2A T102C, DRD2/ANKK1-Taq1A, SLC6A3 3'-UTR VNTR, COMT Val158Met, CLOCK genes and GABRB2 A/C as modification factor at neurochemical levels associated with several neurofunctional aspects, modifying the circadian rhythm and built-in cognitive functions in the timing. We conducted a literature review with 102 studies that met inclusion criteria to synthesize findings on genetic polymorphisms and their influence on the timing. CONCLUSION: The findings suggest an association of genetic polymorphisms on behavioral aspects related in timing. However, order to confirm the paradigm of association in the timing as a function of the molecular level, still need to be addressed future research.


Asunto(s)
Ritmo Circadiano/genética , Cognición/fisiología , Predisposición Genética a la Enfermedad , Percepción del Tiempo/fisiología , Adulto , Ritmo Circadiano/fisiología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Femenino , Estudios de Asociación Genética , Genotipo , Humanos , Masculino , Polimorfismo de Nucleótido Simple/genética , Proteínas Serina-Treonina Quinasas/genética , Receptores de Dopamina D2/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética
11.
Neurol Sci ; 39(3): 527-532, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29330626

RESUMEN

Spatial working memory has been extensively investigated with different tasks, treatments, and analysis tools. Several studies suggest that low frequency of the repetitive transcranial magnetic stimulation (rTMS) applied to the parietal cortex may influence spatial working memory (SWM). However, it is not yet known if after low-frequency rTMS applied to the superior parietal cortex, according to Pz electroencephalography (EEG) electrode, would change the orientation interpretation about the vertical and horizontal axes coordinates in an SWM task. The current study aims at filling this gap and obtains a better understanding of the low-frequency rTMS effect in SWM. In this crossover study, we select 20 healthy subjects in two conditions (control and 1-Hz rTMS). The subjects performed an SWM task with two random coordinates. Our results presented that low-frequency rTMS applied over the superior parietal cortex may influence the SWM to lead to a larger distance of axes interception point (p < 0.05). We conclude that low-frequency rTMS over the superior parietal cortex (SPC) changes the SWM performance, and it has more predominance in horizontal axis.


Asunto(s)
Memoria a Corto Plazo/fisiología , Lóbulo Parietal/fisiología , Memoria Espacial/fisiología , Estimulación Magnética Transcraneal , Adulto , Análisis de Varianza , Estudios Cruzados , Electroencefalografía , Humanos , Modelos Logísticos , Pruebas Neuropsicológicas , Estimulación Magnética Transcraneal/efectos adversos , Estimulación Magnética Transcraneal/métodos , Adulto Joven
12.
Int J Neurosci ; 128(3): 262-282, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28950734

RESUMEN

Dopaminergic system plays a key role in perception, which is an important executive function of the brain. Modulation in dopaminergic system forms an important biochemical underpinning of neural mechanisms of time perception in a very wide range, from milliseconds to seconds to longer daily rhythms. Distinct types of temporal experience are poorly understood, and the relationship between processing of different intervals by the brain has received little attention. A comprehensive understanding of interval timing functions should be sought within a wider context of temporal processing, involving genetic aspects, pharmacological models, cognitive aspects, motor control and the neurological diseases with impaired dopaminergic system. Particularly, an unexplored question is whether the role of dopamine in interval timing can be integrated with the role of dopamine in non-interval timing temporal components. In this review, we explore a wider perspective of dopaminergic system, involving genetic polymorphisms, pharmacological models, executive functions and neurological diseases on the time perception. We conclude that the dopaminergic system has great participation in impact on time perception and neurobiological basis of the executive functions and neurological diseases.


Asunto(s)
Trastornos del Conocimiento/etiología , Dopamina/metabolismo , Enfermedades del Sistema Nervioso/complicaciones , Enfermedades del Sistema Nervioso/metabolismo , Transducción de Señal/fisiología , Percepción del Tiempo/fisiología , Dopamina/genética , Humanos
13.
Somatosens Mot Res ; 34(3): 204-212, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-29096587

RESUMEN

The physiotherapist's clinical practice includes proprioceptive neuromuscular facilitation (PNF), which is a treatment concept that accelerates the response of neuromuscular mechanisms through spiral and diagonal movements. The adaptations that occur in the nervous system following PNF are still poorly described in the literature. Thus, this study had a goal to investigate the electrophysiological changes in the fronto-parietal circuit during PNF and movement in sagittal and diagonal patterns. This study included 30 female participants, who were divided into three groups (control, PNF, and flexion groups). Electroencephalogram measurements were determined before and after tasks were performed by each group. For the statistical analysis, a two-way ANOVA was performed for the factors group and time. Interactions between the two factors were investigated using a one-way ANOVA. A value of p < 0.004 was considered significant. The results showed an increase in alpha absolute power in the left dorsolateral prefrontal cortex and upper left parietal cortex of the PNF group, suggesting these areas work together to execute a motor action. The PNF group showed a greater alpha absolute power compared with the other groups, indicating a specific cortical demand for planning and attention, reinforcing its use for the rehabilitation of individuals.


Asunto(s)
Ritmo alfa/fisiología , Movimiento/fisiología , Unión Neuromuscular/fisiología , Lóbulo Parietal/fisiología , Corteza Prefrontal/fisiología , Propiocepción/fisiología , Adolescente , Adulto , Análisis de Varianza , Electroencefalografía , Femenino , Lateralidad Funcional/fisiología , Humanos , Masculino , Red Nerviosa/fisiología , Distribución Aleatoria , Análisis Espectral , Adulto Joven
14.
Artículo en Inglés | MEDLINE | ID: mdl-29238390

RESUMEN

INTRODUCTION: One of the positive effects of brain stimulation is interhemispheric modulation as shown in some scientific studies. This study examined if a type of noninvasive stimulation using binaural beats with led-lights and sound would show different modulatory effects upon Alfa and SMR brain waves of elderlies and children with some disease types. SUBJECTS: The sample included 75 individuals of both genders, being, randomly, divided in 6 groups. Groups were named elderly without dementia diagnosis (EWD), n=15, 76±8 years, elderly diagnosed with Parkinson's disease (EDP), n=15, 72±7 years, elderly diagnosed with Alzheimer's disease (EDA), n=15, 81±6 years. The other groups were named children with Autism (CA), n=10, 11±4 years, children with Intellectual Impairment (CII), n=10, 12 ±5 years and children with normal cognitive development (CND), n=10, 11±4 years. INSTRUMENTS AND PROCEDURE: Instruments were the Mini Mental State Examination Test (MMSE), EEG-Neurocomputer instrument for brain waves registration, brain stimulator, Digit Span Test and a Protocol for working memory training. Data collection followed a pre and post-conjugated stimulation version. RESULTS: The results of the inferential statistics showed that the stimulation protocol had different effects on Alpha and SMR brain waves of the patients. Also, indicated gains in memory functions, for both, children and elderlies as related to gains in brain waves modulation. CONCLUSION: The results may receive and provide support to a range of studies examining brain modulation and synaptic plasticity. Also, it was emphasized in the results discussion that there was the possibility of the technique serving as an accessory instrument to alternative brain therapies.

15.
Biol Sport ; 34(4): 353-359, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29472738

RESUMEN

Taurine (TA) ingestion has been touted as blunting the deleterious effects of ethanol (ET) ingestion on motor performance. This study investigated the effects of ingestion of 0.6 mL·kg-1 of ET, 6 grams of TA, and ethanol in combination with taurine (ET+TA) on economy of movement (EM) and heart rate (HR). Nine volunteers, five female (22 ± 3 years) and four male (26 ± 5 years), participated in a study that used a counterbalanced experimental design. EM and HR were measured for 6 min while the subjects were pedalling at a fixed load 10% below the anaerobic threshold. The blood alcohol concentration (BAC) was similar between ET and ET+TA treatments at 30 min after ingestion and after exercise (12.3 mmol·L-1 vs. 13.7 mmol·L-1, and 9.7 mmol • L-1 vs 10.9 mmol·L-1, respectively). EM was significantly different among treatments, with lower mL·W-1 following ingestion of TA (-7.1%, p<0.001) than placebo and ET+TA (-2.45%, p=0.001) compared to ET. HR (bpm) was significantly (p<0.05) higher for ET (137 ± 14 bpm) than the other three treatments (placebo = 129 ± 14 bpm; TA = 127 ± 11 bpm; TA+ET = 133 ± 12 and ET = 137 ± 14 bpm). Taurine improved EM when compared to placebo or ET, and reduced HR when compared to ET. The combination of ET+TA also enhanced EM compared to placebo, and reduced HR in comparison to ET alone. Therefore, these findings indicate that taurine improves EM and counteracts ethanol-induced increases in HR during submaximal exercise.

16.
Aging Clin Exp Res ; 28(4): 599-606, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26511625

RESUMEN

BACKGROUND: Aging is characterized by gradual physiological changes in body systems. Changes in the vestibular system can occur and cause dizziness, vertigo and imbalance, symptoms that are common in the elderly. Vestibular rehabilitation is a therapeutic resource that has been widely used to improve this condition. AIMS: To complete a systematic review of the effects of vestibular rehabilitation on the elderly. METHODS: A search for relevant publications was conducted in SCIELO, PUBMED, MEDLINE, COCHRANE and LILACS databases. Clinical trials and cohort studies that were written in the English language and published over the course of the last 10 years were selected. The methodological quality of the studies was assessed using the PEDro scale. A critical analysis of the studies was composed. RESULTS: Eight studies that involved subjects who were over the age of 60 were selected for inclusion in the systematic review. The most common vestibular dysfunction identified was complaints about dizziness and imbalance. The Dizziness Handicap Inventory was the most frequently used assessment instrument, and the treatment protocol that prevailed was that suggested by Cawthorne and Cooksey. DISCUSSION: The PEDro scale showed that only one article was of an acceptable methodological quality and presented satisfactory outcome measures. This was due, in part, to a lack of a hidden randomization, masking of the subject, evaluators and therapists, and lack of outcome measures, which can reduce the quality of the evidence presented in this study. CONCLUSION: Clinical trials indicate that vestibular rehabilitation represents an effective means of treating elderly patients with vestibular disorders; however, evidence of its effectiveness remains lacking.


Asunto(s)
Mareo/etiología , Equilibrio Postural/fisiología , Enfermedades Vestibulares/rehabilitación , Anciano , Envejecimiento/fisiología , Humanos , Evaluación de Resultado en la Atención de Salud , Vértigo/rehabilitación
18.
PLoS One ; 19(7): e0290142, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38959207

RESUMEN

AIM: This preliminary study investigated the differences in event-related potential and reaction time under two groups (athletes vs. non-athletes). MATERIAL AND METHODS: The P300 was analyzed for Fz, Cz, and Pz electrodes in thirty-one healthy volunteers divided into two groups (volleyball athletes and non-athletes). In addition, the participants performed a saccadic eye movement task to measure reaction time. RESULTS: The EEG analysis showed that the athletes, in comparison to the no-athletes, have differences in the P300 in the frontal area (p = 0.021). In relation to reaction time, the results show lower reaction time for athletes (p = 0.001). CONCLUSIONS: The volleyball athletes may present a greater allocation of attention during the execution of the inhibition task, since they have a lower reaction time for responses when compared to non-athletes.


Asunto(s)
Atletas , Electroencefalografía , Tiempo de Reacción , Movimientos Sacádicos , Voleibol , Humanos , Tiempo de Reacción/fisiología , Movimientos Sacádicos/fisiología , Voleibol/fisiología , Masculino , Femenino , Adulto Joven , Adulto , Potenciales Evocados/fisiología , Potenciales Relacionados con Evento P300/fisiología , Atención/fisiología
19.
Neurol Sci ; 34(4): 427-33, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23161257

RESUMEN

Spinal cord injury (SCI) is a disease that affects millions of people worldwide, causing a temporary or permanent impairment of neuromotor functions. Mostly associated to traumatic lesions, but also to other forms of disease, the appropriate treatment is still unsure. In this review, several ongoing studies are presented that aim to provide methods of prevention that ensure quality of life, and rehabilitation trends to patients who suffer from this injury. Stem cell research, highlighted in this review, seeks to reduce damage caused to the tissue, as also provide spinal cord regeneration through the application of several types of stem cells. On the other hand, research using brain-computer interface (BCI) technology proposes the development of interfaces based on the interaction of neural networks with artificial tools to restore motor control and full mobility of the injured area. PubMed, MEDLINE and SciELO data basis analyses were performed to identify studies published from 2000 to date, which describe the link between SCI with stem cells and BCI technology.


Asunto(s)
Interfaces Cerebro-Computador , Traumatismos de la Médula Espinal , Trasplante de Células Madre/métodos , Células Madre/fisiología , Animales , Humanos , Actividad Motora/fisiología , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/rehabilitación , Traumatismos de la Médula Espinal/cirugía , Regeneración de la Medula Espinal/fisiología
20.
Arq Neuropsiquiatr ; 81(10): 876-882, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37852289

RESUMEN

BACKGROUND: The saccadic eye movement is responsible for providing focus to a visual object of interest to the retina. In sports like volleyball, identifying relevant targets quickly is essential to a masterful performance. The training improves cortical regions underlying saccadic action, enabling more automated processing in athletes. OBJECTIVE: We investigated changes in the latency during the saccadic eye movement and the absolute theta power on the frontal and prefrontal cortices during the execution of the saccadic eye movement task in volleyball athletes and non-athletes. We hypothesized that the saccade latency and theta power would be lower due to training and perceptual-cognitive enhancement in volleyball players. METHODS: We recruited 30 healthy volunteers: 15 volleyball athletes (11 men and 4 women; mean age: 15.08 ± 1.06 years) and 15 non-athletes (5 men and 10 women; mean age: 18.00 ± 1.46 years). All tasks were performed simultaneously with electroencephalography signal recording. RESULTS: The latency of the saccadic eye movement presented a significant difference between the groups; a shorter time was observed among the athletes, associated with the players' superiority in terms of attention level. During the experiment, the athletes observed a decrease in absolute theta power compared to non-athletes on the electrodes of each frontal and prefrontal area. CONCLUSION: In the present study, we observed the behavior of reaction time and absolute theta power in athletes and non-athletes during a saccadic movement task. Our findings corroborate the premise of cognitive improvement, mainly due to the reduction of saccadic latency and lower beta power, validating the neural efficiency hypothesis.


ANTECEDENTES: O movimento ocular sacádico é responsável por dar foco a um objeto visual de interesse para a retina. Em esportes como o vôlei, identificar alvos relevantes o mais rápido possível é essencial para se ter um desempenho magistral. O treinamento melhora as regiões corticais subjacentes à ação sacádica, e permite um processamento mais automatizado em atletas. OBJETIVO: Investigamos as mudanças na latência durante o movimento ocular sacádico e a potência teta absoluta nos córtices frontal e pré-frontal durante a execução da tarefa de movimento ocular sacádico em atletas e não atletas de voleibol. Nossa hipótese é a de que a latência sacádica e a potência teta seriam menores em atletas devido ao treinamento e ao aprimoramento perceptivo-cognitivo em jogadores de voleibol. MéTODOS: Ao todo, 30 voluntários saudáveis foram recrutados para este estudo: 15 atletas de voleibol (11 homens e 4 mulheres; idade média: 15,08 ± 1,06 anos) e 15 não atletas (5 homens e 10 mulheres; idade média: 18,00 ± 1,46 anos). Todas as tarefas foram realizadas simultaneamente com o registro do sinal eletroencefalográfico. RESULTADOS: O resultado da latência do movimento ocular sacádico apresentou diferença significativa entre os grupos, sendo observado menor tempo entre os atletas, associado à superioridade dos jogadores em termos de nível de atenção. Durante o experimento, nos eletrodos de cada área frontal e pré-frontal, observou-se uma diminuição na potência teta absoluta nos atletas em comparação aos não atletas. CONCLUSãO: Neste estudo, observou-se o comportamento do tempo de reação e da potência teta absoluta em atletas e não atletas durante uma tarefa de movimento sacádico. Nossos achados corroboram a premissa de melhora cognitiva, principalmente pela redução da latência sacádica e menor potência beta, o que valida a hipótese de eficiência neural.


Asunto(s)
Movimientos Sacádicos , Voleibol , Masculino , Humanos , Femenino , Adolescente , Adulto Joven , Adulto , Electroencefalografía , Tiempo de Reacción , Atletas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA