Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 114(18): 4833-4838, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28428341

RESUMEN

Polycomb Repressive Complex (PRC) 2 catalyzes the H3K27me3 modification that warrants inheritance of a repressive chromatin structure during cell division, thereby assuring stable target gene repression in differentiated cells. It is still under investigation how H3K27me3 is passed on from maternal to filial strands during DNA replication; however, cell division can reinforce H3K27me3 coverage at target regions. To identify novel factors involved in the Polycomb pathway in plants, we performed a forward genetic screen for enhancers of the like heterochromatin protein 1 (lhp1) mutant, which shows relatively mild phenotypic alterations compared with other plant PRC mutants. We mapped enhancer of lhp1 (eol) 1 to a gene related to yeast Chromosome transmission fidelity 4 (Ctf4) based on phylogenetic analysis, structural similarities, physical interaction with the CMG helicase component SLD5, and an expression pattern confined to actively dividing cells. A combination of eol1 with the curly leaf (clf) allele, carrying a mutation in the catalytic core of PRC2, strongly enhanced the clf phenotype; furthermore, H3K27me3 coverage at target genes was strongly reduced in eol1 clf double mutants compared with clf single mutants. EOL1 physically interacted with CLF, its partially redundant paralog SWINGER (SWN), and LHP1. We propose that EOL1 interacts with LHP1-PRC2 complexes during replication and thereby participates in maintaining the H3K27me3 mark at target genes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , División Celular/fisiología , Replicación del ADN/fisiología , ADN de Plantas/biosíntesis , Histonas/metabolismo , Células Vegetales/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , ADN de Plantas/genética , Histonas/genética , Complejo Represivo Polycomb 1/genética , Factores de Transcripción/genética
2.
Proc Natl Acad Sci U S A ; 113(28): E4052-60, 2016 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-27354520

RESUMEN

Resequencing or reference-based assemblies reveal large parts of the small-scale sequence variation. However, they typically fail to separate such local variation into colinear and rearranged variation, because they usually do not recover the complement of large-scale rearrangements, including transpositions and inversions. Besides the availability of hundreds of genomes of diverse Arabidopsis thaliana accessions, there is so far only one full-length assembled genome: the reference sequence. We have assembled 117 Mb of the A. thaliana Landsberg erecta (Ler) genome into five chromosome-equivalent sequences using a combination of short Illumina reads, long PacBio reads, and linkage information. Whole-genome comparison against the reference sequence revealed 564 transpositions and 47 inversions comprising ∼3.6 Mb, in addition to 4.1 Mb of nonreference sequence, mostly originating from duplications. Although rearranged regions are not different in local divergence from colinear regions, they are drastically depleted for meiotic recombination in heterozygotes. Using a 1.2-Mb inversion as an example, we show that such rearrangement-mediated reduction of meiotic recombination can lead to genetically isolated haplotypes in the worldwide population of A. thaliana Moreover, we found 105 single-copy genes, which were only present in the reference sequence or the Ler assembly, and 334 single-copy orthologs, which showed an additional copy in only one of the genomes. To our knowledge, this work gives first insights into the degree and type of variation, which will be revealed once complete assemblies will replace resequencing or other reference-dependent methods.


Asunto(s)
Arabidopsis/genética , Inversión Cromosómica , Cromosomas de las Plantas , Variación Estructural del Genoma , Translocación Genética , Dosificación de Gen , Genoma de Planta , Haplotipos , Cariotipificación
3.
DNA Res ; 24(6): 549-558, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28605512

RESUMEN

Traditional plant breeding relies on meiotic recombination for mixing of parental alleles to create novel allele combinations. Detailed analysis of recombination patterns in model organisms shows that recombination is tightly regulated within the genome, but frequencies vary extensively along chromosomes. Despite being a model organism for fruit developmental studies, high-resolution recombination patterns are lacking in tomato. In this study, we developed a novel methodology to use low-coverage resequencing to identify genome-wide recombination patterns and applied this methodology on 60 tomato Recombinant Inbred Lines (RILs). Our methodology identifies polymorphic markers from the low-coverage resequencing population data and utilizes the same data to locate the recombination breakpoints in individuals by using a variable sliding window. We identified 1,445 recombination sites comprising 112 recombination prone regions enriched for AT-rich DNA motifs. Furthermore, the recombination prone regions in tomato preferably occurred in gene promoters over intergenic regions, an observation consistent with Arabidopsis thaliana, Zea mays and Mimulus guttatus. Overall, our cost effective method and findings enhance the understanding of meiotic recombination in tomato and suggest evolutionarily conserved recombination associated genomic features.


Asunto(s)
Genoma de Planta , Meiosis , Recombinación Genética , Análisis de Secuencia de ADN/métodos , Solanum lycopersicum/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Motivos de Nucleótidos , Polimorfismo de Nucleótido Simple
4.
Elife ; 32014 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-24867215

RESUMEN

Natural selection of variants within the Arabidopsis thaliana circadian clock can be attributed to adaptation to varying environments. To define a basis for such variation, we examined clock speed in a reporter-modified Bay-0 x Shakdara recombinant inbred line and localized heritable variation. Extensive variation led us to identify EARLY FLOWERING3 (ELF3) as a major quantitative trait locus (QTL). The causal nucleotide polymorphism caused a short-period phenotype under light and severely dampened rhythm generation in darkness, and entrainment alterations resulted. We found that ELF3-Sha protein failed to properly localize to the nucleus, and its ability to accumulate in darkness was compromised. Evidence was provided that the ELF3-Sha allele originated in Central Asia. Collectively, we showed that ELF3 protein plays a vital role in defining its light-repressor action in the circadian clock and that its functional abilities are largely dependent on its cellular localization.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Relojes Circadianos , Factores de Transcripción/genética , Alelos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Mapeo Cromosómico , Flores , Geografía , Luz , Microscopía Confocal , Mutación , Fenotipo , Filogenia , Regiones Promotoras Genéticas , Sitios de Carácter Cuantitativo , Factores de Transcripción/metabolismo , Transgenes
5.
Elife ; 2: e01426, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24347547

RESUMEN

Knowledge of the exact distribution of meiotic crossovers (COs) and gene conversions (GCs) is essential for understanding many aspects of population genetics and evolution, from haplotype structure and long-distance genetic linkage to the generation of new allelic variants of genes. To this end, we resequenced the four products of 13 meiotic tetrads along with 10 doubled haploids derived from Arabidopsis thaliana hybrids. GC detection through short reads has previously been confounded by genomic rearrangements. Rigid filtering for misaligned reads allowed GC identification at high accuracy and revealed an ∼80-kb transposition, which undergoes copy-number changes mediated by meiotic recombination. Non-crossover associated GCs were extremely rare most likely due to their short average length of ∼25-50 bp, which is significantly shorter than the length of CO-associated GCs. Overall, recombination preferentially targeted non-methylated nucleosome-free regions at gene promoters, which showed significant enrichment of two sequence motifs. DOI: http://dx.doi.org/10.7554/eLife.01426.001.


Asunto(s)
Arabidopsis/genética , Intercambio Genético , Conversión Génica , Genoma de Planta , Meiosis/genética , Haploidia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA