Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Biotechnol J ; 18(10): 2042-2052, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32069385

RESUMEN

Engineering high biomass plants that produce oil (triacylglycerol or TAG) in vegetative rather than seed-related tissues could help meet our growing demand for plant oil. Several studies have already demonstrated the potential of this approach by creating transgenic crop and model plants that accumulate TAG in their leaves and stems. However, TAG synthesis may compete with other important carbon and energy reserves, including carbohydrate production, and thereby limit plant growth. The aims of this study were thus: first, to investigate the effect of TAG accumulation on growth and development of previously generated high leaf oil tobacco plants; and second, to increase plant growth and/or oil yields by further altering carbon fixation and partitioning. This study showed that TAG accumulation varied with leaf and plant developmental stage, affected leaf carbon and nitrogen partitioning and reduced the relative growth rate and final biomass of high leaf oil plants. To overcome these growth limitations, four genes related to carbon fixation (encoding CBB cycle enzymes SBPase and chloroplast-targeted FBPase) or carbon partitioning (encoding sucrose biosynthetic enzyme cytosolic FBPase and lipid-related transcription factor DOF4) were overexpressed in high leaf oil plants. In glasshouse conditions, all four constructs increased early growth without affecting TAG accumulation while chloroplast-targeted FBPase and DOF4 also increased final biomass and oil yields. These results highlight the reliance of plant growth on carbon partitioning, in addition to carbon supply, and will guide future attempts to improve biomass and TAG accumulation in transgenic leaf oil crops.

2.
Plant Biotechnol J ; 17(1): 220-232, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29873878

RESUMEN

Synthesis and accumulation of the storage lipid triacylglycerol in vegetative plant tissues has emerged as a promising strategy to meet the world's future need for vegetable oil. Sorghum (Sorghum bicolor) is a particularly attractive target crop given its high biomass, drought resistance and C4 photosynthesis. While oilseed-like triacylglycerol levels have been engineered in the C3 model plant tobacco, progress in C4 monocot crops has been lagging behind. In this study, we report the accumulation of triacylglycerol in sorghum leaf tissues to levels between 3 and 8.4% on a dry weight basis depending on leaf and plant developmental stage. This was achieved by the combined overexpression of genes encoding the Zea mays WRI1 transcription factor, Umbelopsis ramanniana UrDGAT2a acyltransferase and Sesamum indicum Oleosin-L oil body protein. Increased oil content was visible as lipid droplets, primarily in the leaf mesophyll cells. A comparison between a constitutive and mesophyll-specific promoter driving WRI1 expression revealed distinct changes in the overall leaf lipidome as well as transitory starch and soluble sugar levels. Metabolome profiling uncovered changes in the abundance of various amino acids and dicarboxylic acids. The results presented here are a first step forward towards the development of sorghum as a dedicated biomass oil crop and provide a basis for further combinatorial metabolic engineering.


Asunto(s)
Lípidos/biosíntesis , Hojas de la Planta/metabolismo , Aceites de Plantas/análisis , Sorghum/metabolismo , Aminoácidos/análisis , Aminoácidos/metabolismo , Metabolismo de los Lípidos , Lípidos/análisis , Hojas de la Planta/química , Aceites de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Sorghum/química , Almidón/análisis , Almidón/metabolismo , Triglicéridos/metabolismo , Regulación hacia Arriba
3.
Methods Mol Biol ; 343: 171-83, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16988343

RESUMEN

Crop improvement is limited by the availability of valuable traits in sexually compatible species. Access to new characters using genetic engineering would be of great value. Barley has been transformed using microprojectile bombardment and by direct gene transfer to protoplasts, but neither method has been able to produce fertile transformants in large numbers with simple transgene integration characteristics. Agrobacterium-mediated transformation was first achieved in 1997, and it has become the method of choice. Using immature embryos of the barley variety Golden Promise as the target organ, the binary vector pWBVec8 containing the intron-interrupted hygromycin resistance gene hph as the selectable marker, and selection of transformed cells on hygromycin, the Agrobacterium method is efficient, and the transgene insertion characteristics are superior to other methods. However, the procedure is strongly genotype dependent. In this report, we describe a transformation protocol giving details of plant culture, embryo isolation and preparation, vector details, Agrobacterium culture, infection methods, subsequent procedures for callus generation and plantlet production, and analysis of transgenic plants.


Asunto(s)
Técnicas de Transferencia de Gen , Hordeum/genética , Plantas Modificadas Genéticamente/genética , Rhizobium/genética , Semillas/genética , Transformación Genética , Resistencia a Medicamentos/genética , Marcadores Genéticos , Vectores Genéticos , Genotipo , Hordeum/embriología , Hordeum/microbiología , Plantas Modificadas Genéticamente/embriología , Plantas Modificadas Genéticamente/microbiología , Rhizobium/crecimiento & desarrollo , Semillas/microbiología , Especificidad de la Especie , Transgenes
4.
Biotechniques ; 54(1): 44-46, 2012 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-23237485

RESUMEN

Here we present a quick and low-cost method to separate the different layers of tissue from the ovules and young seeds of cotton (Gossypium hirsutum L.) for use in high- and low-throughput molecular applications. This method is performed at room temperature using standard laboratory equipment and does not require embedding of the samples, time-consuming fixation, or micro-sectioning procedures. We show that the three main tissues can be efficiently separated from isolated ovules collected on the day of anthesis. RNA and genomic DNA extracted from tissues separated by this method are of good quality and suitable for a variety of molecular applications to study the early stages of cotton seed and fiber development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA