RESUMEN
Occurrence of hyperglycemia upon infection is associated with worse clinical outcome in COVID-19 patients. However, it is still unknown whether SARS-CoV-2 directly triggers hyperglycemia. Herein, we interrogated whether and how SARS-CoV-2 causes hyperglycemia by infecting hepatocytes and increasing glucose production. We performed a retrospective cohort study including patients that were admitted at a hospital with suspicion of COVID-19. Clinical and laboratory data were collected from the chart records and daily blood glucose values were analyzed to test the hypothesis on whether COVID-19 was independently associated with hyperglycemia. Blood glucose was collected from a subgroup of nondiabetic patients to assess pancreatic hormones. Postmortem liver biopsies were collected to assess the presence of SARS-CoV-2 and its transporters in hepatocytes. In human hepatocytes, we studied the mechanistic bases of SARS-CoV-2 entrance and its gluconeogenic effect. SARS-CoV-2 infection was independently associated with hyperglycemia, regardless of diabetic history and beta cell function. We detected replicating viruses in human hepatocytes from postmortem liver biopsies and in primary hepatocytes. We found that SARS-CoV-2 variants infected human hepatocytes in vitro with different susceptibility. SARS-CoV-2 infection in hepatocytes yields the release of new infectious viral particles, though not causing cell damage. We showed that infected hepatocytes increase glucose production and this is associated with induction of PEPCK activity. Furthermore, our results demonstrate that SARS-CoV-2 entry in hepatocytes occurs partially through ACE2- and GRP78-dependent mechanisms. SARS-CoV-2 infects and replicates in hepatocytes and exerts a PEPCK-dependent gluconeogenic effect in these cells that potentially is a key cause of hyperglycemia in infected patients.
Asunto(s)
COVID-19 , Hiperglucemia , Humanos , COVID-19/complicaciones , SARS-CoV-2 , Gluconeogénesis , Glucemia , Estudios Retrospectivos , Hepatocitos , Hiperglucemia/complicaciones , GlucosaRESUMEN
Although increasing evidence confirms neuropsychiatric manifestations associated mainly with severe COVID-19 infection, long-term neuropsychiatric dysfunction (recently characterized as part of "long COVID-19" syndrome) has been frequently observed after mild infection. We show the spectrum of cerebral impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, ranging from long-term alterations in mildly infected individuals (orbitofrontal cortical atrophy, neurocognitive impairment, excessive fatigue and anxiety symptoms) to severe acute damage confirmed in brain tissue samples extracted from the orbitofrontal region (via endonasal transethmoidal access) from individuals who died of COVID-19. In an independent cohort of 26 individuals who died of COVID-19, we used histopathological signs of brain damage as a guide for possible SARS-CoV-2 brain infection and found that among the 5 individuals who exhibited those signs, all of them had genetic material of the virus in the brain. Brain tissue samples from these five patients also exhibited foci of SARS-CoV-2 infection and replication, particularly in astrocytes. Supporting the hypothesis of astrocyte infection, neural stem cell-derived human astrocytes in vitro are susceptible to SARS-CoV-2 infection through a noncanonical mechanism that involves spike-NRP1 interaction. SARS-CoV-2-infected astrocytes manifested changes in energy metabolism and in key proteins and metabolites used to fuel neurons, as well as in the biogenesis of neurotransmitters. Moreover, human astrocyte infection elicits a secretory phenotype that reduces neuronal viability. Our data support the model in which SARS-CoV-2 reaches the brain, infects astrocytes, and consequently, leads to neuronal death or dysfunction. These deregulated processes could contribute to the structural and functional alterations seen in the brains of COVID-19 patients.
Asunto(s)
Encéfalo , COVID-19 , Enfermedades Virales del Sistema Nervioso Central , SARS-CoV-2 , Astrocitos/patología , Astrocitos/virología , Encéfalo/patología , Encéfalo/virología , COVID-19/complicaciones , COVID-19/patología , Enfermedades Virales del Sistema Nervioso Central/etiología , Enfermedades Virales del Sistema Nervioso Central/patología , Humanos , Síndrome Post Agudo de COVID-19RESUMEN
Multiple organ dysfunction is the most severe outcome of sepsis progression and is highly correlated with a worse prognosis. Excessive neutrophil extracellular traps (NETs) are critical players in the development of organ failure during sepsis. Therefore, interventions targeting NET release would likely effectively prevent NET-based organ injury associated with this disease. Herein, we demonstrate that the pore-forming protein gasdermin D (GSDMD) is active in neutrophils from septic humans and mice and plays a crucial role in NET release. Inhibition of GSDMD with disulfiram or genic deletion abrogated NET formation, reducing multiple organ dysfunction and sepsis lethality. Mechanistically, we demonstrate that during sepsis, activation of the caspase-11/GSDMD pathway controls NET release by neutrophils during sepsis. In summary, our findings uncover a novel therapeutic use for disulfiram and suggest that GSDMD is a therapeutic target to improve sepsis treatment.
Asunto(s)
Trampas Extracelulares/genética , Eliminación de Gen , Péptidos y Proteínas de Señalización Intracelular/genética , Insuficiencia Multiorgánica/genética , Proteínas de Unión a Fosfato/genética , Sepsis/genética , Inhibidores del Acetaldehído Deshidrogenasa/uso terapéutico , Traslado Adoptivo , Anciano , Animales , Células Cultivadas , Disulfiram/uso terapéutico , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Insuficiencia Multiorgánica/patología , Insuficiencia Multiorgánica/terapia , Proteínas de Unión a Fosfato/antagonistas & inhibidores , Sepsis/patología , Sepsis/terapiaRESUMEN
BACKGROUND: COVID-19 is characterized by severe acute lung injury, which is associated with neutrophil infiltration and the release of neutrophil extracellular traps (NETs). COVID-19 treatment options are scarce. Previous work has shown an increase in NETs release in the lung and plasma of COVID-19 patients suggesting that drugs that prevent NETs formation or release could be potential therapeutic approaches for COVID-19 treatment. METHODS: Here, we report the efficacy of NET-degrading DNase I treatment in a murine model of COVID-19. SARS-CoV-2-infected K18-hACE2 mice were performed for clinical sickness scores and lung pathology. Moreover, the levels of NETs were assessed and lung injuries were by histopathology and TUNEL assay. Finally, the injury in the heart and kidney was assessed by histopathology and biochemical-specific markers. RESULTS: DNase I decreased detectable levels of NETs, improved clinical disease, and reduced lung, heart, and kidney injuries in SARS-CoV-2-infected K18-hACE2 mice. Furthermore, our findings indicate a potentially deleterious role for NETs lung tissue in vivo and lung epithelial (A549) cells in vitro, which might explain part of the pathophysiology of severe COVID-19. This deleterious effect was diminished by the treatment with DNase I. CONCLUSIONS: Together, our results support the role of NETs in COVID-19 immunopathology and highlight NETs disruption pharmacological approaches as a potential strategy to ameliorate COVID-19 clinical outcomes.
Asunto(s)
Lesión Pulmonar Aguda , COVID-19 , Trampas Extracelulares , Animales , Humanos , Ratones , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19 , Modelos Animales de Enfermedad , Neutrófilos , Desoxirribonucleasa I/farmacología , Desoxirribonucleasa I/uso terapéuticoRESUMEN
Although the exact mechanism of the pathogenesis of coronavirus SARS-CoV-2 (COVID-19) is not fully understood, oxidative stress and the release of pro-inflammatory cytokines have been highlighted as playing a vital role in the pathogenesis of the disease. In this sense, alternative treatments are needed to reduce the level of inflammation caused by COVID-19. Therefore, this study aimed to investigate the potential effect of red photobiomodulation (PBM) as an attractive therapy to downregulate the cytokine storm caused by COVID-19 in a zebrafish model. RT-qPCR analyses and protein-protein interaction prediction among SARS-CoV-2 and Danio rerio proteins showed that recombinant Spike protein (rSpike) was responsible for generating systemic inflammatory processes with significantly increased levels of pro-inflammatory (il1b, il6, tnfa, and nfkbiab), oxidative stress (romo1) and energy metabolism (slc2a1a and coa1) mRNA markers, with a pattern similar to those observed in COVID-19 cases in humans. On the other hand, PBM treatment was able to decrease the mRNA levels of these pro-inflammatory and oxidative stress markers compared with rSpike in various tissues, promoting an anti-inflammatory response. Conversely, PBM promotes cellular and tissue repair of injured tissues and significantly increases the survival rate of rSpike-inoculated individuals. Additionally, metabolomics analysis showed that the most-impacted metabolic pathways between PBM and the rSpike treated groups were related to steroid metabolism, immune system, and lipid metabolism. Together, our findings suggest that the inflammatory process is an incisive feature of COVID-19 and red PBM can be used as a novel therapeutic agent for COVID-19 by regulating the inflammatory response. Nevertheless, the need for more clinical trials remains, and there is a significant gap to overcome before clinical trials can commence.
Asunto(s)
COVID-19 , Animales , Humanos , Pez Cebra/metabolismo , SARS-CoV-2/metabolismo , Síndrome de Liberación de Citoquinas , Citocinas/metabolismo , ARN Mensajero , Proteínas de la Membrana , Proteínas MitocondrialesRESUMEN
Nucleotide oligomerization domain (NOD)-like receptor-12 (NLRP12) has emerged as a negative regulator of inflammation. It is well described that the Th17 cell population increases in patients with early Rheumatoid Arthritis (RA), which correlates with the disease activity. Here, we investigated the role of NLRP12 in the differentiation of Th17 cells and the development of experimental arthritis, using the antigen-induced arthritis (AIA) murine model. We found that Nlrp12-/- mice develop severe arthritis characterized by an exacerbated Th17-mediated inflammatory response with increases in the articular hyperalgesia, knee joint swelling, and neutrophil infiltration. Adoptive transfer of Nlrp12-/- cells into WT mice recapitulated the hyperinflammatory response seen in Nlrp12-/- mice and the treatment with anti-IL-17A neutralizing antibody abrogated arthritis development in Nlrp12-/- mice, suggesting that NLRP12 works as an inhibitor of Th17 cell differentiation. Indeed, Th17 cell differentiation markedly increases in Nlrp12-/- T cells cultured under the Th17-skewing condition. Mechanistically, we found that NLRP12 negatively regulates IL-6-induced phosphorylation of STAT3 in T cells. Finally, pharmacological inhibition of STAT3 reduced Th17 cell differentiation and abrogated hyperinflammatory arthritis observed in Nlrp12-/- mice. Thus, we described a novel role for NLRP12 as a checkpoint inhibitor of Th17 cell differentiation, which controls the severity of experimental arthritis.
Asunto(s)
Artritis Experimental/metabolismo , Artritis Reumatoide/metabolismo , Diferenciación Celular/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células Th17/metabolismo , Animales , Artritis Experimental/patología , Artritis Reumatoide/patología , Inflamación/metabolismo , Inflamación/patología , Interleucina-17/metabolismo , Articulaciones/metabolismo , Articulaciones/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Infiltración Neutrófila/fisiología , Factor de Transcripción STAT3/metabolismo , Células Th17/patologíaRESUMEN
Rheumatoid arthritis is a chronic inflammatory disease that leads to significant changes in metabolic activity. Succinate, an intermediate of the tricarboxylic acid cycle, has emerged as a metabolic mediator of the innate immune response. However, the involvement of succinate in the generation of the adaptive immune response and establishment of autoimmune response has not been addressed thus far. Here we demonstrated that the succinate-sensing receptor (Sucnr1/GPR91) plays a critical role in the development of immune-mediated arthritis. We found that Sucnr1 acts as a chemotactic gradient sensor that guides dendritic cells (DCs) into the lymph nodes, orchestrating the expansion of the T helper (Th)17-cell population and the development of experimental antigen-induced arthritis. Sucnr1-/- mice show reduced articular hyperalgesia, neutrophil infiltration and inflammatory cytokines in the joint, and reduced frequency of Th17 cells in draining lymph nodes. Adoptive transfer of wild-type (WT) DCs into Sucnr1-/- mice restored the development of arthritis. Moreover, DC-depleted mice transferred with Sucnr1-/- DCs developed less arthritis than mice transferred with WT DCs. In contrast, succinate given together with the immunization boosted the recruitment of DCs and the frequency of Th17 cells in draining lymph nodes, increasing arthritis severity. Therefore, the blockade of Sucnr1 may represent a novel therapeutic target of arthritis.-Saraiva, A. L., Veras, F. P., Peres, R. S., Talbot, J., de Lima, K. A., Luiz, J. P., Carballido, J. M., Cunha, T. M., Cunha, F. Q., Ryffel, B., Alves-Filho, J. C. Succinate receptor deficiency attenuates arthritis by reducing dendritic cell traffic and expansion of Th17 cells in the lymph nodes.
RESUMEN
Cardiovascular disease (CVD) is the leading cause of death in rheumatoid arthritis (RA). Resistin is an adipokine that induces adipose tissue inflammation and activation of monocytes/macrophages via adenylate cyclase-associated protein-1 (CAP1). Resistin levels are increased in RA and might cause perivascular adipose tissue (PVAT) dysfunction, leading to vascular damage and CVD. This study aimed to investigate the role of resistin in promoting PVAT dysfunction by increasing local macrophage and inflammatory cytokines content in antigen-induced arthritis (AIA). Resistin pharmacological effects were assessed by using C57Bl/6J wild-type (WT) mice, humanized resistin mice expressing human resistin in monocytes-macrophages (hRTN+/-/-), and resistin knockout mice (RTN-/-) with AIA and respective controls. We investigated AIA disease activity and functional, cellular, and molecular parameters of the PVAT. Resistin did not contribute to AIA disease activity and its concentrations were augmented in the PVAT and plasma of WT AIA and hRTN+/-/- AIA animals. In vitro exposure of murine arteries to resistin impaired vascular function by decreasing the anti-contractile effect of PVAT. WT AIA mice and hRTN+/-/- AIA mice exhibited PVAT dysfunction and knockdown of resistin prevented it. Macrophage-derived cytokines, markers of types 1 and 2 macrophages, and CAP1 expression were increased in the PVAT of resistin humanized mice with AIA, but not in knockout mice for resistin. This study reveals that macrophage-derived resistin promotes PVAT inflammation and dysfunction regardless of AIA disease activity. Resistin might represent a translational target to reduce RA-driven vascular dysfunction and CVD.
Asunto(s)
Tejido Adiposo , Artritis Experimental , Macrófagos , Ratones Endogámicos C57BL , Resistina , Animales , Resistina/metabolismo , Resistina/genética , Humanos , Tejido Adiposo/metabolismo , Ratones , Macrófagos/metabolismo , Artritis Experimental/metabolismo , Ratones Noqueados , MasculinoRESUMEN
Patients with severe COVID-19 develop acute respiratory distress syndrome (ARDS) that may progress to cytokine storm syndrome, organ dysfunction, and death. Considering that complement component 5a (C5a), through its cellular receptor C5aR1, has potent proinflammatory actions and plays immunopathological roles in inflammatory diseases, we investigated whether the C5a/C5aR1 pathway could be involved in COVID-19 pathophysiology. C5a/C5aR1 signaling increased locally in the lung, especially in neutrophils of critically ill patients with COVID-19 compared with patients with influenza infection, as well as in the lung tissue of K18-hACE2 Tg mice (Tg mice) infected with SARS-CoV-2. Genetic and pharmacological inhibition of C5aR1 signaling ameliorated lung immunopathology in Tg-infected mice. Mechanistically, we found that C5aR1 signaling drives neutrophil extracellular traps-dependent (NETs-dependent) immunopathology. These data confirm the immunopathological role of C5a/C5aR1 signaling in COVID-19 and indicate that antagonists of C5aR1 could be useful for COVID-19 treatment.
Asunto(s)
COVID-19 , Trampas Extracelulares , Humanos , Animales , Ratones , COVID-19/genética , COVID-19/patología , Trampas Extracelulares/metabolismo , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2/metabolismo , Pulmón/patología , Complemento C5a/genética , Complemento C5a/metabolismoRESUMEN
Despite all efforts to combat the pandemic of COVID-19, we are still living with high numbers of infected persons, an overburdened health care system, and the lack of an effective and definitive treatment. Understanding the pathophysiology of the disease is crucial for the development of new technologies and therapies for the best clinical management of patients. Since the manipulation of the whole virus requires a structure with an adequate level of biosafety, the development of alternative technologies, such as the synthesis of peptides from viral proteins, is a possible solution to circumvent this problem. In addition, the use and validation of animal models is of extreme importance to screen new drugs and to compress the organism's response to the disease. Peptides derived from recombinant S protein from SARS-CoV-2 were synthesized and validated by in silico, in vitro and in vivo methodologies. Macrophages and neutrophils were challenged with the peptides and the production of inflammatory mediators and activation profile were evaluated. These peptides were also inoculated into the swim bladder of transgenic zebrafish larvae at 6 days post fertilization (dpf) to mimic the inflammatory process triggered by the virus, which was evaluated by confocal microscopy. In addition, toxicity and oxidative stress assays were also developed. In silico and molecular dynamics assays revealed that the peptides bind to the ACE2 receptor stably and interact with receptors and adhesion molecules, such as MHC and TCR, from humans and zebrafish. Macrophages stimulated with one of the peptides showed increased production of NO, TNF-α and CXCL2. Inoculation of the peptides in zebrafish larvae triggered an inflammatory process marked by macrophage recruitment and increased mortality, as well as histopathological changes, similarly to what is observed in individuals with COVID-19. The use of peptides is a valuable alternative for the study of host immune response in the context of COVID-19. The use of zebrafish as an animal model also proved to be appropriate and effective in evaluating the inflammatory process, comparable to humans.
Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , Pez Cebra , Macrófagos , PéptidosRESUMEN
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent of a major global outbreak of respiratory tract disease known as Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 infects mainly lungs and may cause several immune-related complications, such as lymphocytopenia and cytokine storm, which are associated with the severity of the disease and predict mortality. The mechanism by which SARS-CoV-2 infection may result in immune system dysfunction is still not fully understood. Here, we show that SARS-CoV-2 infects human CD4+ T helper cells, but not CD8+ T cells, and is present in blood and bronchoalveolar lavage T helper cells of severe COVID-19 patients. We demonstrated that SARS-CoV-2 spike glycoprotein (S) directly binds to the CD4 molecule, which in turn mediates the entry of SARS- CoV-2 in T helper cells. This leads to impaired CD4 T cell function and may cause cell death. SARS-CoV-2-infected T helper cells express higher levels of IL-10, which is associated with viral persistence and disease severity. Thus, CD4-mediated SARS-CoV-2 infection of T helper cells may contribute to a poor immune response in COVID-19 patients.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Linfocitos T CD8-positivos , Linfocitos T Colaboradores-Inductores , PulmónRESUMEN
The portfolio of SARS-CoV-2 small molecule drugs is currently limited to a handful that are either approved (remdesivir), emergency approved (dexamethasone, baricitinib, paxlovid, and molnupiravir), or in advanced clinical trials. Vandetanib is a kinase inhibitor which targets the vascular endothelial growth factor receptor (VEGFR), the epidermal growth factor receptor (EGFR), as well as the RET-tyrosine kinase. In the current study, it was tested in different cell lines and showed promising results on inhibition versus the toxic effect on A549-hACE2 cells (IC50 0.79 µM) while also showing a reduction of >3 log TCID50/mL for HCoV-229E. The in vivo efficacy of vandetanib was assessed in a mouse model of SARS-CoV-2 infection and statistically significantly reduced the levels of IL-6, IL-10, and TNF-α and mitigated inflammatory cell infiltrates in the lungs of infected animals but did not reduce viral load. Vandetanib also decreased CCL2, CCL3, and CCL4 compared to the infected animals. Vandetanib additionally rescued the decreased IFN-1ß caused by SARS-CoV-2 infection in mice to levels similar to that in uninfected animals. Our results indicate that the FDA-approved anticancer drug vandetanib is worthy of further assessment as a potential therapeutic candidate to block the COVID-19 cytokine storm.
RESUMEN
There are currently relatively few small-molecule antiviral drugs that are either approved or emergency-approved for use against severe acute respiratory coronavirus 2 (SARS-CoV-2). One of these is remdesivir, which was originally repurposed from its use against Ebola. We evaluated three molecules we had previously identified computationally with antiviral activity against Ebola and Marburg and identified pyronaridine, which inhibited the SARS-CoV-2 replication in A549-ACE2 cells. The in vivo efficacy of pyronaridine has now been assessed in a K18-hACE transgenic mouse model of COVID-19. Pyronaridine treatment demonstrated a statistically significant reduction of viral load in the lungs of SARS-CoV-2-infected mice, reducing lung pathology, which was also associated with significant reduction in the levels of pro-inflammatory cytokines/chemokine and cell infiltration. Pyronaridine inhibited the viral PLpro activity in vitro (IC50 of 1.8 µM) without any effect on Mpro, indicating a possible molecular mechanism involved in its ability to inhibit SARS-CoV-2 replication. We have also generated several pyronaridine analogs to assist in understanding the structure activity relationship for PLpro inhibition. Our results indicate that pyronaridine is a potential therapeutic candidate for COVID-19.
Asunto(s)
Tratamiento Farmacológico de COVID-19 , Fiebre Hemorrágica Ebola , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Ratones , Naftiridinas , SARS-CoV-2RESUMEN
Psoriasis is an inflammatory skin disease characterized by keratinocyte proliferation and inflammatory cell infiltration induced by IL-17. However, the molecular mechanism through which IL-17 signaling in keratinocytes triggers skin inflammation remains not fully understood. Pyruvate kinase M2 (PKM2), a glycolytic enzyme, has been shown to have non-metabolic functions. Here, we report that PKM2 mediates IL-17A signaling in keratinocytes triggering skin psoriatic inflammation. We find high expression of PKM2 in the epidermis of psoriatic patients and mice undergoing psoriasis models. Specific depletion of PKM2 in keratinocytes attenuates the development of experimental psoriasis by reducing the production of pro-inflammatory mediators. Mechanistically, PKM2 forms a complex with Act1 and TRAF6 regulating NF-κB transcriptional signaling downstream of the IL-17 receptor. As IL-17 also induces PKM2 expression in keratinocytes, our findings reveal a sustained signaling circuit critical for the psoriasis-driving effects of IL-17A, suggesting that PKM2 is a potential therapeutic target for psoriasis.
Asunto(s)
Dermatitis , Psoriasis , Ratones , Animales , Interleucina-17/metabolismo , Piruvato Quinasa/metabolismo , Queratinocitos/metabolismo , Psoriasis/inducido químicamente , Inflamación/metabolismo , Piel/metabolismoRESUMEN
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with a hyperinflammatory state and lymphocytopenia, a hallmark that appears as both signature and prognosis of disease severity outcome. Although cytokine storm and a sustained inflammatory state are commonly associated with immune cell depletion, it is still unclear whether direct SARS-CoV-2 infection of immune cells could also play a role in this scenario by harboring viral replication. We found that monocytes, as well as both B and T lymphocytes, were susceptible to SARS-CoV-2 infection in vitro, accumulating double-stranded RNA consistent with viral RNA replication and ultimately leading to expressive T cell apoptosis. In addition, flow cytometry and immunofluorescence analysis revealed that SARS-CoV-2 was frequently detected in monocytes and B lymphocytes from coronavirus disease 2019 (COVID-19) patients. The rates of SARS-CoV-2-infected monocytes in peripheral blood mononuclear cells from COVID-19 patients increased over time from symptom onset, with SARS-CoV-2-positive monocytes, B cells, and CD4+ T lymphocytes also detected in postmortem lung tissue. These results indicated that SARS-CoV-2 infection of blood-circulating leukocytes in COVID-19 patients might have important implications for disease pathogenesis and progression, immune dysfunction, and virus spread within the host.
Asunto(s)
COVID-19 , SARS-CoV-2 , Síndrome de Liberación de Citoquinas , Humanos , Leucocitos Mononucleares , MonocitosRESUMEN
The Spike protein (S protein) is a critical component in the infection of the new coronavirus (SARS-CoV-2). The objective of this work was to evaluate whether peptides from S protein could cause negative impact in the aquatic animals. The aquatic toxicity of SARS-CoV-2 Spike protein peptides derivatives has been evaluated in tadpoles (n = 50 tadpoles/5 replicates of 10 animals) from species Physalaemus cuvieri (Leptodactylidae). After synthesis, purification, and characterization of peptides (PSDP2001, PSDP2002, PSDP2003) an aquatic contamination has been simulated with these peptides during 24 h of exposure in two concentrations (100 and 500 ng/mL). The control group ("C") was composed of tadpoles kept in polyethylene containers containing de-chlorinated water. Oxidative stress, antioxidant biomarkers and AChE activity were assessed. In both concentrations, PSPD2002 and PSPD2003 increased catalase and superoxide dismutase antioxidants enzymes activities, as well as oxidative stress (nitrite levels, hydrogen peroxide and reactive oxygen species). All three peptides also increased acetylcholinesterase activity in the highest concentration. These peptides showed molecular interactions in silico with acetylcholinesterase and antioxidant enzymes. Aquatic particle contamination of SARS-CoV-2 has cholinesterasic effect in P. cuvieri tadpoles. These findings indicate that the COVID-19 can constitute environmental impact or biological damage potential.
Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Anuros , Humanos , Larva , Glicoproteína de la Espiga del CoronavirusRESUMEN
The portfolio of SARS-CoV-2 small molecule drugs is currently limited to a handful that are either approved (remdesivir), emergency approved (dexamethasone, baricitinib) or in advanced clinical trials. We have tested 45 FDA-approved kinase inhibitors in vitro against murine hepatitis virus (MHV) as a model of SARS-CoV-2 replication and identified 12 showing inhibition in the delayed brain tumor (DBT) cell line. Vandetanib, which targets the vascular endothelial growth factor receptor (VEGFR), the epidermal growth factor receptor (EGFR), and the RET-tyrosine kinase showed the most promising results on inhibition versus toxic effect on SARS-CoV-2-infected Caco-2 and A549-hACE2 cells (IC50 0.79 µM) while also showing a reduction of > 3 log TCID50/mL for HCoV-229E. The in vivo efficacy of vandetanib was assessed in a mouse model of SARS-CoV-2 infection and statistically significantly reduced the levels of IL-6, IL-10, TNF-α, and mitigated inflammatory cell infiltrates in the lungs of infected animals but did not reduce viral load. Vandetanib rescued the decreased IFN-1ß caused by SARS-CoV-2 infection in mice to levels similar to that in uninfected animals. Our results indicate that the FDA-approved vandetanib is a potential therapeutic candidate for COVID-19 positioned for follow up in clinical trials either alone or in combination with other drugs to address the cytokine storm associated with this viral infection.
RESUMEN
Oropouche virus (OROV) is an emerging arbovirus in South and Central Americas with high spreading potential. OROV infection has been associated with neurological complications and OROV genomic RNA has been detected in cerebrospinal fluid from patients, suggesting its neuroinvasive potential. Motivated by these findings, neurotropism and neuropathogenesis of OROV have been investigated in vivo in murine models, which do not fully recapitulate the complexity of the human brain. Here we have used slice cultures from adult human brains to investigate whether OROV is capable of infecting mature human neural cells in a context of preserved neural connections and brain cytoarchitecture. Our results demonstrate that human neural cells can be infected ex vivo by OROV and support the production of infectious viral particles. Moreover, OROV infection led to the release of the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α) and diminished cell viability 48 h post-infection, indicating that OROV triggers an inflammatory response and tissue damage. Although OROV-positive neurons were observed, microglia were the most abundant central nervous system (CNS) cell type infected by OROV, suggesting that they play an important role in the response to CNS infection by OROV in the adult human brain. Importantly, we found no OROV-infected astrocytes. To the best of our knowledge, this is the first direct demonstration of OROV infection in human brain cells. Combined with previous data from murine models and case reports of OROV genome detection in cerebrospinal fluid from patients, our data shed light on OROV neuropathogenesis and help raising awareness about acute and possibly chronic consequences of OROV infection in the human brain.
RESUMEN
OBJECTIVE: To evaluate whether the addition of colchicine to standard treatment for COVID-19 results in better outcomes. DESIGN: We present the results of a randomised, double-blinded, placebo-controlled clinical trial of colchicine for the treatment of moderate to severe COVID-19, with 75 patients allocated 1:1 from 11 April to 30 August 2020. Colchicine regimen was 0.5 mg thrice daily for 5 days, then 0.5 mg twice daily for 5 days. The primary endpoints were the need for supplemental oxygen, time of hospitalisation, need for admission and length of stay in intensive care unit and death rate. RESULTS: Seventy-two patients (36 for placebo and 36 for colchicine) completed the study. Median (and IQR) time of need for supplemental oxygen was 4.0 (2.0-6.0) days for the colchicine group and 6.5 (4.0-9.0) days for the placebo group (p<0.001). Median (IQR) time of hospitalisation was 7.0 (5.0-9.0) days for the colchicine group and 9.0 (7.0-12.0) days for the placebo group (p=0.003). At day 2, 67% versus 86% of patients maintained the need for supplemental oxygen, while at day 7, the values were 9% versus 42%, in the colchicine and the placebo groups, respectively (log rank; p=0.001). Two patients died, both in placebo group. Diarrhoea was more frequent in the colchicine group (p=0.26). CONCLUSION: Colchicine reduced the length of both, supplemental oxygen therapy and hospitalisation. The drug was safe and well tolerated. Once death was an uncommon event, it is not possible to ensure that colchicine reduced mortality of COVID-19. TRIAL REGISTRATION NUMBER: RBR-8jyhxh.
Asunto(s)
Tratamiento Farmacológico de COVID-19 , Colchicina/administración & dosificación , Tiempo de Internación , Terapia por Inhalación de Oxígeno , SARS-CoV-2/genética , Índice de Severidad de la Enfermedad , Adulto , Anciano , COVID-19/mortalidad , COVID-19/virología , Colchicina/efectos adversos , Diarrea/inducido químicamente , Método Doble Ciego , Femenino , Humanos , Unidades de Cuidados Intensivos , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Resultado del TratamientoRESUMEN
Severe cases of COVID-19 are characterized by a strong inflammatory process that may ultimately lead to organ failure and patient death. The NLRP3 inflammasome is a molecular platform that promotes inflammation via cleavage and activation of key inflammatory molecules including active caspase-1 (Casp1p20), IL-1ß, and IL-18. Although participation of the inflammasome in COVID-19 has been highly speculated, the inflammasome activation and participation in the outcome of the disease are unknown. Here we demonstrate that the NLRP3 inflammasome is activated in response to SARS-CoV-2 infection and is active in COVID-19 patients. Studying moderate and severe COVID-19 patients, we found active NLRP3 inflammasome in PBMCs and tissues of postmortem patients upon autopsy. Inflammasome-derived products such as Casp1p20 and IL-18 in the sera correlated with the markers of COVID-19 severity, including IL-6 and LDH. Moreover, higher levels of IL-18 and Casp1p20 are associated with disease severity and poor clinical outcome. Our results suggest that inflammasomes participate in the pathophysiology of the disease, indicating that these platforms might be a marker of disease severity and a potential therapeutic target for COVID-19.