RESUMEN
The concentration of dissolved oxygen in aquatic systems helps to regulate biodiversity1,2, nutrient biogeochemistry3, greenhouse gas emissions4, and the quality of drinking water5. The long-term declines in dissolved oxygen concentrations in coastal and ocean waters have been linked to climate warming and human activity6,7, but little is known about the changes in dissolved oxygen concentrations in lakes. Although the solubility of dissolved oxygen decreases with increasing water temperatures, long-term lake trajectories are difficult to predict. Oxygen losses in warming lakes may be amplified by enhanced decomposition and stronger thermal stratification8,9 or oxygen may increase as a result of enhanced primary production10. Here we analyse a combined total of 45,148 dissolved oxygen and temperature profiles and calculate trends for 393 temperate lakes that span 1941 to 2017. We find that a decline in dissolved oxygen is widespread in surface and deep-water habitats. The decline in surface waters is primarily associated with reduced solubility under warmer water temperatures, although dissolved oxygen in surface waters increased in a subset of highly productive warming lakes, probably owing to increasing production of phytoplankton. By contrast, the decline in deep waters is associated with stronger thermal stratification and loss of water clarity, but not with changes in gas solubility. Our results suggest that climate change and declining water clarity have altered the physical and chemical environment of lakes. Declines in dissolved oxygen in freshwater are 2.75 to 9.3 times greater than observed in the world's oceans6,7 and could threaten essential lake ecosystem services2,3,5,11.
Asunto(s)
Lagos/química , Oxígeno/análisis , Oxígeno/metabolismo , Temperatura , Animales , Cambio Climático , Ecosistema , Océanos y Mares , Oxígeno/química , Fitoplancton/metabolismo , Solubilidad , Factores de TiempoRESUMEN
Declining oxygen concentrations in the deep waters of lakes worldwide pose a pressing environmental and societal challenge. Existing theory suggests that low deep-water dissolved oxygen (DO) concentrations could trigger a positive feedback through which anoxia (i.e., very low DO) during a given summer begets increasingly severe occurrences of anoxia in following summers. Specifically, anoxic conditions can promote nutrient release from sediments, thereby stimulating phytoplankton growth, and subsequent phytoplankton decomposition can fuel heterotrophic respiration, resulting in increased spatial extent and duration of anoxia. However, while the individual relationships in this feedback are well established, to our knowledge, there has not been a systematic analysis within or across lakes that simultaneously demonstrates all of the mechanisms necessary to produce a positive feedback that reinforces anoxia. Here, we compiled data from 656 widespread temperate lakes and reservoirs to analyze the proposed anoxia begets anoxia feedback. Lakes in the dataset span a broad range of surface area (1-126,909 ha), maximum depth (6-370 m), and morphometry, with a median time-series duration of 30 years at each lake. Using linear mixed models, we found support for each of the positive feedback relationships between anoxia, phosphorus concentrations, chlorophyll a concentrations, and oxygen demand across the 656-lake dataset. Likewise, we found further support for these relationships by analyzing time-series data from individual lakes. Our results indicate that the strength of these feedback relationships may vary with lake-specific characteristics: For example, we found that surface phosphorus concentrations were more positively associated with chlorophyll a in high-phosphorus lakes, and oxygen demand had a stronger influence on the extent of anoxia in deep lakes. Taken together, these results support the existence of a positive feedback that could magnify the effects of climate change and other anthropogenic pressures driving the development of anoxia in lakes around the world.
Asunto(s)
Monitoreo del Ambiente , Lagos , Humanos , Clorofila A/análisis , Monitoreo del Ambiente/métodos , Retroalimentación , Hipoxia , Fósforo/análisis , Oxígeno , EutrofizaciónRESUMEN
Global change is increasing biotic homogenization globally, which modifies the functioning of ecosystems. While tendencies towards taxonomic homogenization in biological communities have been extensively studied, functional homogenization remains an understudied facet of biodiversity. Here, we tested four hypotheses related to long-term changes (1991-2016) in the taxonomic and functional arrangement of freshwater macroinvertebrate assemblages across space and possible drivers of these changes. Using data collected annually at 64 river sites in mainland New Zealand, we related temporal changes in taxonomic and functional spatial ß-diversity, and the contribution of individual sites to ß-diversity, to a set of global, regional, catchment and reach-scale environmental descriptors. We observed long-term, mostly climate-induced, temporal trends towards taxonomic homogenization but functional differentiation among macroinvertebrate assemblages. These changes were mainly driven by replacements of species and functional traits among assemblages, rather than nested species loss. In addition, there was no difference between the mean rate of change in the taxonomic and functional facets of ß-diversity. Climatic processes governed overall population and community changes in these freshwater ecosystems, but were amplified by multiple anthropogenic, topographic and biotic drivers of environmental change, acting widely across the landscape. The functional diversification of communities could potentially provide communities with greater stability, resistance and resilience capacity to environmental change, despite ongoing taxonomic homogenization. Therefore, our study highlights a need to further understand temporal trajectories in both taxonomic and functional components of species communities, which could enable a clearer picture of how biodiversity and ecosystems will respond to future global changes.
Asunto(s)
Ecosistema , Ríos , Biodiversidad , Clima , Nueva ZelandaRESUMEN
In many regions across the globe, extreme weather events such as storms have increased in frequency, intensity, and duration due to climate change. Ecological theory predicts that such extreme events should have large impacts on ecosystem structure and function. High winds and precipitation associated with storms can affect lakes via short-term runoff events from watersheds and physical mixing of the water column. In addition, lakes connected to rivers and streams will also experience flushing due to high flow rates. Although we have a well-developed understanding of how wind and precipitation events can alter lake physical processes and some aspects of biogeochemical cycling, our mechanistic understanding of the emergent responses of phytoplankton communities is poor. Here we provide a comprehensive synthesis that identifies how storms interact with lake and watershed attributes and their antecedent conditions to generate changes in lake physical and chemical environments. Such changes can restructure phytoplankton communities and their dynamics, as well as result in altered ecological function (e.g., carbon, nutrient and energy cycling) in the short- and long-term. We summarize the current understanding of storm-induced phytoplankton dynamics, identify knowledge gaps with a systematic review of the literature, and suggest future research directions across a gradient of lake types and environmental conditions.
Asunto(s)
Lagos , Fitoplancton , Cambio Climático , Ecosistema , RíosRESUMEN
The growth of phytoplankton in lakes is thought to be primarily controlled by macronutrient concentrations, but the availability of trace metal micronutrients, such as iron (Fe), are increasingly recognised as important regulators of lake primary production. This study evaluates the role of Fe in regulating phytoplankton growth in lakes of different nutrient status in New Zealand. The results of this unique year-long study, combining highly sensitive trace metal concentration analysis of waters and particulates with advanced trace metal bioavailability and speciation modelling, constrains thresholds for bioavailable Fe and colloidal Fe of 0.8 nmol·L-1 and 30 nmol·L-1, respectively, below which phytoplankton growth-limitation occurs. These thresholds specifically control diatom bloom formation and termination in lakes, thereby exerting a strong influence on freshwater carbon sequestration, given the dominance of diatoms in lake bloom assemblages. Importantly, potentially toxic cyanobacteria thrived only after events of bottom water anoxia, when additional dissolved Fe in concentrations ≥4 nmol·L-1 was released into the water column. These new thresholds for bioavailable and colloidal Fe offer the potential to manage micronutrient levels in lakes for the purpose of regulating algal bloom formation and carbon sequestration, while at the same time, suppressing the formation of harmful cyanobacterial blooms.
Asunto(s)
Cianobacterias , Oligoelementos , Fitoplancton , Lagos/microbiología , Hierro , Eutrofización , Nutrientes , AguaRESUMEN
Freshwater phytoplankton blooms are increasing in prevalence and there are conflicting views on whether trace metals limit growth of key species and thus bloom formation. The Taupo Volcanic Zone (TVZ), New Zealand, was formed by multiple eruptions of a super-volcano which emitted rhyolitic tephra leaving lakes depleted in trace metals. This provides an opportunity to test the potential of trace metal limitation on freshwater phytoplankton growth under nanomolar concentrations. Growth responses of two algal species isolated from Lake Taupo, Dolichospermum lemmermannii (cyanobacteria) and Fragilaria crotonensis (diatom), to six biologically important trace metals (manganese, iron, zinc, cobalt, copper and molybdenum) were examined in culture experiments. These were conducted at three trace metal concentrations: (1) ambient, (2) two-times ambient, and (3) ten-times ambient concentrations in Lake Taupo. Elevated concentrations of iron significantly increased growth rates and maximum cell densities in D. lemmermannii, whereas no significant concentration dependence was observed for other trace metals. Fragilaria crotonensis showed no significant growth response to elevated concentrations of trace metals. These results highlight the importance of iron as a growth limiting nutrient for cyanobacteria and indicate that even small (twofold) increases in Fe concentrations could enhance cyanobacteria growth rates in Lake Taupo, potentially causing cyanobacterial blooms.
Asunto(s)
Cianobacterias/crecimiento & desarrollo , Diatomeas/crecimiento & desarrollo , Lagos/química , Fitoplancton/crecimiento & desarrollo , Oligoelementos/análisis , Cianobacterias/metabolismo , Diatomeas/metabolismo , Hierro/análisis , Hierro/metabolismo , Nueva Zelanda , Nutrientes/análisis , Nutrientes/metabolismo , Fitoplancton/metabolismo , Oligoelementos/metabolismoAsunto(s)
Cadena Alimentaria , Lagos , Mercurio/análisis , Contaminantes Químicos del Agua/análisis , Animales , HumanosRESUMEN
Calcium (Ca) is an essential element for almost all living organisms. Here, we examined global variation and controls of freshwater Ca concentrations, using 440 599 water samples from 43 184 inland water sites in 57 countries. We found that the global median Ca concentration was 4.0 mg L-1 with 20.7% of the water samples showing Ca concentrations ≤ 1.5 mg L-1, a threshold considered critical for the survival of many Ca-demanding organisms. Spatially, freshwater Ca concentrations were strongly and proportionally linked to carbonate alkalinity, with the highest Ca and carbonate alkalinity in waters with a pH around 8.0 and decreasing in concentrations towards lower pH. However, on a temporal scale, by analyzing decadal trends in >200 water bodies since the 1980s, we observed a frequent decoupling between carbonate alkalinity and Ca concentrations, which we attributed mainly to the influence of anthropogenic acid deposition. As acid deposition has been ameliorated, in many freshwaters carbonate alkalinity concentrations have increased or remained constant, while Ca concentrations have rapidly declined towards or even below pre-industrial conditions as a consequence of recovery from anthropogenic acidification. Thus, a paradoxical outcome of the successful remediation of acid deposition is a globally widespread freshwater Ca concentration decline towards critically low levels for many aquatic organisms.
RESUMEN
Lake Tanganyika is a globally important lake with high endemic biodiversity. Millions of people in the lake basin depend on several fish species for consumption. Due to the importance of fish consumption as an exposure route of mercury to humans, we sampled Lake Tanganyika in 2000 to assess total mercury concentrations and biomagnification of total mercury through the food web. Stable nitrogen and carbon isotope analyses of food web structure indicate a complex food web with overlapping omnivory with some specialist fish species. Stable nitrogen isotope analyses further confirm that mercury is biomagnifying through the Tanganyika food web at rates similar to those seen in Lakes Malawi and Victoria, the other two African Great Lakes. Most collected fish species and all invertebrate species had mercury concentrations below 0.2 microg Hg/g wet weight. However, several fish species, Ctenochromis horei (average 0.15 microg/g ww), Neolamprologus boulengeri (0.2 microg/g ww) , Bathybates spp.spp. (0.21 microg/g ww), Mastacembelus cunningtoni (0.22 microg/g ww) and Clarias theodorae (0.22 microg/g ww) approached or slightly exceeded the World Health Organization (WHO)'s recommended guideline of 0.2 microg Hg/g for vulnerable populations with high rates of fish consumption. Two individuals of the piscivorous fish species Lates microlepis (0.54, 0.78 microg/g ww) and a Polypterus congicus (1.3 microg/g ww) exceeded the international marketing limit value of 0.5 microg/g ww. Because C. theodorae and L. microlepis are also important market fish species, there is a need to monitor mercury concentrations in internationally marketed fish from Lake Tanganikya to ensure that those fish do not present a risk to human consumers.
Asunto(s)
Cadena Alimentaria , Mercurio/análisis , Compuestos Orgánicos/análisis , Contaminantes Químicos del Agua/análisis , Animales , Especificidad de la Especie , TanzaníaRESUMEN
Accumulation of Hg in aquatic organisms is influenced not only by the contaminant load but also by various environmental variables. We compared biomagnification of Hg in aquatic organisms, i.e., the rate at which Hg accumulates with increasing trophic position, in three lakes differing in trophic state. Total Hg (THg) concentrations in food webs were compared in an oligotrophic, a mesotrophic and a eutrophic lake with naturally elevated levels of Hg associated with geothermal water inputs. We explored relationships of physico-chemistry attributes of lakes with Hg concentrations in fish and biomagnification in the food web. Trophic positions of biota and food chain length were distinguished by stable isotope (15)N. As expected, THg in phytoplankton decreased with increasing eutrophication, suggesting the effect of biomass dilution. In contrast, THg biomagnification and THg concentrations in trout were controlled by environmental physico-chemistry and were highest in the eutrophic lake. In the more eutrophic lake frequent anoxia occurred, resulting in favorable conditions for Hg transfer into and up the food chain. The average concentration of THg in the top predator (rainbow trout) exceeded the maximum recommended level for consumption by up to 440%. While there were differences between lakes in food chain length between plankton and trout, THg concentration in trout did not increase with food chain length, suggesting other factors were more important. Differences between the lakes in biomagnification and THg concentration in trout correlated as expected from previous studies with eight physicochemical variables, resulting in enhanced biomagnification of THg in the eutrophic lake.
Asunto(s)
Cadena Alimentaria , Lagos/química , Mercurio/análisis , Animales , Organismos Acuáticos/metabolismo , Biomasa , Monitoreo del Ambiente , Peces/metabolismo , Plancton/metabolismo , Contaminantes Químicos del Agua/análisisRESUMEN
Deep tropical lakes are excellent climate monitors because annual mixing is shallow and flushing rates are low, allowing heat to accumulate during climatic warming. We describe effects of warming on Lake Tanganyika: A sharpened density gradient has slowed vertical mixing and reduced primary production. Increased warming rates during the coming century may continue to slow mixing and further reduce productivity in Lake Tanganyika and other deep tropical lakes.