Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37239913

RESUMEN

A series of 6-polyaminosteroid analogues of squalamine were synthesized with moderate to good yields and evaluated for their in vitro antimicrobial properties against both susceptible and resistant Gram-positive (vancomycin-resistant Enterococcus faecium and methicillin-resistant Staphylococcus aureus) and Gram-negative (carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa) bacterial strains. Minimum inhibitory concentrations against Gram-positive bacteria ranged from 4 to 16 µg/mL for the most effective compounds, 4k and 4n, and showed an additive or synergistic effect with vancomycin or oxacillin. On the other hand, the derivative 4f, which carries a spermine moiety like that of the natural trodusquemine molecule, was found to be the most active derivative against all the resistant Gram-negative bacteria tested, with an MIC value of 16 µg/mL. Our results suggest that 6-polyaminosteroid analogues of squalamine are interesting candidates for Gram-positive bacterial infection treatments, as well as potent adjuvants to fight Gram-negative bacterial resistance.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Vancomicina/farmacología , Antibacterianos/farmacología , Colestanoles , Bacterias Grampositivas , Bacterias Gramnegativas , Pruebas de Sensibilidad Microbiana
2.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(7): 159539, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39067686

RESUMEN

Persister cells constitute a bacterial subpopulation able to survive to high concentrations of antibiotics. This phenotype is temporary and reversible, and thus could be involved in the recurrence of infections and emergence of antibiotic resistance. To better understand how persister cells survive to such high antibiotic concentration, we examined changes in their lipid composition. We thus compared the lipidome of Acinetobacter baumannii ATCC 19606T persister cells formed under ciprofloxacin treatment with the lipidome of control cells grown without antibiotic. Using matrix assisted laser desorption ionisation-Fourier transform ion cyclotron resonance mass spectrometry, we observed a higher abundance of short chains and secondary chains without hydroxylation for lipid A in persister cells. Using liquid chromatography-tandem mass spectrometry, we found that persister cells produced particular phosphatidylglycerols, as LPAGPE and PAGPE, but also lipids with particular acyl chains containing additional hydroxyl group or uncommon di-unsaturation on C18 and C16 acyl chains. In order to determine the impact of these multiple lipidome modifications on membrane fluidity, fluorescence anisotropy assays were performed. They showed an increase of rigidity for the membrane of persister cells, inducing likely a decrease membrane permeability to protect cells during dormancy. Finally, we highlighted that A. baumannii persister cells also produced particular wax esters, composed of two fatty acids and a fatty diol. These uncommon storage lipids are key metabolites allowing a rapid bacterial regrow when antibiotic pressure disappears. These overall changes in persister lipidome may constitute new therapeutic targets to combat these particular dormant cells.


Asunto(s)
Acinetobacter baumannii , Antibacterianos , Lipidómica , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/metabolismo , Lipidómica/métodos , Antibacterianos/farmacología , Ciprofloxacina/farmacología , Pruebas de Sensibilidad Microbiana , Fluidez de la Membrana/efectos de los fármacos , Farmacorresistencia Bacteriana/efectos de los fármacos , Lípidos/química
3.
Biochimie ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39326489

RESUMEN

Acinetobacter baumannii, classified as priority number one by the World Health Organization (WHO), is an opportunistic pathogen responsible for infection and is able to develop antibiotic resistance easily. Membranes are bacteria's first line of defense against external aggression, such as antibiotics. A chemical modification of a lipid family or a change in lipid composition can lead to resistance to antibiotics. In this work, we analyzed different A. baumannii strains from various environments with different antibiotic resistance profiles, using matrix-assisted laser desorption ionization-Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FT-ICR MS). This study shows that it is possible to describe the main lipidome (phospholipids and lipid A) from the simple preparation of lysed cells, and that despite the complexity of the mixture. This ultra-high resolution mass spectrometry technique enables the separation of isobaric ion, to report a new class of lipids. Given its performance, this technique can be used to quickly and reliably characterize the lipidome of clinical strains from different environments.

4.
Antibiotics (Basel) ; 13(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38275318

RESUMEN

The emergence of multi-drug resistant pathogens is a major public health problem, leading us to rethink and innovate our bacterial control strategies. Here, we explore the antibiofilm and antivirulence activities of nineteen 6-polyaminosterol derivatives (squalamine-based), presenting a modulation of their polyamine side chain on four major pathogens, i.e., carbapenem-resistant A. baumannii (CRAB) and P. aeruginosa (CRPA), methicillin-resistant S. aureus (MRSA), and vancomycin-resistant E. faecium (VRE) strains. We screened the effect of these derivatives on biofilm formation and eradication. Derivatives 4e (for CRAB, VRE, and MRSA) and 4f (for all the strains) were the most potent ones and displayed activities as good as those of conventional antibiotics. We also identified 11 compounds able to decrease by more than 40% the production of pyocyanin, a major virulence factor of P. aeruginosa. We demonstrated that 4f treatment acts against bacterial infections in Galleria mellonella and significantly prolonged larvae survival (from 50% to 80%) after 24 h of CRAB, VRE, and MRSA infections. As shown by proteomic studies, 4f triggered distinct cellular responses depending on the bacterial species but essentially linked to cell envelope. Its interesting antibiofilm and antivirulence properties make it a promising a candidate for use in therapeutics.

5.
Front Microbiol ; 12: 785161, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095797

RESUMEN

Acinetobacter baumannii has emerged as one of the most problematic bacterial pathogens responsible for hospital-acquired and community infections worldwide. Besides its high capacity to acquire antibiotic resistance mechanisms, it also presents high adhesion abilities on inert and living surfaces leading to biofilm development. This lifestyle confers additional protection against various treatments and allows it to persist for long periods in various hospital niches. Due to their remarkable antimicrobial tolerance, A. baumannii biofilms are difficult to control and ultimately eradicate. Further insights into the mechanism of biofilm development will help to overcome this challenge and to develop novel antibiofilm strategies. To unravel critical determinants of this sessile lifestyle, the proteomic profiles of two A. baumannii strains (ATTC17978 and SDF) grown in planktonic stationary phase or in mature solid-liquid (S-L) biofilm were compared using a semiquantitative proteomic study. Of interest, among the 69 common proteins determinants accumulated in the two strains at the S-L interface, we sorted out the MacAB-TolC system. This tripartite efflux pump played a role in A. baumannii biofilm formation as demonstrated by using ΔmacAB-tolC deletion mutant. Complementary approaches allowed us to get an overview of the impact of macAB-tolC deletion in A. baumannii physiology. Indeed, this efflux pump appeared to be involved in the envelope stress response occurring in mature biofilm. It contributes to maintain wild type (WT) membrane rigidity and provides tolerance to high osmolarity conditions. In addition, this system is probably involved in the maintenance of iron and sulfur homeostasis. MacAB-TolC might help this pathogen face and adapt to deleterious conditions occurring in mature biofilms. Increasing our knowledge of A. baumannii biofilm formation will undoubtedly help us develop new therapeutic strategies to tackle this emerging threat to human health.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA