Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Bioorg Med Chem ; 68: 116850, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35714536

RESUMEN

Endothelial cells play a central role in the vascular system, where their function is tightly regulated by both cell-extracellular matrix (e.g., via integrins) and cell-cell interactions (e.g., via cadherins). In this study, we incorporated cholesterol-modified integrin and N-cadherin peptide binding ligands in fluid supported lipid bilayers. Human umbilical vein endothelial cell adhesion, spreading and vinculin localization in these cells were dependent on ligand density. One composition led to observe a higher extent of cell spreading, where cells exhibited extensive lamellipodia formation and a qualitatively more distinct N-cadherin localization at the cell periphery, which is indicative of N-cadherin clustering and a mimic of cell-cell contact formation. The results can be used to reconstitute the endothelial-pericyte interface on biomedical devices and materials.


Asunto(s)
Integrinas , Membrana Dobles de Lípidos , Cadherinas/química , Cadherinas/metabolismo , Adhesión Celular , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ligandos
2.
Chemistry ; 21(50): 18466-73, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26527541

RESUMEN

Protein immobilization on surfaces, and on lipid bilayers specifically, has great potential in biomolecular and biotechnological research. Of current special interest is the immobilization of proteins using supramolecular noncovalent interactions. This allows for a reversible immobilization and obviates the use of harsh ligation conditions that could denature fragile proteins. In the work presented here, reversible supramolecular immobilization of proteins on lipid bilayer surfaces was achieved by using the host-guest interaction of the macrocyclic molecule cucurbit[8]uril. A fluorescent protein was successfully immobilized on the lipid bilayer by making use of the property of cucurbit[8]uril to host together a methylviologen and the indole of a tryptophan positioned on the N-terminal of the protein. The supramolecular complex was anchored to the bilayer through a cholesterol moiety that was attached to the methylviologen tethered with a small polyethylene glycol spacer. Protein immobilization studies using a quartz crystal microbalance (QCM) showed the assembly of the supramolecular complexes on the bilayer. Specific immobilization through the protein N-terminus is more efficient than through protein side-chain events. Reversible surface release of the proteins could be achieved by washing with cucurbit[8]uril or buffer alone. The described system shows the potential of supramolecular assembly of proteins and provides a method for site-specific protein immobilization under mild conditions in a reversible manner.


Asunto(s)
Hidrocarburos Aromáticos con Puentes/química , Imidazoles/química , Proteínas Inmovilizadas/química , Membrana Dobles de Lípidos/química , Polietilenglicoles/química , Estructura Molecular
3.
ACS Nano ; 13(3): 3413-3423, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30844236

RESUMEN

Quantification of the multivalent interactions of influenza viruses binding at interfaces may provide ways to tackle key biological questions regarding influenza virulence and zoonoses. Yet, the deconvolution of the contributions of molecular and interfacial parameters, such as valency, interaction area, and receptor density, to the binding of whole viruses is hindered by difficulties in the direct determination of these parameters. We report here a chemical platform technology to study the binding of multivalent recombinant hemagglutinin (rHA) nanoparticles at artificial sialoglycan cell receptor-presenting interfaces in which all these parameters can be derived, thus allowing the desired full and quantitative binding analysis. SiO2 substrates were functionalized with supported lipid bilayers containing a targeted and tunable fraction of a biotinylated lipid, followed by the adsorption of streptavidin and biotinylated polyvalent 2,3- or 2,6-sialyl lactosamine (SLN). rHA nanoparticles were used as a virus mimic to provide a good prediction of the number of interactions involved in binding. Low nanomolar affinities and selectivities for binding at the 2,6-SLN platforms were observed for rHA particles from three different virus variants. When fitting the data to a multivalency model, the nanomolar overall affinity appears to be achieved by 6-9 HA-sugar molecular interaction pairs, which individually present a rapid association/dissociation behavior. This dynamic behavior may be an essential biological attribute in the functioning of the influenza virus.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Membrana Dobles de Lípidos/química , Nanopartículas/química , Orthomyxoviridae/química , Sitios de Unión , Humanos , Proteínas Recombinantes/química
4.
Biochim Biophys Acta Biomembr ; 1860(12): 2669-2680, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30291924

RESUMEN

Silicon semiconductors with a thin surface layer of silica were first modified with polyelectrolytes (polyethyleneimine, polystyrene sulfonate and poly(allylamine)) via a facile layer-by-layer deposition approach. Subsequently, lipid vesicles were added to the preformed polymeric cushion, resulting in the adsorption of intact vesicles or fusion and lipid bilayer formation. To study involved interactions we employed optical reflectometry, electrochemical impedance spectroscopy and fluorescent recovery after photobleaching. Three phospholipids with different charge of polar head groups, i.e. 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dioleoyl-sn-glycero-3-phospho-l-serine (DOPS) and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) were used to prepare vesicles with varying surface charge. We observed that only lipid vesicles composed from 1:1 (mole:mole) mixture of DOPC/DOPS have the ability to fuse onto an oppositely charged terminal layer of polyelectrolyte giving a lipid bilayer with a resistance of >100 kΩ. With optical reflectometry we found that the vesicle surface charge is directly related to the amount of mass adsorbed onto the surface. An interesting observation was that zwitterionic polar head groups of DOPC allow the adsorption on both positively and negatively charged surfaces. As found with fluorescent recovery after photobleaching, positively charged surface governed by the presence of poly(allylamine) as the terminal layer resulted in intact DOPC lipid vesicles adsorption whereas in the case of a negatively charged silica surface formation of lipid bilayers was observed, as expected from literature.


Asunto(s)
Membrana Dobles de Lípidos/química , Fosfolípidos/química , Polielectrolitos/química , Silicio/química , Adsorción , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA