Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Environ Manage ; 354: 120290, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367499

RESUMEN

Transport and selectivity parameters describe the quantity and purity of nutrients and volatile fatty acids (VFAs) separated from fermentation media. However, the complexity of fermentation media and low nutrient concentrations hinder the optimal conditions of such parameters. Exploring technologies to overcome such limitations is crucial for selectively separating VFAs from nutrients in fermented media. The objectives of this study were to investigate the: (1) flux, (2) recovery, (3) concentration factor, and (4) specific energy consumption of nutrients (NH4+, K+, NO3-, and PO43-) and VFAs (acetic, propionic, and butyric acid) via electrodialysis (ED), and (5) selectively separate the VFAs from the nutrients in the ED concentrate using a hydrophobic membrane contactor (HMC). Synthetic feed and real industrial fermented food wastes were used for ED and HMC experiments. The ED consumed 0.395 kWh/kg, recovering 64-95% of the nutrients and VFAs, corresponding to 4.1-9.4 and 0.6-22.1 g/L nutrients and VFAs, respectively. The HMC selectively separated over 94% of VFAs after ED, with <2% nutrients contamination in the final VFA stream. The results suggest that applying HMC after ED can concentrate and selectively separate VFAs from nutrients in fermented food wastes, which can be valorized for bio-based fertilizers and chemical platforms.


Asunto(s)
Alimento Perdido y Desperdiciado , Eliminación de Residuos , Reactores Biológicos , Alimentos , Ácidos Grasos Volátiles/química , Fermentación , Nutrientes , Anaerobiosis , Concentración de Iones de Hidrógeno
2.
Environ Sci Technol ; 54(6): 3618-3627, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32049503

RESUMEN

Source separation of urine can enable nutrient recycling, facilitate wastewater management, and conserve water. Without stabilization of the urine, urea is quickly hydrolyzed into ammonia and (bi)carbonate, causing nutrient loss, clogging of collection systems, ammonia volatilization, and odor nuisance. In this study, electrochemically induced precipitation and stabilization of fresh urine was successfully demonstrated. By recirculating the urine over the cathodic compartment of an electrochemical cell, the pH was increased due to the production of hydroxyl ions at the cathode. The pH increased to 11-12, decreasing calcium and magnesium concentrations by >80%, and minimizing scaling and clogging during downstream processing. At pH 11, urine could be stabilized for one week, while an increase to pH 12 allowed urine storage without urea hydrolysis for >18 months. By a smart selection of membranes [anion exchange membrane (AEM) with a cation exchange membrane (CEM) or a bipolar membrane (BPM)], no chemical input was required in the electrochemical cell and an acidic stream was produced that can be used to periodically rinse the electrochemical cell and toilet. On-site electrochemical treatment, close to the toilet, is a promising new concept to minimize clogging in collection systems by forcing controlled precipitation and to inhibit urea hydrolysis during storage until further treatment in more centralized nutrient recovery plants.


Asunto(s)
Aparatos Sanitarios , Aguas Residuales , Amoníaco , Precipitación Química , Hidrólisis , Reciclaje , Orina
3.
Environ Sci Technol ; 49(1): 489-97, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25422872

RESUMEN

Ion exchange membranes could provide a solution to the selective separation of organic and inorganic components in industrial wastewater. The phenomena governing the transport of organics through the IEM however, are not yet fully understood. Therefore, the transport of trace organic contaminants (TOrCs) as a model for a wide variety of organic compounds was studied under different conditions. It was found that in the absence of salt and external potential, the chemical equilibrium is the main driver for TOrC-transport, resulting in the transport of mainly charged TOrCs. When salt is present, the transport of TOrCs is hampered in favor of the NaCl transport, which shows a preferential interaction with the membranes due to its small size, high mobility and concentration. It is hypothesized that electrostatic interactions and electron donor/acceptor interactions are the main drivers for TOrC transport and that transport is mainly diffusion driven. This was confirmed in the experiments with different current densities, where the external potential seemed to have only a minor influence on the transport of TOrCs. It is only when the salt becomes nearly completely depleted that the TOrCs are transported as charge carriers. This shows that it is very difficult to get preferential transport of organic compounds due to the diffusive nature of their transport.


Asunto(s)
Intercambio Iónico , Compuestos Orgánicos/química , Contaminantes Químicos del Agua/química , Difusión , Modelos Teóricos , Aguas Residuales/química
4.
Artículo en Inglés | MEDLINE | ID: mdl-26191983

RESUMEN

Pilot-scale optimisation of different possible physical-chemical water treatment techniques was performed on the wastewater originating from three different recovery and recycling companies in order to select a (combination of) technique(s) for further full-scale implementation. This implementation is necessary to reduce the concentration of both common pollutants (such as COD, nutrients and suspended solids) and potentially toxic metals, polyaromatic hydrocarbons and poly-chlorinated biphenyls frequently below the discharge limits. The pilot-scale tests (at 250 L h(-1) scale) demonstrate that sand anthracite filtration or coagulation/flocculation are interesting as first treatment techniques with removal efficiencies of about 19% to 66% (sand anthracite filtration), respectively 18% to 60% (coagulation/flocculation) for the above mentioned pollutants (metals, polyaromatic hydrocarbons and poly chlorinated biphenyls). If a second treatment step is required, the implementation of an activated carbon filter is recommended (about 46% to 86% additional removal is obtained).


Asunto(s)
Carbono , Carbón Mineral , Filtración/métodos , Reciclaje/métodos , Dióxido de Silicio , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Bélgica , Floculación , Intoxicación por Metales Pesados , Metales Pesados/química , Proyectos Piloto , Intoxicación , Bifenilos Policlorados/aislamiento & purificación , Lluvia
5.
Appl Environ Microbiol ; 80(21): 6611-9, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25128346

RESUMEN

Clothing textiles protect our human body against external factors. These textiles are not sterile and can harbor high bacterial counts as sweat and bacteria are transmitted from the skin. We investigated the microbial growth and odor development in cotton and synthetic clothing fabrics. T-shirts were collected from 26 healthy individuals after an intensive bicycle spinning session and incubated for 28 h before analysis. A trained odor panel determined significant differences between polyester versus cotton fabrics for the hedonic value, the intensity, and five qualitative odor characteristics. The polyester T-shirts smelled significantly less pleasant and more intense, compared to the cotton T-shirts. A dissimilar bacterial growth was found in cotton versus synthetic clothing textiles. Micrococci were isolated in almost all synthetic shirts and were detected almost solely on synthetic shirts by means of denaturing gradient gel electrophoresis fingerprinting. A selective enrichment of micrococci in an in vitro growth experiment confirmed the presence of these species on polyester. Staphylococci were abundant on both cotton and synthetic fabrics. Corynebacteria were not enriched on any textile type. This research found that the composition of clothing fibers promotes differential growth of textile microbes and, as such, determines possible malodor generation.


Asunto(s)
Bacterias/clasificación , Bacterias/metabolismo , Biota , Vestuario , Gossypium , Odorantes , Poliésteres , Bacterias/crecimiento & desarrollo , Bacterias/aislamiento & purificación , ADN Bacteriano/química , ADN Bacteriano/genética , Humanos , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
6.
Pharm Dev Technol ; 18(4): 787-97, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-21961765

RESUMEN

In order to study the sedimentation of pharmaceutical suspensions using low-field one dimensional pulsed field gradient nuclear magnetic resonance (1D pfg NMR) profilometry, the accuracy of signal acquisition as well as the spatial resolution of a commercial spectrometer operating at 23.4 MHz was investigated. The use of a solid Teflon spacer revealed that the accuracy of signal acquisition was independent of spatial position (height). The standard deviation of distance determinations was less than 150 µm, whereas the accuracy of water content determination was within 2% in the central part of the detection zone and deteriorated to 4% in the outer parts. The study of aqueous paramagnetic MnCl2 solutions indicated an exponential relationship between the relative signal intensity and the transverse relaxation decay constant. From this relationship, the relative water content of suspensions could be derived from their signal intensity relative to that of water. Using concentrated paliperidone palmitate dispersions as model suspensions, low-field 1D pfg NMR profilometry has been proven to be suitable for the evaluation of both the sedimentation and resuspendability behavior of viscous, opaque suspensions, for which visual detection of homogeneity may be difficult.


Asunto(s)
Antipsicóticos/química , Isoxazoles/química , Espectroscopía de Resonancia Magnética/métodos , Palmitatos/química , Antipsicóticos/administración & dosificación , Cloruros/química , Espectroscopía de Resonancia por Spin del Electrón/métodos , Isoxazoles/administración & dosificación , Compuestos de Manganeso/química , Palmitato de Paliperidona , Palmitatos/administración & dosificación , Suspensiones , Agua/química
7.
Artículo en Inglés | MEDLINE | ID: mdl-23442116

RESUMEN

The release of arsenic (As) from a contaminated food matrix during gastrointestinal digestion, i.e., its bioaccessibility, is an important estimator of its bioavailability, and therefore also its health risk. In addition, As toxicity is primarily determined by its speciation and it is not clear how different As species behave during digestion in the upper digestive tract. Here, we evaluated to what extent digestive parameters like gastric pH and bile concentration, but also food matrix constituents affect the bioaccessibility of 8 As species (As(III), As(V), MMA(V), DMA(V), MMA(III), DMA(III), MMMTA(V), DMMTA(V)). Bioaccessibility of all As standards ranged between 85% and 90% under pH 1.8. Bioaccessibility of methylated and thiolated arsenicals was decreased from 85% to 50% with increasing gastric pH to 4, yet an increasing bile salts concentration up to 30 g/L lowered the bioaccessibility of inorganic species from 83% to 70% due to interaction with Fe present in bile salts. With respect to food matrices, we noted that the fiber content did not affect As bioaccessibility, yet the presence of fat resulted in an increased bioaccessibility of both inorganic and organic arsenicals in the presence of bile salts. With respect to inorganic arsenic, the intestinal presence of trivalent Fe appeared to be the predominant factor for bioaccessibility of iAs. These data demonstrate that species dependent bioaccessibility must be considered upon ingestion and gastrointestinal digestion.


Asunto(s)
Arsénico/farmacocinética , Ácidos y Sales Biliares/metabolismo , Ácidos Grasos/metabolismo , Interacciones Alimento-Droga , Tracto Gastrointestinal/metabolismo , Contaminantes del Suelo/farmacocinética , Ácidos y Sales Biliares/química , Simulación por Computador , Digestión , Ácidos Grasos/química , Humanos , Concentración de Iones de Hidrógeno , Modelos Biológicos , Oryza/química , Estándares de Referencia , Medición de Riesgo , Oligoelementos/análisis
8.
Sci Total Environ ; 866: 161172, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36572313

RESUMEN

To provide for the globally increasing demand for proteinaceous food, microbial protein (MP) has the potential to become an alternative food or feed source. Phosphorus (P), on the other hand, is a critical raw material whose global reserves are declining. Growing MP on recovered phosphorus, for instance, struvite obtained from wastewater treatment, is a promising MP production route that could supply protein-rich products while handling P scarcity. The aim of this study was to explore struvite dissolution kinetics in different MP media and characterize MP production with struvite as sole P-source. Different operational parameters, including pH, temperature, contact surface area, and ion concentrations were tested, and struvite dissolution rates were observed between 0.32 and 4.7 g P/L/d and a solubility between 0.23 and 2.22 g P-based struvite/L. Growth rates and protein production of the microalgae Chlorella vulgaris and Limnospira sp. (previously known as Arthrospira sp.), and the purple non­sulfur bacterium Rhodopseudomonas palustris on struvite were equal to or higher than growth on conventional potassium phosphate. For aerobic heterotrophic bacteria, two slow-growing communities showed decreased growth on struvite, while the growth was increased for a third fast-growing one. Furthermore, MP protein content on struvite was always comparable to the one obtained when grown on standard media. Together with the low content in metals and micropollutants, these results demonstrate that struvite can be directly applied as an effective nutrient source to produce fast-growing MP, without any previous dissolution step. Combining a high purity recovered product with an efficient way of producing protein results in a strong environmental win-win.


Asunto(s)
Chlorella vulgaris , Compuestos de Magnesio , Estruvita/química , Solubilidad , Compuestos de Magnesio/química , Aguas Residuales , Fosfatos/química , Fósforo/química , Nutrientes
9.
Water Res ; 245: 120625, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37820474

RESUMEN

Capacitive electrodialysis (CED) is an emerging and promising desalination technology for decentralized drinking water production. Brackish water, often used as a drinking water source, may contain organic micropollutants (OMPs), thus raising environmental and health concerns. This study investigated the transport of OMPs in a fully-functional decentralized CED system for drinking water production under realistic operational conditions. Eighteen environmentally-relevant OMPs (20 µg L-1) with different physicochemical properties (charge, size, hydrophobicity) were selected and added to the feed water. The removal of OMPs was significantly lower than that of salts (∼94%), mainly due to their lower electrical mobility and higher steric hindrance. The removal of negatively-charged OMPs reached 50% and was generally higher than that of positively-charged OMPs (31%), whereas non-charged OMPs were barely transported. Marginal adsorption of OMPs was found under moderate water recovery (50%), in contrast to significant adsorption of charged OMPs under high water recovery (80%). The five-month operation demonstrated that the CED system could reliably produce water with low salt ions and TOC concentrations, meeting the respective WHO requirements. The specific energy consumption of the CED stack under 80% water recovery was 0.54 kWh m-3, which is competitive to state-of-the-art RO, ED, and emerging MCDI in brackish water desalination. Under this condition, the total OPEX was 2.43 € m-3, of which the cost of membrane replacement contributed significantly. Although the CED system proved to be a robust, highly adaptive, and fully automated technology for decentralized drinking water production, it was not highly efficient in removing OMPs, especially non-charged OMPs.


Asunto(s)
Agua Potable , Purificación del Agua , Cloruro de Sodio , Iones , Adsorción , Aguas Salinas
10.
Water Sci Technol ; 66(10): 2122-30, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22949242

RESUMEN

Biomass attachment and growth on high pressure membranes alter the surface characteristics and rejection performance of nanofiltration membranes. Along with electrostatic interaction and size exclusion, hydrophobic interaction between solutes and membrane surface play the major role in the separation process. Therefore, in attempt to properly quantify the surface energy of clean and biofouled membranes, different contact angle techniques were applied in this research. The surface energies of membranes were determined on dry, wet and hydrated surfaces. Results indicate that drying of the membrane surface leads to a modification of the surface properties, which are therefore not representative of the membrane in its operational conditions. Immersing the membrane in water resulted in detachment of biomass material into the surrounding liquid, thus hampering a correct estimation of the contact angle. Contact angle measurements on hydrated surfaces, on the contrary, produced reproducible results, which are consistent with current knowledge. In addition, when the values obtained by hydrated method were applied in a predictive model earlier developed, a significant improvement in predictions resulted.


Asunto(s)
Incrustaciones Biológicas/prevención & control , Membranas Artificiales , Preparaciones Farmacéuticas/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Modelos Teóricos , Nanotecnología , Purificación del Agua
11.
Pharm Dev Technol ; 17(3): 259-67, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22452705

RESUMEN

This work aims to demonstrate the usefulness of a low-field one-dimensional pulsed-field gradient NMR (1D pfg NMR) profilometry technique to enable in situ nondestructive sediment characterization and resuspendability quantification of concentrated prefilled injectable suspensions. Aqueous paliperidone palmitate suspensions were used as model samples and low-intensity centrifugation was evaluated as a long-term gravity simulation approach. The low-field 1D pfg NMR technique allowed a detection zone of 2.5 cm in height for water content measurement of syringe samples using a Teflon syringe holder. Thus, the sediment compactness could be deduced from its water content. Quantitative evaluation of resuspendability was realized by front tracking of the NMR profile signals, which yielded the exponential sediment volume decay constant as a resuspendability quantification parameter. The study shows that both active ingredient particle size distribution and storage temperature had significant effects on the sedimentation rate and the resuspendability of the suspensions. The centrifugation method proved to be useful as a long-term gravity simulation and screening method, although the results should be interpreted with caution due to its higher acceleration and compression force imposed on the active ingredient particles.


Asunto(s)
Antipsicóticos/química , Isoxazoles/química , Espectroscopía de Resonancia Magnética/métodos , Palmitatos/química , Antipsicóticos/administración & dosificación , Centrifugación/métodos , Almacenaje de Medicamentos , Gravitación , Isoxazoles/administración & dosificación , Palmitato de Paliperidona , Palmitatos/administración & dosificación , Tamaño de la Partícula , Suspensiones , Jeringas , Temperatura , Agua/química
12.
Water Res ; 190: 116756, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33387949

RESUMEN

Ion-exchange membrane (IEM)-based processes are used in the industry or in the drinking water production to achieve selective separation. The transport mechanisms of organic solutes/micropollutants (i.e., paracetamol, clofibric acid, and atenolol) at a single-membrane level in diffusion cells were similar to that of salts (i.e., diffusion, convection, and electromigration). The presence of an equal concentration of salts at both sides of the membrane slightly decreased the transport of organics due to lower diffusion coefficients of organics in salts and the increase of hindrance and/or decrease of partitioning in the membrane phase. In the presence of a salt gradient, diffusion was the main transport mechanism for non-charged organics, while the counter-transport of salts promoted the transport of charged organics through electromigration (electroneutrality). Conversely, the co-transport of salts hindered the transport of charged organics, where diffusion was the main transport mechanism of the latter. Although convection played a role in the transport of non-charged organics, its influence on the charged solutes was minimal due to the dominant electromigration. Positron annihilation lifetime spectroscopy showed a bimodal size distribution of free-volume elements of IEMs, with both classes of free-volume elements contributing to salt transport, while larger organics can only transport through the larger class.


Asunto(s)
Agua Potable , Difusión , Intercambio Iónico , Soluciones , Solventes
13.
iScience ; 24(2): 102095, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33659871

RESUMEN

There is no efficient wastewater treatment solution for removing organic micropollutants (OMPs), which, therefore, are continuously introduced to the Earth's surface waters. This creates a severe risk to aquatic ecosystems and human health. In emerging water treatment processes based on ion-exchange membranes (IEM), transport of OMPs through membranes remains unknown. We performed a comprehensive investigation of the OMP transport through a single IEM under non-steady-state conditions. For the first time, positron annihilation lifetime spectroscopy was used to study differences in the free volume element radius between anion- and cation-exchange membranes, and between their thicknesses. The dynamic diffusion-adsorption model was used to calculate the adsorption and diffusion coefficients of OMPs. Remarkably, diffusion coefficients increased with the membrane thickness, where its surface resistance was more evident in thinner membranes. Presented results will contribute to the improved design of next-generation IEMs with higher selectivity toward multiple types of organic compounds.

14.
Data Brief ; 31: 105763, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32490101

RESUMEN

This data paper aims to provide data on the effect of the process settings on the fouling of an electrodialysis pilot installation treating a sodium chloride solution (0.1 M and 0.2 M) in the presence of humic acid (1 g/L). This data was used by "Colloidal fouling in electrodialysis: a neural differential equations model" [1] to construct a predictive model and provides interpretive insights into this dataset. 22 electrodialysis fouling experiments were performed where the electrical resistance over the electrodialysis stack was monitored while varying the crossflow velocity (2.0 cm/s - 3.5 cm/s) in the compartments, the current applied (1.41 A - 1.91 A) to the stack and the salt concentration in the incoming stream. The active cycle was maintained for a maximum of 1.5 h after which the polarity was reversed to remove the fouling layer. Additional data is gathered such as the temperature, pH, flow rate, conductivity, pressure in the different compartments of the electrodialysis stack. The data is processed to remove the effect of temperature fluctuations and some filtering is performed. To maximise the reuse potential of this dataset, both raw and processed data are provided along with a detailed description of the pilot installation and sensor locations. The data generated can be useful for researchers and industry working on electrodialysis fouling and the modelling thereof. The availability of conductivity and pH in all compartments is useful to investigate secondary effects of humic acid fouling such as the eventual decrease in membrane permselectivity or water splitting effects introduced by the fouling layer.

15.
Sci Total Environ ; 736: 139731, 2020 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-32502789

RESUMEN

Supercritical water oxidation (SCWO) is a technology that can oxidize various organic (wet) wastes into CO2. Complete oxidation of specific organics with SCWO goes in tandem with tailored conditions, typically involving elevated operating temperatures, long residence times, high oxidizer-to-waste ratios, or a combination of those, which promote difficulties, e.g., corrosion. These challenges hamper the practical implementation of SCWO, albeit SCWO offers excellent oxidation efficiencies. This work proposes a novel process combining mild supercritical water oxidation (SCWO) with membrane filtration to enhance the oxidation of organics. The modified SCWO works at mild reaction conditions (i.e., 380 °C, 25 MPa and oxidizer equivalence ratios as low as 1.5) to potentially decrease the risks. The membrane filtration discards clean effluent and recycles the retentate (containing incomplete oxidized organics) back to the mild SCWO process for further oxidation, thereafter resulting in near-complete removal of organics. Fresh feed is continuously added, as in the conventional process, along with recycled retentate to guarantee the throughput of the modified SCWO process. A mixture of SCWO-resistant volatile fatty acids (TOC = 4000 mg·L-1) was studied to validate the proposed process. The proposed process in this study enhances the organic decomposition from 43.2% to 100% at mild conditions with only 10% capacity loss. CO2 was the dominant gas product with traces of CO and H2. Carbon output in the gas products increased with recirculation and got close to the carbon input of the freshly added feed ultimately. The results indicated that the proposed process maximized the benefits of both technologies, which allows the development of a technological process for supercritical water oxidation, as well as a new stratagem for waste treatment.

16.
Water Res ; 169: 115263, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31734395

RESUMEN

Electrochemical water softening was proposed as a sustainable alternative for ion exchange softening, avoiding the input of salt to drinking water and the production of a concentrated brine. Here we demonstrated two novel modes of operation combining an electrochemical cell with a fluidized bed crystallizer. The first approach relied on an electrochemical cell consisting of an anode and cathode separated by a cation or anion exchange membrane. The feed water was first directed into a crystallizer where it was blended with alkaline cathode effluent. The effluent of the crystallizer, softened water, was in part recirculated to the cathode to generate alkalinity, in part to the anode compartment, where the pH was again decreased. Average removal efficiencies for calcium and magnesium of 75-86% and 7-21% respectively, could be sustainably reached, at a specific energy consumption of 7.0-10.1 kWh kg-1 CaCO3 (0.86-1.39 kWh m-3 water). This configuration allowed reagent-free water softening, albeit with an effluent with a pH between 3.0 and 3.6. In a second mode of operation, the process influent to soften was also directed to the crystallizer and recirculated over the cathode, which was separated from the anode using an anion exchange membrane. In this mode of operation, the cathode effluent was sent through the crystallizing unit, and the anode compartment was operated in closed-loop. Average calcium and magnesium removal efficiencies of 73-78% and 40-44% were obtained at specific energy consumptions of 5.8-7.5 kWh kg-1 CaCO3 (0.77-0.88 kWh m-3 water). Although the softened water had an elevated pH (∼9.4), the advantage of this configuration is concomitant removal of anions and the formation of acids/disinfectant in the anode compartment. Both methods of operation thus showed reagent-free water softening at a relatively low specific energy consumption. These novel methods of softening could be used in remote locations where access to chemicals or discharge of ion exchange brines proves to be difficult, or in case addition of chemicals for softening is unwanted. Further research is needed to further decrease the specific energy consumption during long-term operation.


Asunto(s)
Purificación del Agua , Ablandamiento del Agua , Electrodos , Intercambio Iónico
17.
Bioresour Technol ; 291: 121833, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31357043

RESUMEN

High-rate activated sludge (HRAS) systems typically generate diluted sludge which requires further thickening prior to anaerobic digestion (AD), besides the need to add considerable coagulant and flocculant for the solids separation. As an alternative to conventional gravitational settling, a dissolved air flotation (DAF) unit was coupled to a HRAS system or a high-rate contact stabilization (HiCS) system. The HRAS-DAF system allowed up to 78% removal of the influent solids, and the HiCS-DAF 67%. Both were within the range of values typically obtained for HRAS-settler systems, albeit at a lower chemical requirement. The separated sludge had a high concentration of up to 47 g COD L-1, suppressing the need of further thickening before AD. Methanation tests showed a biogas yield of up to 68% on a COD basis. The use of a DAF separation system can thus enable direct organics removal at high sludge concentration and with low chemical needs.


Asunto(s)
Aguas del Alcantarillado , Biocombustibles , Floculación , Eliminación de Residuos Líquidos
18.
Water Res ; 144: 76-86, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30014981

RESUMEN

Human urine is a valuable resource for nutrient recovery, given its high levels of nitrogen, phosphorus and potassium, but the compositional complexity of urine presents a challenge for an energy-efficient concentration and refinery of nutrients. In this study, a pilot installation combining precipitation, nitrification and electrodialysis (ED), designed for one person equivalent (1.2 Lurine d-1), was continuously operated for ∼7 months. First, NaOH addition yielded calcium and magnesium precipitation, preventing scaling in ED. Second, a moving bed biofilm reactor oxidized organics, preventing downstream biofouling, and yielded complete nitrification on diluted urine (20-40%, i.e. dilution factors 5 and 2.5) at an average loading rate of 215 mg N L-1 d-1. Batch tests demonstrated the halotolerance of the nitrifying community, with nitrification rates not affected up to an electrical conductivity of 40 mS cm-1 and gradually decreasing, yet ongoing, activity up to 96 mS cm-1 at 18% of the maximum rate. Next-generation 16S rRNA gene amplicon sequencing revealed that switching from a synthetic influent to real urine induced a profound shift in microbial community and that the AOB community was dominated by halophilic species closely related to Nitrosomonas aestuarii and Nitrosomonas marina. Third, nitrate, phosphate and potassium in the filtered (0.1 µm) bioreactor effluent were concentrated by factors 4.3, 2.6 and 4.6, respectively, with ED. Doubling the urine concentration from 20% to 40% further increased the ED recovery efficiency by ∼10%. Batch experiments at pH 6, 7 and 8 indicated a more efficient phosphate transport to the concentrate at pH 7. The newly proposed three-stage strategy opens up opportunities for energy- and chemical-efficient nutrient recovery from urine. Precipitation and nitrification enabled the long-term continuous operation of ED on fresh urine requiring minimal maintenance, which has, to the best of our knowledge, never been achieved before.


Asunto(s)
Diálisis/métodos , Nitrógeno/aislamiento & purificación , Orina/química , Eliminación de Residuos Líquidos/métodos , Biopelículas , Incrustaciones Biológicas , Análisis de la Demanda Biológica de Oxígeno , Reactores Biológicos/microbiología , Precipitación Química , Humanos , Microbiota/genética , Nitratos/química , Nitrificación , Oxidación-Reducción , Fosfatos/aislamiento & purificación , Fósforo/química , Fósforo/aislamiento & purificación , ARN Ribosómico 16S , Eliminación de Residuos Líquidos/instrumentación
19.
Environ Pollut ; 146(1): 281-9, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16965844

RESUMEN

The occurrence of organic micropollutants in ground- and surface waters has become an important concern for the drinking water industry, mainly because of possible related health effects. Due to the polar nature of some of these pollutants, they are not completely removed by traditional water treatment barriers. This paper offers an overview of priority organic micropollutants and their occurrence in Flemish and Dutch water sources. Furthermore, rejection by nanofiltration is qualitatively predicted for the selected priority micropollutants. The qualitative prediction is based on the values of key solute and membrane parameters in nanofiltration. Predicted values are then compared with experimental values obtained from literature. Overall, the qualitative predictions are roughly in agreement with literature values. Prediction based on key parameters may thus prove to be a very quick and useful technique to assess the implementation of nanofiltration as a treatment step for organic micropollutants in drinking water plant design.


Asunto(s)
Nanotecnología , Residuos de Plaguicidas , Contaminantes Químicos del Agua , Purificación del Agua/métodos , Abastecimiento de Agua , Filtración/instrumentación , Filtración/métodos , Humanos , Residuos Industriales , Países Bajos , Purificación del Agua/instrumentación
20.
Membranes (Basel) ; 6(3)2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27376337

RESUMEN

Forward osmosis (FO) is a promising membrane technology to combine seawater desalination and water reuse. More specifically, in a FO-reverse osmosis (RO) hybrid process, high quality water recovered from the wastewater stream is used to dilute seawater before RO treatment. As such, lower desalination energy needs and/or water augmentation can be obtained while delivering safe water for direct potable reuse thanks to the double dense membrane barrier protection. Typically, FO-RO hybrid can be a credible alternative to new desalination facilities or to implementation of stand-alone water reuse schemes. However, apart from the societal (public perception of water reuse for potable application) and water management challenges (proximity of wastewater and desalination plants), FO-RO hybrid has to overcome technical limitation such as low FO permeation flux to become economically attractive. Recent developments (i.e., improved FO membranes, use of pressure assisted osmosis, PAO) demonstrated significant improvement in water flux. However, flux improvement is associated with drawbacks, such as increased fouling behaviour, lower rejection of trace organic compounds (TrOCs) in PAO operation, and limitation in FO membrane mechanical resistance, which need to be better considered. To support successful implementation of FO-RO hybrid in the industry, further work is required regarding up-scaling to apprehend full-scale challenges in term of mass transfer limitation, pressure drop, fouling and cleaning strategies on a module scale. In addition, refined economics assessment is expected to integrate fouling and other maintenance costs/savings of the FO/PAO-RO hybrid systems, as well as cost savings from any treatment step avoided in the water recycling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA