Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Neurobiol Dis ; 199: 106555, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38844245

RESUMEN

Progressive myoclonus ataxia (PMA) is a rare clinical syndrome characterized by the presence of progressive myoclonus and ataxia, and can be accompanied by mild cognitive impairment and infrequent epileptic seizures. This is the first study to describe the natural history of PMA and identify clinical, electrophysiological, and genetic features explaining the variability in disease progression. A Dutch cohort of consecutive patients meeting the criteria of the refined definition of PMA was included. The current phenotype was assessed during in-person consultation by movement disorders experts, and retrospective data was collected to describe disease presentation and progression, including brain imaging and therapy efficacy. Extensive genetic and electrophysiological tests were performed. The presence of cortical hyperexcitability was determined, by either the identification of a cortical correlate of myoclonic jerks with simultaneous electromyography-electroencephalography or a giant somatosensory evoked potential. We included 34 patients with PMA with a median disease duration of 15 years and a clear progressive course in most patients (76%). A molecular etiology was identified in 82% patients: ATM, CAMTA1, DHDDS, EBF3, GOSR2, ITPR1, KCNC3, NUS1, POLR1A, PRKCG, SEMA6B, SPTBN2, TPP1, ZMYND11, and a 12p13.32 deletion. The natural history is a rather homogenous onset of ataxia in the first two years of life followed by myoclonus in the first 5 years of life. Main accompanying neurological dysfunctions included cognitive impairment (62%), epilepsy (38%), autism spectrum disorder (27%), and behavioral problems (18%). Disease progression showed large variability ranging from an epilepsy free PMA phenotype (62%) to evolution towards a progressive myoclonus epilepsy (PME) phenotype (18%): the existence of a PMA-PME spectrum. Cortical hyperexcitability could be tested in 17 patients, and was present in 11 patients and supported cortical myoclonus. Interestingly, post-hoc analysis showed that an absence of cortical hyperexcitability, suggesting non-cortical myoclonus, was associated with the PMA-end of the spectrum with no epilepsy and milder myoclonus, independent of disease duration. An association between the underlying genetic defects and progression on the PMA-PME spectrum was observed. By describing the natural history of the largest cohort of published patients with PMA so far, we see a homogeneous onset with variable disease progression, in which phenotypic evolution to PME occurs in the minority. Genetic and electrophysiological features may be of prognostic value, especially the determination of cortical hyperexcitability. Furthermore, the identification of cortical and non-cortical myoclonus in PMA helps us gain insight in the underlying pathophysiology of myoclonus.

2.
Clin Genet ; 100(6): 692-702, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34463354

RESUMEN

Centronuclear myopathy (CNM) is a genetically heterogeneous congenital myopathy characterized by muscle weakness, atrophy, and variable degrees of cardiorespiratory involvement. The clinical severity is largely explained by genotype (DNM2, MTM1, RYR1, BIN1, TTN, and other rarer genetic backgrounds), specific mutation(s), and age of the patient. The histopathological hallmark of CNM is the presence of internal centralized nuclei on muscle biopsy. Information on the phenotypical spectrum, subtype prevalence, and phenotype-genotype correlations is limited. To characterize CNM more comprehensively, we retrospectively assessed a national cohort of 48 CNM patients (mean age = 32 ± 24 years, range 0-80, 54% males) from the Netherlands clinically, histologically, and genetically. All information was extracted from entries in the patient's medical records, between 2000 and 2020. Frequent clinical features in addition to muscle weakness and hypotonia were fatigue and exercise intolerance in more mildly affected cases. Genetic analysis showed variants in four genes (18 DNM2, 14 MTM1, 9 RYR1, and 7 BIN1), including 16 novel variants. In addition to central nuclei, histologic examination revealed a large variability of myopathic features in the different genotypes. The identification and characterization of these patients contribute to trial readiness.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Miopatías Estructurales Congénitas/diagnóstico , Miopatías Estructurales Congénitas/genética , Fenotipo , Adolescente , Adulto , Edad de Inicio , Anciano , Anciano de 80 o más Años , Alelos , Sustitución de Aminoácidos , Biomarcadores , Biopsia , Niño , Preescolar , Estudios Transversales , Femenino , Genes Ligados a X , Estudios de Asociación Genética/métodos , Genotipo , Histocitoquímica , Humanos , Incidencia , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Mutación , Miopatías Estructurales Congénitas/epidemiología , Países Bajos , Adulto Joven
3.
Am J Med Genet A ; 182(10): 2272-2283, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32776697

RESUMEN

Synaptotagmins are integral synaptic vesicle membrane proteins that function as calcium sensors and regulate neurotransmitter release at the presynaptic nerve terminal. Synaptotagmin-2 (SYT2), is the major isoform expressed at the neuromuscular junction. Recently, dominant missense variants in SYT2 have been reported as a rare cause of distal motor neuropathy and myasthenic syndrome, manifesting with stable or slowly progressive distal weakness of variable severity along with presynaptic NMJ impairment. These variants are thought to have a dominant-negative effect on synaptic vesicle exocytosis, although the precise pathomechanism remains to be elucidated. Here we report seven patients of five families, with biallelic loss of function variants in SYT2, clinically manifesting with a remarkably consistent phenotype of severe congenital onset hypotonia and weakness, with variable degrees of respiratory involvement. Electrodiagnostic findings were consistent with a presynaptic congenital myasthenic syndrome (CMS) in some. Treatment with an acetylcholinesterase inhibitor pursued in three patients showed clinical improvement with increased strength and function. This series further establishes SYT2 as a CMS-disease gene and expands its clinical and genetic spectrum to include recessive loss-of-function variants, manifesting as a severe congenital onset presynaptic CMS with potential treatment implications.


Asunto(s)
Predisposición Genética a la Enfermedad , Hipotonía Muscular/genética , Síndromes Miasténicos Congénitos/genética , Sinaptotagmina II/genética , Adolescente , Niño , Preescolar , Femenino , Humanos , Masculino , Hipotonía Muscular/complicaciones , Hipotonía Muscular/patología , Debilidad Muscular/genética , Debilidad Muscular/patología , Mutación Missense/genética , Síndromes Miasténicos Congénitos/complicaciones , Síndromes Miasténicos Congénitos/patología , Linaje , Fenotipo , Transmisión Sináptica/genética
4.
Dev Med Child Neurol ; 62(1): 75-82, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31529709

RESUMEN

AIMS: To investigate the accuracy of phenotypic early-onset ataxia (EOA) recognition among developmental conditions, including developmental coordination disorder (DCD) and hypotonia of central nervous system origin, and the effect of scientifically validated EOA features on changing phenotypic consensus. METHOD: We included 32 children (4-17y) diagnosed with EOA (n=11), DCD (n=10), and central hypotonia (n=11). Three paediatric neurologists independently assessed videotaped motor behaviour phenotypically and quantitatively (using the Scale for Assessment and Rating of Ataxia [SARA]). We determined: (1) phenotypic interobserver agreement and phenotypic homogeneity (percentage of phenotypes with full consensus by all three observers according to the underlying diagnosis); (2) SARA (sub)score profiles; and (3) the effect of three scientifically validated EOA features on phenotypic consensus. RESULTS: Phenotypic homogeneity occurred in 8 out of 11, 2 out of 10, and 1 out of 11 patients with EOA, DCD, and central hypotonia respectively. Homogeneous phenotypic discrimination of EOA from DCD and central hypotonia occurred in 16 out of 21 and 22 out of 22 patients respectively. Inhomogeneously discriminated EOA and DCD phenotypes (5 out of 21) revealed overlapping SARA scores with different SARA subscore profiles. After phenotypic reassessment with scientifically validated EOA features, phenotypic homogeneity changed from 16 to 18 patients. INTERPRETATION: In contrast to complete distinction between EOA and central hypotonia, the paediatric motor phenotype did not reliably distinguish between EOA and DCD. Reassessment with scientifically validated EOA features could contribute to a higher phenotypic consensus. Early-onset ataxia (EOA) and central hypotonia motor phenotypes were reliably distinguished. EOA and developmental coordination disorder (DCD) motor phenotypes were not reliably distinguished. The EOA and DCD phenotypes have different profiles of the Scale for Assessment and Rating of Ataxia.


FENOTIPOS PEDIÁTRICOS MOTORES EN ATAXIA DE INICIO TEMPRANO, TRASTORNO DEL DESARROLLO DE LA COORDINACIÓN E HIPOTONÍA DE ORIGEN CENTRAL: OBJETIVOS: Investigar la precisión del reconocimiento fenotípico de ataxia de inicio temprano (EOA) con respecto a trastornos del desarrollo, incluido el trastorno del desarrollo de la coordinación (TDC) y la hipotonía de origen central. Investigar el efecto de las características científicamente validadas de EOA sobre el consenso fenotípico entre los evaluadores. MÉTODO: Se incluyeron 32 niños (4-17 años) diagnosticados con EOA (n = 11), TDC (n = 10) e hipotonía central (n = 11). Tres neurólogos pediátricos evaluaron de forma independiente el comportamiento motor grabado en video en cuanto a las características fenotípica y cuantitativa (utilizando la Escala de evaluación y calificación de la ataxia [SARA]). Determinamos: (1) coincidencia fenotípica entre los observadores y homogeneidad fenotípica (porcentaje de fenotipos con consenso total de los tres observadores según el diagnóstico subyacente), (2) perfiles de (sub)puntajes en el SARA y (3) el efecto sobre el consenso fenotípico de tres características de EOA validadas científicamente. RESULTADOS: La homogeneidad fenotípica ocurrió en 8 de 11, 2 de 10 y 1 de 11 pacientes con EOA, DCD e hipotonía central, respectivamente. La discriminación fenotípica homogénea de EOA con respecto a TDC e hipotonía central se produjo en 16 de 21 y 22 de 22 pacientes, respectivamente. Los fenotipos EOA y TDC que no fueron discriminados de manera homogénea por los observadores (5 de 21) revelaron superposición en los puntajes del SARA con diferentes perfiles en los subpuntajes del SARA. Después de una reevaluación fenotípica con características EOA científicamente validadas, la homogeneidad fenotípica cambió de 16 a 18 pacientes. INTERPRETACIÓN: En contraste con la distinción completa entre EOA e hipotonía central, el fenotipo motor pediátrico no distinguió confiablemente entre EOA y TDC. La evaluación en base a características EOA científicamente validadas podría contribuir a un mayor consenso fenotípico.


FENÓTIPOS MOTORES PEDIÁTRICOS NA ATAXIA DE INÍCIO PRECOCE, TRANSTORNO DO DESENVOLVIMENTO DA COORDENACÃO, E HIPOTONIA CENTRAL: OBJETIVOS: Investigar a acurácia do reconhecimento fenotípico da ataxia de início precoce (AIP) entre condições desenvolvimentais, incluindo o transtorno do desenvolvimento da coordenação (TDC) e a hipotonia de origem no sistema nervoso central, e o efeito de aspectos cientificamente validados da AIP na modificação do consenso fenotípico. MÉTODO: Incluímos 32 crianças (4-17a) diagnosticadas com AIP (n=11), TDC (n=10), e hipotonia central (n=11). Três neurologistas pediátricos avaliaram de maneira independente por meio de vídeo o comportamento motor tanto por meio do fenótiopo quanto quantitativamente (usando a Escala para Avaliação e Pontuação da Ataxia) [EAPA]). Determinamos: (1) a concordânica fenotípica inter-observadores e a homogeneidade fenotípica (porcentagem de fenótipos com consenso completo pelos três observadores de acordo com o diagnóstico de base, (2) perfis segundo os (sub)escores da EAPA, e (3) o efeito de três aspectos cientificamente validados da AIP sobre o consenso fenotípico. RESULTADOS: A homogeneidade fenotípica ocorreu em 8 entre 12, 2 entre 10, e 1 entre 11 pacientes com AIP, TDC, e hipotonia central, respectivamente. A discriminação fenotípica homogênea da AIP com relação ao TDC e hipotonia central ocorreu em 16 entre 21 e 21 entre 22 pacientes, respectivamente. A discriminação não homogêna dos fenótipos AIP e TDC (5 em 21) revelou escores da EAPA que sobrepõem com diferentes perfis de subescores da EAPA. Após reavaliação fenotípica com aspectos cientificamente validados da AIP, a homogeneidade fenotípica mudou de 16 para 18 pacientes. INTERPRETAÇÃO: Em contraste com a completa distinção entre AIP e hipotonia central, o fenótipo motor pediátrico não distinguiu confiavelmente entre AIP e TDC. A reavaliação com aspectos cientificamente valiaddos da AIP pode contribuir para um maior consenso fenotípica. contrast to complete distinction between EOA and central hypotonia, the paediatric motor phenotype did not reliably distinguish between EOA and DCD. eassessment with scientifically validated EOA features could contribute to a higher phenotypic consensus.


Asunto(s)
Ataxia/fisiopatología , Trastornos de la Destreza Motora/fisiopatología , Hipotonía Muscular/fisiopatología , Adolescente , Edad de Inicio , Ataxia/diagnóstico , Niño , Preescolar , Diagnóstico Diferencial , Femenino , Humanos , Masculino , Trastornos de la Destreza Motora/diagnóstico , Hipotonía Muscular/diagnóstico , Fenotipo
5.
Brain ; 140(11): 2860-2878, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29053796

RESUMEN

The autosomal dominant cerebellar ataxias, referred to as spinocerebellar ataxias in genetic nomenclature, are a rare group of progressive neurodegenerative disorders characterized by loss of balance and coordination. Despite the identification of numerous disease genes, a substantial number of cases still remain without a genetic diagnosis. Here, we report five novel spinocerebellar ataxia genes, FAT2, PLD3, KIF26B, EP300, and FAT1, identified through a combination of exome sequencing in genetically undiagnosed families and targeted resequencing of exome candidates in a cohort of singletons. We validated almost all genes genetically, assessed damaging effects of the gene variants in cell models and further consolidated a role for several of these genes in the aetiology of spinocerebellar ataxia through network analysis. Our work links spinocerebellar ataxia to alterations in synaptic transmission and transcription regulation, and identifies these as the main shared mechanisms underlying the genetically diverse spinocerebellar ataxia types.


Asunto(s)
Redes Reguladoras de Genes/genética , Ataxias Espinocerebelosas/genética , Animales , Células COS , Cadherinas/genética , Chlorocebus aethiops , Proteína p300 Asociada a E1A/genética , Exoma/genética , Femenino , Células HEK293 , Humanos , Cinesinas/genética , Masculino , Linaje , Fosfolipasa D/genética , Plásmidos , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Transfección
6.
Am J Med Genet B Neuropsychiatr Genet ; 177(1): 35-39, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29095566

RESUMEN

A consistent feature of predictive testing guidelines for Huntington's disease (HD) is the recommendation not to undertake predictive tests on those < 18 years. Exceptions are made but the extent of, and reasons for, deviation from the guidelines are unknown. The UK Huntington's Prediction Consortium has collected data annually on predictive tests undertaken from the 23 UK genetic centers. DNA analysis for HD in the Netherlands is centralized in the Laboratory for Diagnostic Genome Analysis in Leiden. In the UK, 60 tests were performed on minors between 1994 and 2015 representing 0.63% of the total number of tests performed. In the Netherlands, 23 tests were performed on minors between 1997 and 2016. The majority of the tests were performed on those aged 16 and 17 years for both countries (23% and 57% for the UK, and 26% and 57% for the Netherlands). Data on the reasons for testing were identified for 36 UK and 22 Netherlands cases and included: close to the age of 18 years, pregnancy, currently in local authority care and likely to have less support available after 18 years, person never having the capacity to consent and other miscellaneous reasons. This study documents the extent of HD testing of minors in the UK and the Netherlands and suggests that, in general, the recommendation is being followed. We provide some empirical evidence as to reasons why clinicians have departed from the recommendation. We do not advise changing the recommendation but suggest that testing of minors continues to be monitored.


Asunto(s)
Pruebas Genéticas/métodos , Pruebas Genéticas/normas , Enfermedad de Huntington/diagnóstico , Adolescente , Femenino , Pruebas Genéticas/ética , Humanos , Masculino , Menores , Países Bajos/epidemiología , Reino Unido/epidemiología
7.
Mov Disord ; 32(1): 162-165, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27862284

RESUMEN

INTRODUCTION: Dystonia-deafness syndrome is a distinct clinical presentation within the dystonia-spectrum. Although several genetic and acquired causes have been reported, etiology remains unknown in the majority of patients. OBJECTIVES: To describe two patients with dystonia-deafness syndrome due to a beta-actin gene mutation. METHODS: We report on disease course, genetic testing, and management of 2 patients, mother and daughter, presenting with dystonia-deafness syndrome. RESULTS: After exclusion of known dystonia-deafness syndrome causes, whole-exome sequencing revealed a beta-actin gene mutation (p.Arg183Trp) in both patients. Although beta-actin gene mutations are generally associated with developmental Baraitser-Winter syndrome, dystonia-deafness syndrome has been reported once in identical twin brothers. Bilateral GPi-DBS led to a significant decrease of dystonia and regain of independency in our patients. CONCLUSION: The p.Arg183Trp mutation in the beta-actin gene is associated with the clinical presentation of dystonia-deafness syndrome, even with only minimal or no developmental abnormalities of Baraitser-Winter syndrome. GPi-DBS should be considered to ameliorate the invalidating dystonia in these patients. © 2016 International Parkinson and Movement Disorder Society.


Asunto(s)
Actinas/genética , Trastornos Sordoceguera/genética , Trastornos Sordoceguera/terapia , Estimulación Encefálica Profunda/métodos , Distonía/genética , Distonía/terapia , Discapacidad Intelectual/genética , Discapacidad Intelectual/terapia , Atrofia Óptica/genética , Atrofia Óptica/terapia , Adulto , Femenino , Humanos , Persona de Mediana Edad , Madres , Mutación , Núcleo Familiar , Adulto Joven
8.
Mov Disord ; 32(4): 569-575, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28186668

RESUMEN

BACKGROUND: Genetic disorders causing dystonia show great heterogeneity. Recent studies have suggested that next-generation sequencing techniques such as gene panel analysis can be effective in diagnosing heterogeneous conditions. The objective of this study was to investigate whether dystonia patients with a suspected genetic cause could benefit from the use of gene panel analysis. METHODS: In this post hoc study, we describe gene panel analysis results of 61 dystonia patients (mean age, 31 years; 72% young onset) in our tertiary referral center. The panel covered 94 dystonia-associated genes. As comparison with a historic cohort was not possible because of the rapidly growing list of dystonia genes, we compared the diagnostic workup with and without gene panel analysis in the same patients. The workup without gene panel analysis (control group) included theoretical diagnostic strategies formulated by independent experts in the field, based on detailed case descriptions. The primary outcome measure was diagnostic yield; secondary measures were cost and duration of diagnostic workup. RESULTS: Workup with gene panel analysis led to a confirmed molecular diagnosis in 14.8%, versus 7.4% in the control group (P = 0.096). In the control group, on average 3 genes/case were requested. The mean costs were lower in the gene panel analysis group (€1822/case) than in the controls (€2660/case). The duration of the workup was considerably shorter with gene panel analysis (28 vs 102 days). CONCLUSIONS: Gene panel analysis facilitates molecular diagnosis in complex cases of dystonia, with a good diagnostic yield (14.8%), a quicker diagnostic workup, and lower costs, representing a major improvement for patients and their families. © 2016 International Parkinson and Movement Disorder Society.


Asunto(s)
Análisis Mutacional de ADN/métodos , Distonía/diagnóstico , Distonía/genética , Mutación/genética , Adolescente , Adulto , Edad de Inicio , Niño , Estudios de Cohortes , Costos y Análisis de Costo , Análisis Mutacional de ADN/economía , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Proteínas de la Membrana/genética , Persona de Mediana Edad , Proteínas del Tejido Nervioso/genética , Evaluación de Resultado en la Atención de Salud , Adulto Joven
9.
J Neurol Neurosurg Psychiatry ; 86(7): 774-81, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25395479

RESUMEN

Early aetiological diagnosis is of paramount importance for childhood dystonia because some of the possible underlying conditions are treatable. Numerous genetic and non-genetic causes have been reported, and diagnostic workup is often challenging, time consuming and costly. Recently, a paradigm shift has occurred in molecular genetic diagnostics, with next-generation sequencing techniques now allowing us to analyse hundreds of genes simultaneously. To ensure that patients benefit from these new techniques, adaptation of current diagnostic strategies is needed. On the basis of a systematic literature review of dystonia with onset in childhood or adolescence, we propose a novel diagnostic strategy with the aim of helping clinicians determine which patients may benefit by applying these new genetic techniques and which patients first require other investigations. We also provide an up-to-date list of candidate genes for a dystonia gene panel, based on a detailed literature search up to 20 October 2014. While new genetic techniques are certainly not a panacea, possible advantages of our proposed strategy include earlier diagnosis and avoidance of unnecessary investigations. It will therefore shorten the time of uncertainty for patients and their families awaiting a definite diagnosis.


Asunto(s)
Distonía/diagnóstico , Adolescente , Algoritmos , Niño , Técnicas de Apoyo para la Decisión , Diagnóstico Diferencial , Distonía/clasificación , Distonía/etiología , Distonía/genética , Pruebas Genéticas , Humanos
11.
Mov Disord ; 29(1): 139-43, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24458321

RESUMEN

BACKGROUND: Ramsay Hunt syndrome (progressive myoclonus ataxia) is a descriptive diagnosis characterized by myoclonus, ataxia, and infrequent seizures. Often the etiology cannot be determined. Recently, a mutation in the GOSR2 gene (c.430G>T, p.Gly144Trp) was reported in 6 patients with childhood-onset progressive ataxia and myoclonus. METHODS: We evaluated 5 patients with cortical myoclonus, ataxia, and areflexia. RESULTS: All 5 patients had the same homozygous mutation in GOSR2. Here we present their clinical and neurophysiological data. Our patients (aged 7-26 years) all originated from the northern Netherlands and showed a remarkably homogeneous phenotype. Myoclonus and ataxia were relentlessly progressive over the years. Electromyography revealed signs of sensory neuronopathy or anterior horn cell involvement, or both, in all patients with absent reflexes. CONCLUSIONS: Based on the presented phenotype, we would advise movement disorder specialists to consider mutation analysis of GOSR2 in patients with Ramsay Hunt syndrome, especially when they also have areflexia.


Asunto(s)
Músculo Esquelético/fisiopatología , Mutación , Disinergia Cerebelosa Mioclónica/genética , Proteínas Qb-SNARE/genética , Adulto , Niño , Análisis Mutacional de ADN , Humanos , Masculino , Disinergia Cerebelosa Mioclónica/fisiopatología , Miografía , Fenotipo , Adulto Joven
12.
Am J Med Genet A ; 164A(11): 2707-23, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25123976

RESUMEN

22q11.2 deletion syndrome is one of the most common microdeletion syndromes. Most patients have a deletion resulting from a recombination of low copy repeat blocks LCR22-A and LCR22-D. Loss of the TBX1 gene is considered the most important cause of the phenotype. A limited number of patients with smaller, overlapping deletions distal to the TBX1 locus have been described in the literature. In these patients, the CRKL gene is deleted. Haploinsufficiency of this gene has also been implicated in the pathogenesis of 22q11.2 deletion syndrome. To distinguish these deletions (comprising the LCR22-B to LCR22-D region) from the more distal 22q11.2 deletions (located beyond LCR22-D), we propose the term "central 22q11.2 deletions". In the present study we report on 27 new patients with such a deletion. Together with information on previously published cases, we review the clinical findings of 52 patients. The prevalence of congenital heart anomalies and the frequency of de novo deletions in patients with a central deletion are substantially lower than in patients with a common or distal 22q11.2 deletion. Renal and urinary tract malformations, developmental delays, cognitive impairments and behavioral problems seem to be equally frequent as in patients with a common deletion. None of the patients had a cleft palate. Patients with a deletion that also encompassed the MAPK1 gene, located just distal to LCR22-D, have a different and more severe phenotype, characterized by a higher prevalence of congenital heart anomalies, growth restriction and microcephaly. Our results further elucidate genotype-phenotype correlations in 22q11.2 deletion syndrome spectrum.


Asunto(s)
Síndrome de DiGeorge/diagnóstico , Síndrome de DiGeorge/genética , Adolescente , Adulto , Niño , Preescolar , Facies , Familia , Femenino , Orden Génico , Sitios Genéticos , Humanos , Masculino , Fenotipo , Diagnóstico Prenatal , Adulto Joven
13.
Brain ; 135(Pt 10): 2994-3004, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22964162

RESUMEN

Spastic paraplegia type 7 is an autosomal recessive neurodegenerative disorder mainly characterized by progressive bilateral lower limb spasticity and referred to as a form of hereditary spastic paraplegia. Additional disease features may also be observed as part of a more complex phenotype. Many different mutations have already been identified, but no genotype-phenotype correlations have been found so far. From a total of almost 800 patients referred for testing, we identified 60 patients with mutations in the SPG7 gene. We identified 14 previously unreported mutations and detected a high recurrence rate of several earlier reported mutations. We were able to collect detailed clinical data for 49 patients, who were ranked based on a pure versus complex phenotype, ataxia versus no ataxia and missense versus null mutations. A generally complex phenotype occurred in 69% of all patients and was associated with a younger age at onset (trend with P = 0.07). Ataxia was observed in 57% of all patients. We found that null mutations were associated with the co-occurrence of cerebellar ataxia (trend with P = 0.06). The c.1409 G > A (p.Arg470Gln) mutation, which was found homozygously in two sibs, was associated with a specific complex phenotype that included predominant visual loss due to optical nerve atrophy. Neuropathology in one of these cases showed severe degeneration of the optic system, with less severe degeneration of the ascending tracts of the spinal cord and cerebellum. Other disease features encountered in this cohort included cervical dystonia, vertical gaze palsy, ptosis and severe intellectual disability. In this large Dutch cohort, we seem to have identified the first genotype-phenotype correlation in spastic paraplegia type 7 by observing an association between the cerebellar phenotype of spastic paraplegia type 7 and SPG7 null alleles. An overlapping phenotypic presentation with its biological counterpart AFG3L2, which when mutated causes spinocerebellar ataxia type 28, is apparent and possibly suggests that abnormal levels of the SPG7 protein impact the function of the mitochondrial ATPases associated with diverse cellular activities-protease complex (formed by SPG7 and AFG3L2) in the cerebellum. In addition, a missense mutation in exon 10 resulted in predominant optical nerve atrophy, which might suggest deleterious interactions of this SPG7 variant with its substrate OPA1, the mutated gene product in optic atrophy type 1. Functional studies are required to further investigate these interactions.


Asunto(s)
Angiopoyetinas/genética , Estudios de Asociación Genética , Metaloendopeptidasas/genética , Mutación/genética , Paraplejía Espástica Hereditaria/genética , ATPasas Asociadas con Actividades Celulares Diversas , Proteína 6 similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/fisiopatología , Estudios de Cohortes , Genotipo , Humanos , Países Bajos , Enfermedades del Nervio Óptico/genética , Enfermedades del Nervio Óptico/fisiopatología , Fenotipo , Paraplejía Espástica Hereditaria/fisiopatología
14.
Neurol Genet ; 9(1): e200050, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38058854

RESUMEN

Background and Objectives: The spinocerebellar ataxias (SCAs) are a genetically heterogeneous group of neurodegenerative disorders generally caused by single nucleotide variants (SNVs) or indels in coding regions or by repeat expansions in coding and noncoding regions of SCA genes. Copy number variants (CNVs) have now also been reported for 3 genes-ITPR1, FGF14, and SPTBN2-but not all SCA genes have been screened for CNVs as the underlying cause of the disease in patients. In this study, we aim to assess the prevalence of CNVs encompassing 36 known SCA genes. Methods: A cohort of patients with cerebellar ataxia who were referred to the University Medical Center Groningen for SCA genetic diagnostics was selected for this study. Genome-wide single nucleotide polymorphism (SNP) genotyping was performed using the Infinium Global Screening Array. Following data processing, genotyping data were uploaded into NxClinical software to perform CNV analysis per patient and to visualize identified CNVs in 36 genes with allocated SCA symbols. The clinical relevance of detected CNVs was determined using evidence from studies based on PubMed literature searches for similar CNVs and phenotypic features. Results: Of the 338 patients with cerebellar ataxia, we identified putative clinically relevant CNV deletions in 3 patients: an identical deletion encompassing ITPR1 in 2 patients, who turned out to be related, and a deletion involving PPP2R2B in another patient. Although the CNV deletion in ITPR1 was clearly the underlying cause of SCA15 in the 2 related patients, the clinical significance of the deletion in PPP2R2B remained unknown. Discussion: We showed that CNVs detectable with the limited resolution of SNP array are a very rare cause of SCA. Nevertheless, we suggest adding CNV analysis alongside SNV analysis to SCA gene diagnostics using next-generation sequencing approaches, at least for ITPR1, to improve the genetic diagnostics for patients.

15.
J Neurol ; 269(11): 6086-6093, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35864213

RESUMEN

Recently, an intronic biallelic (AAGGG)n repeat expansion in RFC1 was shown to be a cause of CANVAS and adult-onset ataxia in multiple populations. As the prevalence of the RFC1 repeat expansion in Dutch cases was unknown, we retrospectively tested 9 putative CANVAS cases and two independent cohorts (A and B) of 395 and 222 adult-onset ataxia cases, respectively, using the previously published protocol and, for the first time optical genome mapping to determine the size of the expanded RFC1 repeat. We identified the biallelic (AAGGG)n repeat expansion in 5/9 (55%) putative CANVAS patients and in 10/617 (1.6%; cohorts A + B) adult-onset ataxia patients. In addition to the AAGGG repeat motif, we observed a putative GAAGG repeat motif in the repeat expansion with unknown significance in two adult-onset ataxia patients. All the expanded (AAGGG)n repeats identified were in the range of 800-1299 repeat units. The intronic biallelic RFC1 repeat expansion thus explains a number of the Dutch adult-onset ataxia cases that display the main clinical features of CANVAS, and particularly when ataxia is combined with neuropathy. The yield of screening for RFC1 expansions in unselected cohorts is relatively low. To increase the current diagnostic yield in ataxia patients, we suggest adding RFC1 screening to the genetic diagnostic workflow by using advanced techniques that attain long fragments.


Asunto(s)
Ataxia Cerebelosa , Enfermedades del Sistema Nervioso Periférico , Adulto , Ataxia , Ataxia Cerebelosa/genética , Humanos , Prevalencia , Estudios Retrospectivos
16.
Front Genet ; 13: 782685, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401678

RESUMEN

Spinocerebellar ataxia (SCA) is a heterogeneous group of neurodegenerative disorders with autosomal dominant inheritance. Genetic testing for SCA leads to diagnosis, prognosis and risk assessment for patients and their family members. While advances in sequencing and computing technologies have provided researchers with a rapid expansion in the genetic test content that can be used to unravel the genetic causes that underlie diseases, the large number of variants with unknown significance (VUSes) detected represent challenges. To minimize the proportion of VUSes, follow-up studies are needed to aid in their reclassification as either (likely) pathogenic or (likely) benign variants. In this study, we addressed the challenge of prioritizing VUSes for follow-up using (a combination of) variant segregation studies, 3D protein modeling, in vitro splicing assays and functional assays. Of the 39 VUSes prioritized for further analysis, 13 were eligible for follow up. We were able to reclassify 4 of these VUSes to LP, increasing the molecular diagnostic yield by 1.1%. Reclassification of VUSes remains difficult due to limited possibilities for performing variant segregation studies in the classification process and the limited availability of routine functional tests.

17.
Neurogenetics ; 12(4): 263-71, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21993715

RESUMEN

Early-onset Parkinson's disease (EOPD) has been associated with recessive mutations in parkin (PARK2). About half of the mutations found in parkin are genomic rearrangements, i.e., large deletions or duplications. Although many different rearrangements have been found in parkin before, the exact breakpoints involving these rearrangements are rarely mapped. In the present study, the exact breakpoints of 13 different parkin deletions/duplications, detected in 13 patients out of a total screened sample of 116 EOPD patients using Multiple Ligation Probe Amplification (MLPA) analysis, were mapped using real time quantitative polymerase chain reaction (PCR), long-range PCR and sequence analysis. Deletion/duplication-specific PCR tests were developed as a rapid and low cost tool to confirm MLPA results and to test family members or patients with similar parkin deletions/duplications. Besides several different deletions, an exon 3 deletion, an exon 4 deletion and an exon 7 duplication were found in multiple families. Haplotype analysis in four families showed that a common haplotype of 1.2 Mb could be distinguished for the exon 7 duplication and a common haplotype of 6.3 Mb for the deletion of exon 4. These findings suggest common founder effects for distinct large rearrangements in parkin.


Asunto(s)
Exones , Eliminación de Gen , Duplicación de Gen , Mutación , Enfermedad de Parkinson/genética , Ubiquitina-Proteína Ligasas/genética , Adolescente , Adulto , Edad de Inicio , Anciano , Puntos de Rotura del Cromosoma , Mapeo Cromosómico , Análisis Mutacional de ADN , Femenino , Haplotipos , Humanos , Masculino , Persona de Mediana Edad , Linaje , Reacción en Cadena de la Polimerasa/métodos , Adulto Joven
18.
Dev Med Child Neurol ; 53(6): 529-34, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21574990

RESUMEN

AIM: In children with Friedreich ataxia (FRDA), ataxia is assessed using the surrogate marker the International Cooperative Ataxia Rating Scale (ICARS). We aimed to determine whether ICARS scores in children with FRDA are confounded by muscle weakness. METHOD: In 12 children with FRDA (10 males, two females; mean age 13 y 6 mo, SD 2 y 6 mo) and 12 age-matched children without FRDA (nine males; three females), we determined the association between muscle and ataxia parameters (i.e. muscle ultrasound density (MUD), muscle force, sensory evoked potentials, and ICARS scores). Children with FRDA were included on the basis of FXN gene analysis. Children in the comparison group were included on basis of uneventful pregnancy and normal cognitive and neurological development. RESULTS: In children with FRDA, muscle ultrasound density was homogeneously increased in the biceps, quadriceps, and tibialis anterior muscles (median 4SD). FRDA muscle weakness was significantly more pronounced in proximal than in distal muscles (-2SD vs -0.5SD respectively; p=0.004), with a stronger impairment of leg muscles than of arm muscles (-2SD vs -0. SD respectively; p=0.001). Comparing MUD between children with FRDA and an age-matched comparison group revealed a relatively strong increase in MUD in the proximal leg muscles in the FRDA group. Under the condition of persistently absent sensory evoked potentials, leg ICARS subscores in the FRDA group appeared to be positively associated with leg muscle force until a maximal plateau level of ICARS subscores was reached. INTERPRETATION: In children with FRDA, ataxia scales based on ICARS are confounded by muscle weakness. Longitudinal ICARS evaluations in children with FRDA do not necessarily indicate altered ataxia.


Asunto(s)
Ataxia de Friedreich/patología , Ataxia de Friedreich/fisiopatología , Fuerza Muscular/fisiología , Músculo Esquelético/fisiopatología , Adolescente , Estudios de Casos y Controles , Niño , Evaluación de la Discapacidad , Potenciales Evocados/fisiología , Femenino , Humanos , Masculino , Dinamómetro de Fuerza Muscular , Músculo Esquelético/diagnóstico por imagen , Tiempo de Reacción/fisiología , Análisis de Regresión , Estudios Retrospectivos , Ultrasonografía/métodos
19.
Eur J Hum Genet ; 28(9): 1205-1209, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32404886

RESUMEN

International guidelines on Huntington's Disease recommend neurological examination in the predictive testing trajectory. Experiences and personal wishes of persons at risk of Huntington's Disease regarding this topic have never been evaluated. The objective was to provide an overview of the experiences of Dutch at-risk persons, opting for predictive testing, in consulting a neurologist before and after DNA analysis. Persons who were counseled in four Dutch clinics between 2017 and 2019 were retrospectively or prospectively approached for a questionnaire which listed topics as experiences with consultation and personal wishes. From 71 participants, 44 participants visited a neurologist. 41 participants indicated their visit to a neurologist as positive (93.2%). The majority of participants (n = 59) desired consulting a neurologist. Thirty-two participants indicated consultation shortly after (Desired After Group) and twenty-seven before DNA analysis (Desired Before Group) as personal wish. The Desired Before Group consisted of a significantly higher number of participants who actually consulted a neurologist before predictive testing (n = 26) compared with the number of participants who actually consulted a neurologist after DNA analysis in the Desired After Group (n = 11) (p < 0.001). The Desired After Group (n = 19) had a significantly higher number of Huntington's disease gene expansion carriers compared with the Desired Before Group (n = 5) (p 0.003). Participants are content with consultation. However, persons without the gene expansion still feel the need to get in touch with a neurologist. Therefore, offering a consultation with a neurologist before DNA analysis might be beneficial for all.


Asunto(s)
Pruebas Genéticas/métodos , Enfermedad de Huntington/genética , Examen Neurológico/métodos , Adulto , Anciano , Femenino , Pruebas Genéticas/normas , Humanos , Enfermedad de Huntington/diagnóstico , Enfermedad de Huntington/psicología , Masculino , Persona de Mediana Edad , Examen Neurológico/normas , Satisfacción del Paciente
20.
J Neuromuscul Dis ; 6(2): 241-258, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31127727

RESUMEN

BACKGROUND: Neuromuscular disorders (NMDs) are clinically and genetically heterogeneous. Accurate molecular genetic diagnosis can improve clinical management, provides appropriate genetic counseling and testing of relatives, and allows potential therapeutic trials. OBJECTIVE: To establish the clinical utility of panel-based whole exome sequencing (WES) in NMDs in a population with children and adults with various neuromuscular symptoms. METHODS: Clinical exome sequencing, followed by diagnostic interpretation of variants in genes associated with NMDs, was performed in a cohort of 396 patients suspected of having a genetic cause with a variable age of onset, neuromuscular phenotype, and inheritance pattern. Many had previously undergone targeted gene testing without results. RESULTS: Disease-causing variants were identified in 75/396 patients (19%), with variants in the three COL6-genes (COL6A1, COL6A2 and COL6A3) as the most common cause of the identified muscle disorder, followed by variants in the RYR1 gene. Together, these four genes account for almost 25% of cases in whom a definite genetic cause was identified. Furthermore, likely pathogenic variants and/or variants of uncertain significance were identified in 95 of the patients (24%), in whom functional and/or segregation analysis should be used to confirm or reject the pathogenicity. In 18% of the cases with a disease-causing variant of which we received additional clinical information, we identified a genetic cause in genes of which the associated phenotypes did not match that of the patients. Hence, the advantage of panel-based WES is its unbiased approach. CONCLUSION: Whole exome sequencing, followed by filtering for NMD genes, offers an unbiased approach for the genetic diagnostics of NMD patients. This approach could be used as a first-tier test in neuromuscular disorders with a high suspicion of a genetic cause. With uncertain results, functional testing and segregation analysis are needed to complete the evidence.


Asunto(s)
Secuenciación del Exoma/métodos , Enfermedades Neuromusculares/diagnóstico , Enfermedades Neuromusculares/genética , Adolescente , Adulto , Anciano , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA